Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 5/2016

02.03.2016

Effect of Travel Speed on the Stress Corrosion Behavior of Friction Stir Welded 2024-T4 Aluminum Alloy

verfasst von: Wen Wang, Tianqi Li, Kuaishe Wang, Jun Cai, Ke Qiao

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of travel speed on stress corrosion cracking (SCC) behavior of friction stir welded 2024-T4 aluminum alloy was investigated by slow strain rate tensile test. Microstructure and microhardness of the welded joint were studied. The results showed that the size of second phase particles increased with increasing travel speed, and the distribution of second phase particles was much more homogeneous at lower travel speed. The minimum microhardness was located at the boundary of nugget zone and thermomechanically affected zone. In addition, the SCC susceptibility of the friction stir welded joint increased with the increase of travel speed, owing to the size and distribution of second phase particles in the welds. The anodic applied potentials of −700, −650, −600 mV, and cathodic applied potential of −1200 mV facilitated SCC while the cathodic applied potential of −1000 mV improved the SCC resistance. The SCC behavior was mainly controlled by the metal anodic dissolution at the open circuit potential, and hydrogen accelerated metal embrittlement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Ericsson and R. Sandström, Influence of Welding Speed on the Fatigue of Friction Stir Welds, and Comparison with MIG and TIG, Int. J. Fatigue, 2003, 25(12), p 1379–1387CrossRef M. Ericsson and R. Sandström, Influence of Welding Speed on the Fatigue of Friction Stir Welds, and Comparison with MIG and TIG, Int. J. Fatigue, 2003, 25(12), p 1379–1387CrossRef
2.
Zurück zum Zitat M.A. Wahab, M.J. Painter, and M.H. Davies, The Prediction of the Temperature Distribution and Weld Pool Geometry in the Gas Metal Arc Welding Process, J. Mater. Process. Technol., 1998, 77(1-3), p 233–239CrossRef M.A. Wahab, M.J. Painter, and M.H. Davies, The Prediction of the Temperature Distribution and Weld Pool Geometry in the Gas Metal Arc Welding Process, J. Mater. Process. Technol., 1998, 77(1-3), p 233–239CrossRef
3.
Zurück zum Zitat P.M.G.P. Moreira, M.A.V. de Figueiredo, and P.M.S.T. de Castro, Fatigue Behaviour of FSW and MIG Weldments for Two Aluminium Alloys, Theor. Appl. Fract. Mech., 2007, 48(2), p 169–177CrossRef P.M.G.P. Moreira, M.A.V. de Figueiredo, and P.M.S.T. de Castro, Fatigue Behaviour of FSW and MIG Weldments for Two Aluminium Alloys, Theor. Appl. Fract. Mech., 2007, 48(2), p 169–177CrossRef
4.
Zurück zum Zitat A. Squillace, A. De Fenzo, G. Giorleo, and F. Bellucci, A Comparison Between FSW and TIG Welding Techniques: Modifications of Microstructure and Pitting Corrosion Resistance in AA 2024-T3 Butt Joints, J. Mater. Process. Technol., 2004, 152(1), p 97–105CrossRef A. Squillace, A. De Fenzo, G. Giorleo, and F. Bellucci, A Comparison Between FSW and TIG Welding Techniques: Modifications of Microstructure and Pitting Corrosion Resistance in AA 2024-T3 Butt Joints, J. Mater. Process. Technol., 2004, 152(1), p 97–105CrossRef
5.
Zurück zum Zitat W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203, 1991 W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes, Friction Stir Butt Welding, International Patent Application No. PCT/GB92/02203, 1991
6.
Zurück zum Zitat R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50(1-2), p 1–78CrossRef R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R, 2005, 50(1-2), p 1–78CrossRef
7.
Zurück zum Zitat A. Mirjalili, H.J. Aval, and S. Serajzadeh, An Investigation into the Microstructure of Friction-Stir Welded and Artificially Aged AA2017, J. Mater. Eng. Perform., 2013, 22(11), p 3566–3571CrossRef A. Mirjalili, H.J. Aval, and S. Serajzadeh, An Investigation into the Microstructure of Friction-Stir Welded and Artificially Aged AA2017, J. Mater. Eng. Perform., 2013, 22(11), p 3566–3571CrossRef
8.
Zurück zum Zitat C. Vidal and V. Infante, Optimization of FS Welding Parameters for Improving Mechanical Behavior of AA2024-T351 Joints Based on Taguchi Method, J. Mater. Eng. Perform., 2013, 22(8), p 2261–2270 C. Vidal and V. Infante, Optimization of FS Welding Parameters for Improving Mechanical Behavior of AA2024-T351 Joints Based on Taguchi Method, J. Mater. Eng. Perform., 2013, 22(8), p 2261–2270
9.
Zurück zum Zitat X.F. Lei, Y. Deng, Y.Y. Peng, Z.M. Yin, and G.F. Xu, Microstructure and Properties of TIG/FSW Welded Joints of a New Al-Zn-Mg-Sc-Zr Alloy, J. Mater. Eng. Perform., 2013, 22(9), p 2723–2729CrossRef X.F. Lei, Y. Deng, Y.Y. Peng, Z.M. Yin, and G.F. Xu, Microstructure and Properties of TIG/FSW Welded Joints of a New Al-Zn-Mg-Sc-Zr Alloy, J. Mater. Eng. Perform., 2013, 22(9), p 2723–2729CrossRef
10.
Zurück zum Zitat K. Surekha, B.S. Murty, and K.P. Rao, Microstructural Characterization and Corrosion Behavior of Multipass Friction Stir Processed AA2219 Aluminium Alloy, Surf. Coat. Technol., 2008, 202(17), p 4057–4068CrossRef K. Surekha, B.S. Murty, and K.P. Rao, Microstructural Characterization and Corrosion Behavior of Multipass Friction Stir Processed AA2219 Aluminium Alloy, Surf. Coat. Technol., 2008, 202(17), p 4057–4068CrossRef
11.
Zurück zum Zitat J.B. Lumsden, M.W. Mahoney, C.G. Rhodes, and G.A. Pollock, Corrosion Behavior of Friction-Stir-Welded AA7050-T7651, Corrosion, 2003, 59(3), p 212–219CrossRef J.B. Lumsden, M.W. Mahoney, C.G. Rhodes, and G.A. Pollock, Corrosion Behavior of Friction-Stir-Welded AA7050-T7651, Corrosion, 2003, 59(3), p 212–219CrossRef
12.
Zurück zum Zitat C.S. Paglia and R.G. Buchheit, Microstructure, Microchemistry and Environmental Cracking Susceptibility of Friction Stir Welded 2219-T87, Mater. Sci. Eng. A, 2006, 429(1–2), p 107–114CrossRef C.S. Paglia and R.G. Buchheit, Microstructure, Microchemistry and Environmental Cracking Susceptibility of Friction Stir Welded 2219-T87, Mater. Sci. Eng. A, 2006, 429(1–2), p 107–114CrossRef
13.
Zurück zum Zitat P.B. Srinivasan, W. Dietzel, R. Zettler, J.F. dos Santos, and V. Sivan, Stress Corrosion Cracking Susceptibility of Friction Stir Welded AA7075-AA6056 Dissimilar Joint, Mater. Sci. Eng. A, 2005, 392(1-2), p 292–300CrossRef P.B. Srinivasan, W. Dietzel, R. Zettler, J.F. dos Santos, and V. Sivan, Stress Corrosion Cracking Susceptibility of Friction Stir Welded AA7075-AA6056 Dissimilar Joint, Mater. Sci. Eng. A, 2005, 392(1-2), p 292–300CrossRef
14.
Zurück zum Zitat P.S. Pao, S.J. Gill, C.R. Feng, and K.K. Sankaran, Corrosion-fatigue Crack Growth in Friction Stir Welded Al 7050, Scr. Mater., 2001, 45(5), p 605–612CrossRef P.S. Pao, S.J. Gill, C.R. Feng, and K.K. Sankaran, Corrosion-fatigue Crack Growth in Friction Stir Welded Al 7050, Scr. Mater., 2001, 45(5), p 605–612CrossRef
15.
Zurück zum Zitat R.W. Fonda, P.S. Pao, H.N. Jones, C.R. Feng, B.J. Connolly, and A.J. Davenport, Microstructure, Mechanical Properties, and Corrosion of Friction Stir Welded Al 5456, Mater. Sci. Eng. A, 2009, 519(1-2), p 1–8CrossRef R.W. Fonda, P.S. Pao, H.N. Jones, C.R. Feng, B.J. Connolly, and A.J. Davenport, Microstructure, Mechanical Properties, and Corrosion of Friction Stir Welded Al 5456, Mater. Sci. Eng. A, 2009, 519(1-2), p 1–8CrossRef
16.
Zurück zum Zitat C.S. Paglia and R.G. Buchheit, The Time-Temperature-Corrosion Susceptibility in a 7050-T7451 Friction Stir Weld, Mater. Sci. Eng. A, 2008, 492(1-2), p 250–254CrossRef C.S. Paglia and R.G. Buchheit, The Time-Temperature-Corrosion Susceptibility in a 7050-T7451 Friction Stir Weld, Mater. Sci. Eng. A, 2008, 492(1-2), p 250–254CrossRef
17.
Zurück zum Zitat C.S. Paglia and R.G. Buchheit, A Look in the Corrosion of Aluminum Alloy Friction Stir Welds, Scr. Mater., 2008, 58(5), p 383–387CrossRef C.S. Paglia and R.G. Buchheit, A Look in the Corrosion of Aluminum Alloy Friction Stir Welds, Scr. Mater., 2008, 58(5), p 383–387CrossRef
18.
Zurück zum Zitat Y. Deng, R. Ye, G.F. Xu, J.D. Yang, Q.L. Pan, B. Peng, X.W. Cao, Y.L. Duan, Y.J. Wang, L.Y. Lu, and Z.M. Yin, Corrosion Behaviour and Mechanism of New Aerospace Al-Zn-Mg Alloy Friction Stir Welded Joints and the Effects of Secondary Al3ScxZr1-x Nanoparticles, Corros. Sci., 2015, 90, p 359–374CrossRef Y. Deng, R. Ye, G.F. Xu, J.D. Yang, Q.L. Pan, B. Peng, X.W. Cao, Y.L. Duan, Y.J. Wang, L.Y. Lu, and Z.M. Yin, Corrosion Behaviour and Mechanism of New Aerospace Al-Zn-Mg Alloy Friction Stir Welded Joints and the Effects of Secondary Al3ScxZr1-x Nanoparticles, Corros. Sci., 2015, 90, p 359–374CrossRef
19.
Zurück zum Zitat N.D. Alexopoulos, Z. Velonaki, C.I. Stergiou, and S.K. Kourkoulis, The Effect of Artificial Ageing Heat Treatments on the Corrosion-Induced Hydrogen Embrittlement of 2024 (Al-Cu) Aluminium Alloy, Corros. Sci., 2016, 102, p 413–424CrossRef N.D. Alexopoulos, Z. Velonaki, C.I. Stergiou, and S.K. Kourkoulis, The Effect of Artificial Ageing Heat Treatments on the Corrosion-Induced Hydrogen Embrittlement of 2024 (Al-Cu) Aluminium Alloy, Corros. Sci., 2016, 102, p 413–424CrossRef
20.
Zurück zum Zitat K.D. Ralston, N. Birbilis, M. Weyland, and C.R. Hutchinson, The Effect of Precipitate Size on the Yield Strength-Pitting Corrosion Correlation in Al-Cu-Mg Alloys, Acta Mater., 2010, 58(18), p 5941–5948CrossRef K.D. Ralston, N. Birbilis, M. Weyland, and C.R. Hutchinson, The Effect of Precipitate Size on the Yield Strength-Pitting Corrosion Correlation in Al-Cu-Mg Alloys, Acta Mater., 2010, 58(18), p 5941–5948CrossRef
21.
Zurück zum Zitat P.B. Srinivasan, K.S. Arora, W. Dietzel, S. Pandey, and M.K. Schaper, Characterisation of Microstructure, Mechanical Properties and Corrosion Behaviour of an AA2219 Friction Stir Weldment, J. Alloys Compd., 2010, 492(1-2), p 631–637CrossRef P.B. Srinivasan, K.S. Arora, W. Dietzel, S. Pandey, and M.K. Schaper, Characterisation of Microstructure, Mechanical Properties and Corrosion Behaviour of an AA2219 Friction Stir Weldment, J. Alloys Compd., 2010, 492(1-2), p 631–637CrossRef
22.
Zurück zum Zitat O. Hatamleh, P.M. Singh, and H. Garmestani, Corrosion Susceptibility of Peened Friction Stir Welded 7075 Aluminum Alloy Joints, Corros. Sci., 2009, 51(1), p 135–143CrossRef O. Hatamleh, P.M. Singh, and H. Garmestani, Corrosion Susceptibility of Peened Friction Stir Welded 7075 Aluminum Alloy Joints, Corros. Sci., 2009, 51(1), p 135–143CrossRef
23.
Zurück zum Zitat “Corrosion of Metals and Alloys-Stress Corrosion Testing-Part 7: Method for Slow Strain Rate Testing,” 7539-7, ISO, 2005, p 1-7 “Corrosion of Metals and Alloys-Stress Corrosion Testing-Part 7: Method for Slow Strain Rate Testing,” 7539-7, ISO, 2005, p 1-7
24.
Zurück zum Zitat A. Boag, A.E. Hughes, N.C. Wilson, A. Torpy, C.M. MacRae, A.M. Glenn, and T.H. Muster, How Complex Is the Microstructure of AA2024-T3, Corros. Sci., 2009, 51(8), p 1565–1568CrossRef A. Boag, A.E. Hughes, N.C. Wilson, A. Torpy, C.M. MacRae, A.M. Glenn, and T.H. Muster, How Complex Is the Microstructure of AA2024-T3, Corros. Sci., 2009, 51(8), p 1565–1568CrossRef
25.
Zurück zum Zitat R.G. Buchheit, R.P. Grant, P.F. Hlava, B. Mckenzie, and G.L. Zender, Local Dissolution Phenomena Associated with S phase (Al2CuMg) Particles in Aluminum Alloy 2024-T3, J. Electrochem. Soc., 1997, 144(8), p 2621–2628CrossRef R.G. Buchheit, R.P. Grant, P.F. Hlava, B. Mckenzie, and G.L. Zender, Local Dissolution Phenomena Associated with S phase (Al2CuMg) Particles in Aluminum Alloy 2024-T3, J. Electrochem. Soc., 1997, 144(8), p 2621–2628CrossRef
26.
Zurück zum Zitat V. Guillaumin and G. Mankowski, Localized Corrosion of 2024-T3 Aluminium Alloy in Chloride Media, Corros. Sci., 1999, 41(3), p 421–438CrossRef V. Guillaumin and G. Mankowski, Localized Corrosion of 2024-T3 Aluminium Alloy in Chloride Media, Corros. Sci., 1999, 41(3), p 421–438CrossRef
27.
Zurück zum Zitat E. Bousquet, A. Poulon-Quintin, M. Puiggali, O. Devos, and M. Touzet, Relationship Between Microstructure, Microhardness and Corrosion Sensitivity of an AA 2024-T3 Friction Stir Welded Joint, Corros. Sci., 2011, 53(9), p 3026–3034CrossRef E. Bousquet, A. Poulon-Quintin, M. Puiggali, O. Devos, and M. Touzet, Relationship Between Microstructure, Microhardness and Corrosion Sensitivity of an AA 2024-T3 Friction Stir Welded Joint, Corros. Sci., 2011, 53(9), p 3026–3034CrossRef
28.
Zurück zum Zitat M.J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, and J.H. Driver, Correlation Between Microstructure and Microhardness in a Friction Stir Welded 2024 Aluminium Alloy, Scr. Mater., 2005, 52(8), p 693–697CrossRef M.J. Jones, P. Heurtier, C. Desrayaud, F. Montheillet, D. Allehaux, and J.H. Driver, Correlation Between Microstructure and Microhardness in a Friction Stir Welded 2024 Aluminium Alloy, Scr. Mater., 2005, 52(8), p 693–697CrossRef
29.
Zurück zum Zitat Z.L. Hu, S.J. Yuan, X.S. Wang, G. Liu, and Y.X. Huang, Effect of Post-Weld Heat Treatment on the Microstructure and Plastic Deformation Behavior of Friction Stir Welded 2024, Mater. Des., 2011, 32(10), p 5055–5060CrossRef Z.L. Hu, S.J. Yuan, X.S. Wang, G. Liu, and Y.X. Huang, Effect of Post-Weld Heat Treatment on the Microstructure and Plastic Deformation Behavior of Friction Stir Welded 2024, Mater. Des., 2011, 32(10), p 5055–5060CrossRef
30.
Zurück zum Zitat F.M. Queiroz, M. Magnani, I. Costa, and H.G. de Melo, Investigation of the Corrosion Behaviour of AA2024-T3 in Low Concentrated Chloride Media, Corros. Sci., 2008, 50(9), p 2646–2657CrossRef F.M. Queiroz, M. Magnani, I. Costa, and H.G. de Melo, Investigation of the Corrosion Behaviour of AA2024-T3 in Low Concentrated Chloride Media, Corros. Sci., 2008, 50(9), p 2646–2657CrossRef
31.
Zurück zum Zitat H. Aydın, A. Bayram, A. Uğuz, and K.S. Akay, Tensile Properties of Friction Stir Welded Joints of 2024 Aluminum Alloys in Different Heat-Treated-State, Mater. Des., 2009, 30(6), p 2211–2221CrossRef H. Aydın, A. Bayram, A. Uğuz, and K.S. Akay, Tensile Properties of Friction Stir Welded Joints of 2024 Aluminum Alloys in Different Heat-Treated-State, Mater. Des., 2009, 30(6), p 2211–2221CrossRef
32.
Zurück zum Zitat C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-cottignies, Quantitative Investigation of Precipitation and Mechanical Behaviour for AA2024 Friction Stir Welds, Acta Mater., 2005, 53(8), p 2447–2458CrossRef C. Genevois, A. Deschamps, A. Denquin, and B. Doisneau-cottignies, Quantitative Investigation of Precipitation and Mechanical Behaviour for AA2024 Friction Stir Welds, Acta Mater., 2005, 53(8), p 2447–2458CrossRef
33.
Zurück zum Zitat J. Kang, R.D. Fu, G.H. Luan, C.L. Dong, and M. He, In-Situ Investigation on the Pitting Corrosion Behavior of Friction Stir Welded Joint of AA2024-T3 Aluminium Alloy, Corros. Sci., 2010, 52(2), p 620–626CrossRef J. Kang, R.D. Fu, G.H. Luan, C.L. Dong, and M. He, In-Situ Investigation on the Pitting Corrosion Behavior of Friction Stir Welded Joint of AA2024-T3 Aluminium Alloy, Corros. Sci., 2010, 52(2), p 620–626CrossRef
34.
Zurück zum Zitat G.O. Llevbare and J.R. Scully, Mass-Transport-Limited Oxygen Reduction Reaction on AA2024-T3 and Selected Intermetallic Compounds in Chromate-containing Solutions, Corrosion, 2001, 57(2), p 134–152CrossRef G.O. Llevbare and J.R. Scully, Mass-Transport-Limited Oxygen Reduction Reaction on AA2024-T3 and Selected Intermetallic Compounds in Chromate-containing Solutions, Corrosion, 2001, 57(2), p 134–152CrossRef
35.
Zurück zum Zitat Y. Deng, B. Peng, G.F. Xu, Q.L. Pan, R. Ye, Y.J. Wang, L.Y. Lu, and Z.M. Yin, Stress Corrosion Cracking of a High-strength Friction-Stir-Welded Joint of an Al-Zn-Mg-Zr Alloy Containing 0.25 wt.% Sc, Corros. Sci., 2015, 100, p 57–72CrossRef Y. Deng, B. Peng, G.F. Xu, Q.L. Pan, R. Ye, Y.J. Wang, L.Y. Lu, and Z.M. Yin, Stress Corrosion Cracking of a High-strength Friction-Stir-Welded Joint of an Al-Zn-Mg-Zr Alloy Containing 0.25 wt.% Sc, Corros. Sci., 2015, 100, p 57–72CrossRef
36.
Zurück zum Zitat M.S. Han, S. Ko, S.H. Kim, S.K. Jang, and S.J. Kim, Optimization of Corrosion Protection Potential for Stress Corrosion Cracking and Hydrogen Embrittlement of 5083-H112 Alloy in Seawater, Met. Mater. Int., 2008, 14(2), p 203–211CrossRef M.S. Han, S. Ko, S.H. Kim, S.K. Jang, and S.J. Kim, Optimization of Corrosion Protection Potential for Stress Corrosion Cracking and Hydrogen Embrittlement of 5083-H112 Alloy in Seawater, Met. Mater. Int., 2008, 14(2), p 203–211CrossRef
37.
Zurück zum Zitat S.H. Park, J.S. Kim, M.S. Han, and S.J. Kim, Corrosion and Optimum Corrosion Protection Potential of Friction Stir Welded 5083-O Al Alloy for Leisure Ship, Trans. Nonferrous Met. Soc. China, 2009, 19(4), p 898–903CrossRef S.H. Park, J.S. Kim, M.S. Han, and S.J. Kim, Corrosion and Optimum Corrosion Protection Potential of Friction Stir Welded 5083-O Al Alloy for Leisure Ship, Trans. Nonferrous Met. Soc. China, 2009, 19(4), p 898–903CrossRef
38.
Zurück zum Zitat P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Effect of Solution pH on Electrochemical and Stress Corrosion Cracking Behaviour of a 7150 Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2014, 604, p 156–165CrossRef P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Effect of Solution pH on Electrochemical and Stress Corrosion Cracking Behaviour of a 7150 Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng. A, 2014, 604, p 156–165CrossRef
39.
Zurück zum Zitat R. Ambat and E.S. Dwarakadasa, Studies on the Influence of Chloride Ion and pH on the Electrochemical Behaviour of Aluminium Alloys 8090 and 2014, J. Appl. Electrochem., 1994, 24(9), p 911–916CrossRef R. Ambat and E.S. Dwarakadasa, Studies on the Influence of Chloride Ion and pH on the Electrochemical Behaviour of Aluminium Alloys 8090 and 2014, J. Appl. Electrochem., 1994, 24(9), p 911–916CrossRef
40.
Zurück zum Zitat W.F. Xu and J.H. Liu, Microstructure and Pitting Corrosion of Friction Stir Welded Joints in 2219-O Aluminum Alloy Thick Plate, Corros. Sci., 2009, 51(11), p 2743–2751CrossRef W.F. Xu and J.H. Liu, Microstructure and Pitting Corrosion of Friction Stir Welded Joints in 2219-O Aluminum Alloy Thick Plate, Corros. Sci., 2009, 51(11), p 2743–2751CrossRef
41.
Zurück zum Zitat C.N. Cao, Principles of Electrochemistry of Corrosion, Chemical Industry Press, Beijing, 2008, p 35–37 C.N. Cao, Principles of Electrochemistry of Corrosion, Chemical Industry Press, Beijing, 2008, p 35–37
42.
Zurück zum Zitat M.M. Sharma and C.W. Ziemian, Pitting and Stress Corrosion Cracking Susceptibility of Nanostructured Al-Mg Alloys in Natural and Artificial Environments, J. Mater. Eng. Perform., 2008, 17(6), p 870–878CrossRef M.M. Sharma and C.W. Ziemian, Pitting and Stress Corrosion Cracking Susceptibility of Nanostructured Al-Mg Alloys in Natural and Artificial Environments, J. Mater. Eng. Perform., 2008, 17(6), p 870–878CrossRef
43.
Zurück zum Zitat S.J. Kim, M.S. Han, and S.K. Jang, Electrochemical Characteristics of Al-Mg Alloy in Seawater for Leisure Ship: Stress Corrosion Cracking and Hydrogen Embrittlement, Korean J. Chem. Eng., 2009, 26(1), p 250–257CrossRef S.J. Kim, M.S. Han, and S.K. Jang, Electrochemical Characteristics of Al-Mg Alloy in Seawater for Leisure Ship: Stress Corrosion Cracking and Hydrogen Embrittlement, Korean J. Chem. Eng., 2009, 26(1), p 250–257CrossRef
44.
Zurück zum Zitat P.V. Petroyiannis, A.T. Kermanidis, P. Papanikos, and S.G. Pantelakis, Corrosion-Induced Hydrogen Embrittlement of 2024 and 6013 Aluminum Alloys, Theor. Appl. Fract. Mech., 2004, 41(1-3), p 173–183CrossRef P.V. Petroyiannis, A.T. Kermanidis, P. Papanikos, and S.G. Pantelakis, Corrosion-Induced Hydrogen Embrittlement of 2024 and 6013 Aluminum Alloys, Theor. Appl. Fract. Mech., 2004, 41(1-3), p 173–183CrossRef
45.
Zurück zum Zitat M.P. Sibi and Z.G. Zong, Determination of Corrosion on Aluminum Alloy Under Protective Coatings Using Fluorescent Probes, Prog. Org. Coat., 2003, 47(1), p 8–15CrossRef M.P. Sibi and Z.G. Zong, Determination of Corrosion on Aluminum Alloy Under Protective Coatings Using Fluorescent Probes, Prog. Org. Coat., 2003, 47(1), p 8–15CrossRef
46.
Zurück zum Zitat R.M. Pidaparti and A.S. Rao, Analysis of Pits Induced Stresses Due to Metal Corrosion, Corros. Sci., 2008, 50(7), p 1932–1938CrossRef R.M. Pidaparti and A.S. Rao, Analysis of Pits Induced Stresses Due to Metal Corrosion, Corros. Sci., 2008, 50(7), p 1932–1938CrossRef
47.
Zurück zum Zitat S.I. Rokhlin, J.Y. Kim, H. Nagy, and B. Zoofan, Effect of Pitting Corrosion on Fatigue Crack Initiation and Fatigue Life, Eng. Fract. Mech., 1999, 62(4-5), p 425–444CrossRef S.I. Rokhlin, J.Y. Kim, H. Nagy, and B. Zoofan, Effect of Pitting Corrosion on Fatigue Crack Initiation and Fatigue Life, Eng. Fract. Mech., 1999, 62(4-5), p 425–444CrossRef
48.
Zurück zum Zitat R.M. Pidaparti and R.R. Patel, Correlation Between Corrosion Pits and Stresses in Al Alloys, Mater. Lett., 2008, 62(30), p 4497–4499CrossRef R.M. Pidaparti and R.R. Patel, Correlation Between Corrosion Pits and Stresses in Al Alloys, Mater. Lett., 2008, 62(30), p 4497–4499CrossRef
49.
Zurück zum Zitat M. Cerit, K. Genel, and S. Eksi, Numerical Investigation on Stress Concentration of Corrosion Pit, Eng. Fail. Anal., 2009, 16(7), p 2467–2472CrossRef M. Cerit, K. Genel, and S. Eksi, Numerical Investigation on Stress Concentration of Corrosion Pit, Eng. Fail. Anal., 2009, 16(7), p 2467–2472CrossRef
50.
Zurück zum Zitat Y.F. Huang, C. Wei, L.J. Chen, and P.F. Li, Quantitative Correlation Between Geometric Parameters and Stress Concentration of Corrosion Pits, Eng. Fail. Anal., 2014, 44, p 168–178CrossRef Y.F. Huang, C. Wei, L.J. Chen, and P.F. Li, Quantitative Correlation Between Geometric Parameters and Stress Concentration of Corrosion Pits, Eng. Fail. Anal., 2014, 44, p 168–178CrossRef
51.
Zurück zum Zitat S.P. Knight, M. Salagaras, A.M. Wythe, F. De Carlo, A.J. Davenport, and A.R. Trueman, In Situ X-ray Tomography of Intergranular Corrosion of 2024 and 7050 Aluminium Alloys, Corros. Sci., 2010, 52(12), p 3855–3860CrossRef S.P. Knight, M. Salagaras, A.M. Wythe, F. De Carlo, A.J. Davenport, and A.R. Trueman, In Situ X-ray Tomography of Intergranular Corrosion of 2024 and 7050 Aluminium Alloys, Corros. Sci., 2010, 52(12), p 3855–3860CrossRef
52.
Zurück zum Zitat S.P. Knight, M. Salagaras, and A.R. Trueman, The Study of Intergranular Corrosion in Aircraft Aluminium Alloys Using X-ray Tomography, Corros. Sci., 2011, 53(2), p 727–734CrossRef S.P. Knight, M. Salagaras, and A.R. Trueman, The Study of Intergranular Corrosion in Aircraft Aluminium Alloys Using X-ray Tomography, Corros. Sci., 2011, 53(2), p 727–734CrossRef
53.
Zurück zum Zitat H. Kamoutsi, G.N. Haidemenopoulos, V. Bontozoglou, P.V. Petroyiannis, and S.G. Pantelakis, Effect of Prior Deformation and Heat Treatment on the Corrosion-induced Hydrogen Trapping in Aluminium Alloy 2024, Corros. Sci., 2014, 80, p 139–142CrossRef H. Kamoutsi, G.N. Haidemenopoulos, V. Bontozoglou, P.V. Petroyiannis, and S.G. Pantelakis, Effect of Prior Deformation and Heat Treatment on the Corrosion-induced Hydrogen Trapping in Aluminium Alloy 2024, Corros. Sci., 2014, 80, p 139–142CrossRef
54.
Zurück zum Zitat E. Charitidou, G. Papapolymerou, G.N. Haidemenopoulos, N. Hasiotis, and V. Bontozoglou, Characterization of Trapped Hydrogen in Exfoliation Corroded Aluminum Alloy 2024, Scr. Mater., 1999, 41(12), p 1327–1332CrossRef E. Charitidou, G. Papapolymerou, G.N. Haidemenopoulos, N. Hasiotis, and V. Bontozoglou, Characterization of Trapped Hydrogen in Exfoliation Corroded Aluminum Alloy 2024, Scr. Mater., 1999, 41(12), p 1327–1332CrossRef
55.
Zurück zum Zitat H. Lee, Y. Kim, Y. Jeong, and S. Kim, Effects of Testing Variables on Stress Corrosion Cracking Susceptibility of Al 2024-T351, Corros. Sci., 2012, 55, p 10–19CrossRef H. Lee, Y. Kim, Y. Jeong, and S. Kim, Effects of Testing Variables on Stress Corrosion Cracking Susceptibility of Al 2024-T351, Corros. Sci., 2012, 55, p 10–19CrossRef
Metadaten
Titel
Effect of Travel Speed on the Stress Corrosion Behavior of Friction Stir Welded 2024-T4 Aluminum Alloy
verfasst von
Wen Wang
Tianqi Li
Kuaishe Wang
Jun Cai
Ke Qiao
Publikationsdatum
02.03.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 5/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-1979-6

Weitere Artikel der Ausgabe 5/2016

Journal of Materials Engineering and Performance 5/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.