Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 12/2012

01.12.2012

Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

verfasst von: Santo Padula II, Shipeng Qiu, Darrell Gaydosh, Ronald Noebe, Glen Bigelow, Anita Garg, Raj Vaidyanathan

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 12/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the past decade, interest in shape-memory-alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently, we showed that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt pct Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to (1) ascertain whether increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 386 K (113 °C), and (2) determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50 to 300 MPa using upper-cycle temperatures of 438 K, 473 K, 503 K, 533 K, 563 K, 593 K, and 623 K (165 °C, 200 °C, 230 °C, 260 °C, 290 °C, 320 °C, and 350 °C). The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 563 K (290 °C). In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape-memory alloys for optimal performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X.D. Wu, G.J. Sun, and J.S. Wu: Mater. Lett., 2003, vol. 57, pp. 1334–38.CrossRef X.D. Wu, G.J. Sun, and J.S. Wu: Mater. Lett., 2003, vol. 57, pp. 1334–38.CrossRef
2.
Zurück zum Zitat B. Ye, B.S. Majumdar, and I. Dutta: Acta Mater., 2009, vol. 57, pp. 2403–17.CrossRef B. Ye, B.S. Majumdar, and I. Dutta: Acta Mater., 2009, vol. 57, pp. 2403–17.CrossRef
3.
Zurück zum Zitat J.H. Mabe, R. Ruggeri, and F.T. Calkins: Proc. International Conference on Shape Memory and Superelastic Technologies (SMST), 2006, pp. 629–44. J.H. Mabe, R. Ruggeri, and F.T. Calkins: Proc. International Conference on Shape Memory and Superelastic Technologies (SMST), 2006, pp. 629–44.
4.
Zurück zum Zitat G.S. Bigelow, R.D. Noebe, S.A. Padula, and A. Garg: Proc. International Conference on Shape Memory and Superelastic Technologies (SMST), 2006, pp. 113–31. G.S. Bigelow, R.D. Noebe, S.A. Padula, and A. Garg: Proc. International Conference on Shape Memory and Superelastic Technologies (SMST), 2006, pp. 113–31.
5.
Zurück zum Zitat R.D. Noebe, S.L. Draper, D.J. Gaydosh, A. Garg, B. Lerch, N. Penney, G.S. Bigelow, and S.A. Padula: Proc. International Conference on Shape Memory and Superelastic Technologies (SMST), 2006, pp. 409–26. R.D. Noebe, S.L. Draper, D.J. Gaydosh, A. Garg, B. Lerch, N. Penney, G.S. Bigelow, and S.A. Padula: Proc. International Conference on Shape Memory and Superelastic Technologies (SMST), 2006, pp. 409–26.
6.
Zurück zum Zitat L.L. Toia, A. Coda, G. Vergani, L. Fumagalli, and F. Butera: Proc. Int. Conf. on Shape Memory and Superelastic Technologies (SMST), 2006, pp. 499–506. L.L. Toia, A. Coda, G. Vergani, L. Fumagalli, and F. Butera: Proc. Int. Conf. on Shape Memory and Superelastic Technologies (SMST), 2006, pp. 499–506.
7.
Zurück zum Zitat H. Warlimont, L. Delaey, R.V. Krisknan, and H. Tas: J. Mater. Sci., 1974, vol. 9, pp. 1545–55.CrossRef H. Warlimont, L. Delaey, R.V. Krisknan, and H. Tas: J. Mater. Sci., 1974, vol. 9, pp. 1545–55.CrossRef
8.
Zurück zum Zitat K.N. Melton and O. Mercier: Acta Metall., 1981, vol. 29, pp. 393–98.CrossRef K.N. Melton and O. Mercier: Acta Metall., 1981, vol. 29, pp. 393–98.CrossRef
9.
Zurück zum Zitat A. Stebner, S. Padula II, R. Noebe, B. Lerch, and D. Quinn: J. Intell. Mater. Syst. Struct., 2009, vol. 20, pp. 2107–26.CrossRef A. Stebner, S. Padula II, R. Noebe, B. Lerch, and D. Quinn: J. Intell. Mater. Syst. Struct., 2009, vol. 20, pp. 2107–26.CrossRef
10.
Zurück zum Zitat S.A. Padula II, D.J. Gaydosh, R.D. Noebe, G.S. Bigelow, A. Garg, D. Lagoudas, I. Karaman, and K.C. Atli: Behavior and Mechanics of Multifunctional and Composite Materials II, SPIE Conf. Proc., 2008, vol. 6929, pp. 692912-1–11. S.A. Padula II, D.J. Gaydosh, R.D. Noebe, G.S. Bigelow, A. Garg, D. Lagoudas, I. Karaman, and K.C. Atli: Behavior and Mechanics of Multifunctional and Composite Materials II, SPIE Conf. Proc., 2008, vol. 6929, pp. 692912-1–11.
11.
Zurück zum Zitat M.A.M. Bourke, D.C. Dunand, and E. Ustundag: Appl. Phys. A, 2002, vol. 74, p. S1707.CrossRef M.A.M. Bourke, D.C. Dunand, and E. Ustundag: Appl. Phys. A, 2002, vol. 74, p. S1707.CrossRef
12.
Zurück zum Zitat R. Vaidyanathan, M.A.M. Bourke, and D.C. Dunand: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 777–86. R. Vaidyanathan, M.A.M. Bourke, and D.C. Dunand: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 777–86.
13.
Zurück zum Zitat S. Qiu, V.B. Krishnan, S.A. Padula II, R.D. Noebe, D.W. Brown, B. Clausen, and R. Vaidyanathan: Appl. Phys. Lett., 2009, vol. 95, p. 141906.CrossRef S. Qiu, V.B. Krishnan, S.A. Padula II, R.D. Noebe, D.W. Brown, B. Clausen, and R. Vaidyanathan: Appl. Phys. Lett., 2009, vol. 95, p. 141906.CrossRef
14.
Zurück zum Zitat S. Rajagopalan, A.L. Little, M.A.M. Bourke, and R. Vaidyanathan: Appl. Phys. Lett., 2005, vol. 86, p. 081901.CrossRef S. Rajagopalan, A.L. Little, M.A.M. Bourke, and R. Vaidyanathan: Appl. Phys. Lett., 2005, vol. 86, p. 081901.CrossRef
15.
Zurück zum Zitat D.C. Dunand, D. Mari, M.A.M Bourke, and J.A. Roberts: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2820–36.CrossRef D.C. Dunand, D. Mari, M.A.M Bourke, and J.A. Roberts: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2820–36.CrossRef
16.
Zurück zum Zitat S. Qiu, S.A. Padula II, R.D. Noebe, D.W. Brown, and R. Vaidyanathan: Metall. Mater. Trans. A, in press. S. Qiu, S.A. Padula II, R.D. Noebe, D.W. Brown, and R. Vaidyanathan: Metall. Mater. Trans. A, in press.
17.
Zurück zum Zitat E.C. Oliver, N. Kobayashi, T. Mori, M.R. Daymond, and P.J. Withers: Scripta Mater., 2003, vol. 49, pp. 1013–19.CrossRef E.C. Oliver, N. Kobayashi, T. Mori, M.R. Daymond, and P.J. Withers: Scripta Mater., 2003, vol. 49, pp. 1013–19.CrossRef
18.
Zurück zum Zitat M.A.M. Bourke, R. Vaidyanathan, and D.C. Dunand: Appl. Phys. Lett., 1996, vol. 69, pp. 2477–79.CrossRef M.A.M. Bourke, R. Vaidyanathan, and D.C. Dunand: Appl. Phys. Lett., 1996, vol. 69, pp. 2477–79.CrossRef
19.
Zurück zum Zitat R. Vaidyanathan, M.A.M. Bourke, and D.C. Dunand: J. Appl. Phys., 1999, vol. 86, pp. 3020–29.CrossRef R. Vaidyanathan, M.A.M. Bourke, and D.C. Dunand: J. Appl. Phys., 1999, vol. 86, pp. 3020–29.CrossRef
20.
Zurück zum Zitat S. Qiu, S.A. Padula II, R.D. Noebe, and R. Vaidyanathan: Acta Mater., in press. S. Qiu, S.A. Padula II, R.D. Noebe, and R. Vaidyanathan: Acta Mater., in press.
Metadaten
Titel
Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi
verfasst von
Santo Padula II
Shipeng Qiu
Darrell Gaydosh
Ronald Noebe
Glen Bigelow
Anita Garg
Raj Vaidyanathan
Publikationsdatum
01.12.2012
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 12/2012
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-012-1267-5

Weitere Artikel der Ausgabe 12/2012

Metallurgical and Materials Transactions A 12/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.