Skip to main content

2016 | OriginalPaper | Buchkapitel

14. Effect of Time-Periodic Boundary Temperature Modulations on the Onset of Convection in a Maxwell Fluid–Nanofluid Saturated Porous Layer

verfasst von : Jawali C. Umavathi, Kuppalapalle Vajravelu, Prashant G. Metri, Sergei Silvestrov

Erschienen in: Engineering Mathematics I

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The linear stability of Maxwell fluid–nanofluid flow in a saturated porous layer is examined theoretically when the walls of the porous layers are subjected to time-periodic temperature modulations. A modified Darcy–Maxwell model is used to describe the fluid motion, and the nanofluid model used includes the effects of the Brownian motion. The thermal conductivity and viscosity are considered to be dependent on the nanoparticle volume fraction. A perturbation method based on a small amplitude of an applied temperature field is used to compute the critical value of the Rayleigh number and the wave number. The stability of the system characterized by a critical Rayleigh number is calculated as a function of the relaxation parameter, the concentration Rayleigh number, the porosity parameter, the Lewis number, the heat capacity ratio, the Vadász number, the viscosity parameter, the conductivity variation parameter, and the frequency of modulation. Three types of temperature modulations are considered, and the effects of all three types of modulations are found to destabilize the system as compared to the unmodulated system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Awad, F.G., Sibanda, P., Motsa, S.S.: On the linear stability analysis of a Maxwell fluid with double-diffusive convection. Appl. Math. Model. 34, 3509–3517 (2010)MathSciNetCrossRefMATH Awad, F.G., Sibanda, P., Motsa, S.S.: On the linear stability analysis of a Maxwell fluid with double-diffusive convection. Appl. Math. Model. 34, 3509–3517 (2010)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Braester, C., Vadász, P.: The effect of a weak heterogeneity of a porous medium on natural convection. J. Fluid Mech. 254, 345–362 (1993)MathSciNetCrossRefMATH Braester, C., Vadász, P.: The effect of a weak heterogeneity of a porous medium on natural convection. J. Fluid Mech. 254, 345–362 (1993)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)CrossRef Buongiorno, J.: Convective transport in nanofluids. ASME J. Heat Transf. 128, 240–250 (2006)CrossRef
4.
5.
Zurück zum Zitat Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows) 231/MD - 66, pp. 99–105. ASME, New York (1995) Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A., Wang, H.P. (eds.) Developments and Applications of Non-Newtonian Flows) 231/MD - 66, pp. 99–105. ASME, New York (1995)
6.
Zurück zum Zitat Chung Liu, I.: Effect of modulation on onset of thermal convection of a second grade fluid layer. Int. J. Non-Linear Mech. 39, 1647–1657 (2004) Chung Liu, I.: Effect of modulation on onset of thermal convection of a second grade fluid layer. Int. J. Non-Linear Mech. 39, 1647–1657 (2004)
7.
Zurück zum Zitat Eastman, J.A., Choi, S.: LI, S., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene-glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)CrossRef Eastman, J.A., Choi, S.: LI, S., Thompson, L.J.: Anomalously increased effective thermal conductivities of ethylene-glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)CrossRef
8.
Zurück zum Zitat El-Sayed, M.F.: Electro hydrodynamic instability of two superposed Walters B viscoelastic fluids in relative motion through porous medium. Arch. Appl. Mech. 71, 717–732 (2001)CrossRefMATH El-Sayed, M.F.: Electro hydrodynamic instability of two superposed Walters B viscoelastic fluids in relative motion through porous medium. Arch. Appl. Mech. 71, 717–732 (2001)CrossRefMATH
9.
Zurück zum Zitat Finlayson, B.A.: The Method of Weighted Residuals and Variation Principles. Academic Press, New York (1972)MATH Finlayson, B.A.: The Method of Weighted Residuals and Variation Principles. Academic Press, New York (1972)MATH
10.
Zurück zum Zitat Gounot, J., Caltagirone, J.P.: Stabilite et convection naturelle au sein d’une couche poreuse non homogene. Int. J. Heat Mass Transf. 32, 1131–1140 (1989)CrossRefMATH Gounot, J., Caltagirone, J.P.: Stabilite et convection naturelle au sein d’une couche poreuse non homogene. Int. J. Heat Mass Transf. 32, 1131–1140 (1989)CrossRefMATH
12.
Zurück zum Zitat Khayat, R.W.: Chaos and over stability in the thermal convection of viscoelastic fluids. J. Non-Newton. Fluid Mech. 53, 227–255 (1994)CrossRef Khayat, R.W.: Chaos and over stability in the thermal convection of viscoelastic fluids. J. Non-Newton. Fluid Mech. 53, 227–255 (1994)CrossRef
13.
Zurück zum Zitat Leong, J.C., Lai, F.C.: Natural convection in rectangular layers porous cavities. J. Thermophys. Heat Transf. 18, 457–463 (2004)CrossRef Leong, J.C., Lai, F.C.: Natural convection in rectangular layers porous cavities. J. Thermophys. Heat Transf. 18, 457–463 (2004)CrossRef
14.
Zurück zum Zitat Malashetty, M.S., Begum, I.: Effect of thermal/gravity modulation on the onset of convection in a Maxwell fluid saturated porous layer. Transp. Porous Media 90, 889–909 (2011)MathSciNetCrossRef Malashetty, M.S., Begum, I.: Effect of thermal/gravity modulation on the onset of convection in a Maxwell fluid saturated porous layer. Transp. Porous Media 90, 889–909 (2011)MathSciNetCrossRef
15.
Zurück zum Zitat Malashetty, M.S., Swamy, M., Heera, R.: The onset of convection in a binary viscoelastic fluid saturated porous layer. Z. Angew. Math. Mech. 89, 356–369 (2009)MathSciNetCrossRefMATH Malashetty, M.S., Swamy, M., Heera, R.: The onset of convection in a binary viscoelastic fluid saturated porous layer. Z. Angew. Math. Mech. 89, 356–369 (2009)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei/Jpn. J. Thermophys. Prop. 7, 227–233 (1993)CrossRef Masuda, H., Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Netsu Bussei/Jpn. J. Thermophys. Prop. 7, 227–233 (1993)CrossRef
17.
Zurück zum Zitat Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. Ser. A. 157, 26–78 (1866) Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. Ser. A. 157, 26–78 (1866)
18.
Zurück zum Zitat McKibbin, R., O’Sullivan, M.J.: Heat transfer in a layered porous medium heated from below. J. Facil. Manag. 111, 141–173 (1981)MATH McKibbin, R., O’Sullivan, M.J.: Heat transfer in a layered porous medium heated from below. J. Facil. Manag. 111, 141–173 (1981)MATH
19.
Zurück zum Zitat Nield, D.A.: Convective heat transfer in porous media with columnar structures. Transp. Porous Media 2, 177–185 (1987)CrossRef Nield, D.A.: Convective heat transfer in porous media with columnar structures. Transp. Porous Media 2, 177–185 (1987)CrossRef
20.
Zurück zum Zitat Nield, D.A.: General heterogeneity effects on the onset of convection in a porous medium. In: Vadász, P. (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media, pp. 63–84. Springer, New York (2008)CrossRef Nield, D.A.: General heterogeneity effects on the onset of convection in a porous medium. In: Vadász, P. (ed.) Emerging Topics in Heat and Mass Transfer in Porous Media, pp. 63–84. Springer, New York (2008)CrossRef
21.
Zurück zum Zitat Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)CrossRefMATH Nield, D.A., Kuznetsov, A.V.: Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5796–5801 (2009)CrossRefMATH
22.
Zurück zum Zitat Nield, D.A., Kuznetsov, A.V.: The onset of convection in a layer of a porous medium saturated by a nanofluid: effects of conductivity and viscosity variation and cross diffusion. Transp. Porous Media 92, 837–846 (2012)MathSciNetCrossRef Nield, D.A., Kuznetsov, A.V.: The onset of convection in a layer of a porous medium saturated by a nanofluid: effects of conductivity and viscosity variation and cross diffusion. Transp. Porous Media 92, 837–846 (2012)MathSciNetCrossRef
23.
Zurück zum Zitat Rees, D.A.S., Riley, D.S.: The three-dimensionality of finite-amplitude convection in a layered porous medium heated from below. J. Fluid Mech. 211, 437–461 (1990)MathSciNetCrossRefMATH Rees, D.A.S., Riley, D.S.: The three-dimensionality of finite-amplitude convection in a layered porous medium heated from below. J. Fluid Mech. 211, 437–461 (1990)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Sekhar, G.N., Jayalatha, G.: Elastic effects on Rayleigh-Bénard convection in liquids with temperature-dependent viscosity. Int. J. Therm. Sci. 49, 67–75 (2010)CrossRef Sekhar, G.N., Jayalatha, G.: Elastic effects on Rayleigh-Bénard convection in liquids with temperature-dependent viscosity. Int. J. Therm. Sci. 49, 67–75 (2010)CrossRef
25.
Zurück zum Zitat Shivakumara, I.S., Lee, J., Malashetty, M.S., Sureshkumar, S.: Effect of thermal modulation on the onset of convection in Walters B viscoelastic fluid-saturated porous medium. Transp. Porous Media 87, 291–307 (2011)MathSciNetCrossRef Shivakumara, I.S., Lee, J., Malashetty, M.S., Sureshkumar, S.: Effect of thermal modulation on the onset of convection in Walters B viscoelastic fluid-saturated porous medium. Transp. Porous Media 87, 291–307 (2011)MathSciNetCrossRef
26.
Zurück zum Zitat Siddheshwar, P.G., Srikrishna, C.V.: Unsteady nonlinear convection in a second-order fluid. Int. J. Nonlinear Mech. 37, 321–330 (2002)CrossRefMATH Siddheshwar, P.G., Srikrishna, C.V.: Unsteady nonlinear convection in a second-order fluid. Int. J. Nonlinear Mech. 37, 321–330 (2002)CrossRefMATH
27.
Zurück zum Zitat Siddheshwar, P.G., Sekhar, G.N., Jayalatha, G.: Effect of time-periodic vertical oscillations of the Rayleigh-Bénard system on nonlinear convection in viscoelastic liquids. J. Non-Newton. Fluid Mech. 165, 1412–1418 (2010)CrossRefMATH Siddheshwar, P.G., Sekhar, G.N., Jayalatha, G.: Effect of time-periodic vertical oscillations of the Rayleigh-Bénard system on nonlinear convection in viscoelastic liquids. J. Non-Newton. Fluid Mech. 165, 1412–1418 (2010)CrossRefMATH
28.
Zurück zum Zitat Simmons, C.T., Fenstemaker, T.R., Sharp, J.M.: Variable-density flow and solute transport in heterogeneous porous media: Approaches, resolutions and future challenges. J. Contam. Hydrol. 52, 245–275 (2001)CrossRef Simmons, C.T., Fenstemaker, T.R., Sharp, J.M.: Variable-density flow and solute transport in heterogeneous porous media: Approaches, resolutions and future challenges. J. Contam. Hydrol. 52, 245–275 (2001)CrossRef
29.
Zurück zum Zitat Sokolov, M., Tanner, R.I.: Convective stability of a general viscoelastic fluid heated from below. Phys. Fluid 15, 534–539 (1972)CrossRefMATH Sokolov, M., Tanner, R.I.: Convective stability of a general viscoelastic fluid heated from below. Phys. Fluid 15, 534–539 (1972)CrossRefMATH
30.
Zurück zum Zitat Tan, W.C., Masouka, T.: Stability analysis of Maxwell fluid in a porous medium heated from below. Phys. Lett. A. 360, 454–460 (2007)CrossRef Tan, W.C., Masouka, T.: Stability analysis of Maxwell fluid in a porous medium heated from below. Phys. Lett. A. 360, 454–460 (2007)CrossRef
31.
Zurück zum Zitat Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)CrossRefMATH Tiwari, R.K., Das, M.K.: Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)CrossRefMATH
32.
Zurück zum Zitat Tzou, D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008)CrossRefMATH Tzou, D.Y.: Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51, 2967–2979 (2008)CrossRefMATH
33.
Zurück zum Zitat Umavathi, J.C.: Effect of thermal modulation on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Media 98, 59–79 (2013)MathSciNetCrossRef Umavathi, J.C.: Effect of thermal modulation on the onset of convection in a porous medium layer saturated by a nanofluid. Transp. Porous Media 98, 59–79 (2013)MathSciNetCrossRef
34.
Zurück zum Zitat Vadász, P.: Heat transfer enhancement in nanofluids suspensions: possible mechanisms and explanations. Int. J. Heat Mass Transf. 48, 2673–2683 (2005)CrossRef Vadász, P.: Heat transfer enhancement in nanofluids suspensions: possible mechanisms and explanations. Int. J. Heat Mass Transf. 48, 2673–2683 (2005)CrossRef
35.
Zurück zum Zitat Vadász, P.: Heat conduction in nanofluid suspensions. ASME. J. Heat Transf. 128, 465–477 (2006)CrossRef Vadász, P.: Heat conduction in nanofluid suspensions. ASME. J. Heat Transf. 128, 465–477 (2006)CrossRef
36.
Zurück zum Zitat Wang, S., Tan, W.C.: Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below. Phys. Lett. A. 372, 3046–3050 (2008)CrossRefMATH Wang, S., Tan, W.C.: Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below. Phys. Lett. A. 372, 3046–3050 (2008)CrossRefMATH
Metadaten
Titel
Effect of Time-Periodic Boundary Temperature Modulations on the Onset of Convection in a Maxwell Fluid–Nanofluid Saturated Porous Layer
verfasst von
Jawali C. Umavathi
Kuppalapalle Vajravelu
Prashant G. Metri
Sergei Silvestrov
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-42082-0_14

Premium Partner