Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 1/2017

20.08.2016

Effect of vanadium substitution on electrical and piezoelectric properties of lead-free (K0.5Na0.5)NbO3 ceramics

verfasst von: Chongtham Jiten, K. Chandramani Singh

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

During the last decade, efforts have been made towards developing lead-free piezoelectric ceramics which can replace the currently dominant but highly superior lead-based piezoelectric materials such as PZT. (K0.5Na0.5)NbO3-based piezoelectrics are one promising candidate because of their relatively high Curie temperatures and piezoelectric coefficients. In the present work, powders of (K0.5Na0.5)(Nb1−x V x )O3 (x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) were synthesized by conventional solid state reaction of K2CO3, Na2CO3, Nb2O5, and V2O5. The powders were high-energy milled in isopropyl alcohol medium using a Retsch PM 100 planetary ball mill at the speed of 200 rpm for 8 h. The milled powders were sintered at 1080 °C for 1 h in closed alumina crucible. The crystalline phase of the ceramics was found to be perovskite with orthorhombic symmetry. Increasing V5+ content in the ceramics from x = 0 to x = 0.03 gives rise to gradual increase in room temperature dielectric constant (ε r ) from 346 to 432, remnant polarization (P r ) from 6.2 to 9.6 μC/cm2, electromechanical coupling factor (k p ) from 0.35 to 0.39, and piezoelectric charge constant (d 33) from 76 to 93 pC/N. The increase in these parameters is attributed to the associated increase in density of the ceramics with increasing V5+ content. Further increase in V5+ content to x = 0.05 results in decrease in ε r , P r , k p and d 33 to 390, 4.7 μC/cm2, 0.33 and 67 pC/N respectively. The study reveals that an optimum concentration of V5+ can enhance the dielectric, ferroelectric and piezoelectric properties of (K0.5Na0.5)NbO3 system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys. Rev. B 61, 8687–8695 (2000)CrossRef B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Tetragonal-to-monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys. Rev. B 61, 8687–8695 (2000)CrossRef
2.
Zurück zum Zitat H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Large piezoelectric constant and high curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Jpn. J. Appl. Phys. 42, 7401–7403 (2003)CrossRef H. Nagata, M. Yoshida, Y. Makiuchi, T. Takenaka, Large piezoelectric constant and high curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary. Jpn. J. Appl. Phys. 42, 7401–7403 (2003)CrossRef
3.
Zurück zum Zitat M. Suzuki, H. Nagata, J. Ohara, H. Funakubo, T. Takenaka, Bi3-xMxTiTaO9 (M = La or Nd) ceramics with high mechanical quality factor Qm. Jpn. J. Appl. Phys. 42, 6090–6093 (2003)CrossRef M. Suzuki, H. Nagata, J. Ohara, H. Funakubo, T. Takenaka, Bi3-xMxTiTaO9 (M = La or Nd) ceramics with high mechanical quality factor Qm. Jpn. J. Appl. Phys. 42, 6090–6093 (2003)CrossRef
4.
Zurück zum Zitat R.J. Xie, Y. Akimune, R. Wang, N. Hirosaki, T. Nishimura, Dielectric and piezoelectric properties of barium-substituted Sr1.9Ca0.1NaNb5O15 ceramic. Jpn. J. Appl. Phys. 42, 7404–7409 (2003)CrossRef R.J. Xie, Y. Akimune, R. Wang, N. Hirosaki, T. Nishimura, Dielectric and piezoelectric properties of barium-substituted Sr1.9Ca0.1NaNb5O15 ceramic. Jpn. J. Appl. Phys. 42, 7404–7409 (2003)CrossRef
5.
Zurück zum Zitat Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals. Jpn. J. Appl. Phys. 92, 1489–1493 (2002)CrossRef Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Dielectric behavior of Ba(Ti1−xZrx)O3 single crystals. Jpn. J. Appl. Phys. 92, 1489–1493 (2002)CrossRef
6.
Zurück zum Zitat R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Fabrication and characterization of potassium–sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater. Res. Bull. 39, 1709–1715 (2004)CrossRef R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Fabrication and characterization of potassium–sodium niobate piezoelectric ceramics by spark-plasma-sintering method. Mater. Res. Bull. 39, 1709–1715 (2004)CrossRef
7.
Zurück zum Zitat M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn. J. Appl. Phys. 44, 258–263 (2005)CrossRef M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid. Jpn. J. Appl. Phys. 44, 258–263 (2005)CrossRef
8.
Zurück zum Zitat R.S. Thomas, J.Z. Shujun, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 111–124 (2007) R.S. Thomas, J.Z. Shujun, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 111–124 (2007)
9.
Zurück zum Zitat M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004)CrossRef M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J. Electroceram. 13, 385–392 (2004)CrossRef
10.
Zurück zum Zitat Y. Saito, H. Takao, T. Tani, T. Nonoyaima, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRef Y. Saito, H. Takao, T. Tani, T. Nonoyaima, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRef
11.
Zurück zum Zitat M. Kosec, D. Kolar, On activated sintering and electrical properties of NaKNbO3. Mater. Res. Bull. 10, 335–340 (1975)CrossRef M. Kosec, D. Kolar, On activated sintering and electrical properties of NaKNbO3. Mater. Res. Bull. 10, 335–340 (1975)CrossRef
12.
Zurück zum Zitat R. Wang, R.J. Xie, K. Hanada, K. Matsusaki, H. Bando, M. Itoh, Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium–sodium niobate solid solution. Phys. Status Solidi 202, R57–R59 (2005)CrossRef R. Wang, R.J. Xie, K. Hanada, K. Matsusaki, H. Bando, M. Itoh, Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium–sodium niobate solid solution. Phys. Status Solidi 202, R57–R59 (2005)CrossRef
13.
Zurück zum Zitat L. Egerton, D.M. Dillon, Piezoelectric and dielectric properties of ceramics in the system of potassium-sodium niobate. J. Am. Ceram. Soc. 42, 438–442 (1959)CrossRef L. Egerton, D.M. Dillon, Piezoelectric and dielectric properties of ceramics in the system of potassium-sodium niobate. J. Am. Ceram. Soc. 42, 438–442 (1959)CrossRef
14.
Zurück zum Zitat R.E. Jaeger, L. Egerton, Hot pressing of potassium-sodiumn. J. Am. Ceram. Soc. 45, 209–213 (1962)CrossRef R.E. Jaeger, L. Egerton, Hot pressing of potassium-sodiumn. J. Am. Ceram. Soc. 45, 209–213 (1962)CrossRef
15.
Zurück zum Zitat G.H. Haertling, Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50, 329–330 (1967)CrossRef G.H. Haertling, Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50, 329–330 (1967)CrossRef
16.
Zurück zum Zitat L. Egerton, C.A. Bieling, Isostatically hot-pressed sodium potassium niobate transducer material for ultrasonic devices. Ceram. Bull. 47, 1151–1156 (1968) L. Egerton, C.A. Bieling, Isostatically hot-pressed sodium potassium niobate transducer material for ultrasonic devices. Ceram. Bull. 47, 1151–1156 (1968)
17.
Zurück zum Zitat S. Jiang, Z. Zhu, L. Zhang, X. Xiong, J. Yi, Y. Zeng, W. Liu, Q. Wang, K. Han, G. Zhang, Electrical properties of Bi(Ni1/2Ti1/2)O3–PbTiO3 high-Tc piezoelectric ceramics fabricated by the microwave sintering process. Mater. Sci. Eng. B 179, 36–40 (2014)CrossRef S. Jiang, Z. Zhu, L. Zhang, X. Xiong, J. Yi, Y. Zeng, W. Liu, Q. Wang, K. Han, G. Zhang, Electrical properties of Bi(Ni1/2Ti1/2)O3–PbTiO3 high-Tc piezoelectric ceramics fabricated by the microwave sintering process. Mater. Sci. Eng. B 179, 36–40 (2014)CrossRef
18.
Zurück zum Zitat H.Y. Park, C.W. Ahn, H.C. Song, Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics. Appl. Phys. Lett. 89(062906), 1–3 (2006) H.Y. Park, C.W. Ahn, H.C. Song, Microstructure and piezoelectric properties of 0.95(Na0.5K0.5)NbO3-0.05BaTiO3 ceramics. Appl. Phys. Lett. 89(062906), 1–3 (2006)
19.
Zurück zum Zitat Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)CrossRef Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)CrossRef
20.
Zurück zum Zitat E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li and Ta modified (Na0.5K0.5)NbO3 ceramics. Appl Phys Lett 87, 182905/1–182905/3 (2005)CrossRef E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li and Ta modified (Na0.5K0.5)NbO3 ceramics. Appl Phys Lett 87, 182905/1–182905/3 (2005)CrossRef
21.
Zurück zum Zitat S. Zhang, J.B. Lim, T.R. Shrout, Characterization of hard piezoelectric lead-free ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1523–1527 (2009)CrossRef S. Zhang, J.B. Lim, T.R. Shrout, Characterization of hard piezoelectric lead-free ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 1523–1527 (2009)CrossRef
22.
Zurück zum Zitat S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43, L1072–L1074 (2004)CrossRef S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43, L1072–L1074 (2004)CrossRef
23.
Zurück zum Zitat F.R. Marcos, J.J. Romero, M.G. Navarro-Rojero, J.F. Fernandez, Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J. Eur. Ceram. Soc. 29, 3045–3052 (2009)CrossRef F.R. Marcos, J.J. Romero, M.G. Navarro-Rojero, J.F. Fernandez, Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J. Eur. Ceram. Soc. 29, 3045–3052 (2009)CrossRef
24.
Zurück zum Zitat D. Lin, Z. Li, S. Zhang, Z. Xu, X. Yao, Influence of MnO2 doping on the dielectric and piezoelectric properties and the domain structure in (K0.5Na0.5)NbO3 single crystals. J. Am. Soc. 93, 941–944 (2010) D. Lin, Z. Li, S. Zhang, Z. Xu, X. Yao, Influence of MnO2 doping on the dielectric and piezoelectric properties and the domain structure in (K0.5Na0.5)NbO3 single crystals. J. Am. Soc. 93, 941–944 (2010)
25.
Zurück zum Zitat R. Huang, Y. Zhao, X. Zhang, Y. Zhao, R. Liu, H. Zhou, Low-temperature sintering of CuO-doped 0.94(K0.48Na0.535)NbO3-LiNbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 93, 4018–4021 (2010)CrossRef R. Huang, Y. Zhao, X. Zhang, Y. Zhao, R. Liu, H. Zhou, Low-temperature sintering of CuO-doped 0.94(K0.48Na0.535)NbO3-LiNbO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 93, 4018–4021 (2010)CrossRef
26.
Zurück zum Zitat K.C. Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, Structure and electrical properties of Li- and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders. J. Alloys Compd. 496, 717–722 (2010)CrossRef K.C. Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, Structure and electrical properties of Li- and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders. J. Alloys Compd. 496, 717–722 (2010)CrossRef
27.
Zurück zum Zitat D. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, Structure and electrical properties of K0.5Na0.5NbO3–LiSbO3 lead-free piezoelectric ceramics. J. Appl. Phys. 101, 074111–074116 (2007)CrossRef D. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, Structure and electrical properties of K0.5Na0.5NbO3–LiSbO3 lead-free piezoelectric ceramics. J. Appl. Phys. 101, 074111–074116 (2007)CrossRef
28.
Zurück zum Zitat M. Matsubara, K. Kikuta, S. Hirano, Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3 − K5.4CuTa10O29 ceramics. J. Appl. Phys. 97(114105), 1–5 (2005) M. Matsubara, K. Kikuta, S. Hirano, Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3 − K5.4CuTa10O29 ceramics. J. Appl. Phys. 97(114105), 1–5 (2005)
29.
Zurück zum Zitat P. Guo, K. Kakimoto, H. Ohsato, Na0.5K0.5NbO3-LiTaO3lead-free piezoelectric ceramics. Mater. Lett. 59, 241–244 (2005)CrossRef P. Guo, K. Kakimoto, H. Ohsato, Na0.5K0.5NbO3-LiTaO3lead-free piezoelectric ceramics. Mater. Lett. 59, 241–244 (2005)CrossRef
30.
Zurück zum Zitat X. Zhai, H. Wang, J. Xu, C. Yuan, X. Zhang, C. Zhou, X. Liu, Effect of V2O5 doping on the structure and properties lead-free KNN-LS-BF piezoelectric ceramics. J. Mater. Sci.: Mater. Electron. 24, 687–691 (2013) X. Zhai, H. Wang, J. Xu, C. Yuan, X. Zhang, C. Zhou, X. Liu, Effect of V2O5 doping on the structure and properties lead-free KNN-LS-BF piezoelectric ceramics. J. Mater. Sci.: Mater. Electron. 24, 687–691 (2013)
31.
Zurück zum Zitat H. Wang, X. Zhai, J. Xu, C. Yuan, L. Yang, Temperature stability of V2O5-Doped KNN-LS-BF lead-free piezoelectric ceramics. J. Elec. Mater. 42, 2556–2559 (2013)CrossRef H. Wang, X. Zhai, J. Xu, C. Yuan, L. Yang, Temperature stability of V2O5-Doped KNN-LS-BF lead-free piezoelectric ceramics. J. Elec. Mater. 42, 2556–2559 (2013)CrossRef
32.
Zurück zum Zitat R. Gaur, A. Dhingra, S. Pal, K.C. Singh, Enhanced piezoelectric properties in vanadium-modified lead-free (K0.485Na0.5Li0.015)(Nb0.88Ta0.1V0.02)O3 ceramics prepared from nanopowders. J Alloys Compd. 625, 284–290 (2015)CrossRef R. Gaur, A. Dhingra, S. Pal, K.C. Singh, Enhanced piezoelectric properties in vanadium-modified lead-free (K0.485Na0.5Li0.015)(Nb0.88Ta0.1V0.02)O3 ceramics prepared from nanopowders. J Alloys Compd. 625, 284–290 (2015)CrossRef
33.
Zurück zum Zitat R. Zuo, J. Rodel, R. Chen, L. Li, Sintering and electrical properties of lead-free Na0. 5K0. 5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89(6), 2010–2015 (2006)CrossRef R. Zuo, J. Rodel, R. Chen, L. Li, Sintering and electrical properties of lead-free Na0. 5K0. 5NbO3 piezoelectric ceramics. J. Am. Ceram. Soc. 89(6), 2010–2015 (2006)CrossRef
34.
Zurück zum Zitat M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, Processing and piezoelectric properties of lead free (KNa)(NbTa)O3. J. Am. Ceram. Soc. 88, 1190–1196 (2005)CrossRef M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, Processing and piezoelectric properties of lead free (KNa)(NbTa)O3. J. Am. Ceram. Soc. 88, 1190–1196 (2005)CrossRef
35.
Zurück zum Zitat M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Effect of Li substitution of piezoelectric properties of potassium sodium niobate ceramics. Jpn. J. Appl. Phys. 44, 6136–6142 (2005)CrossRef M. Matsubara, T. Yamaguchi, K. Kikuta, S. Hirano, Effect of Li substitution of piezoelectric properties of potassium sodium niobate ceramics. Jpn. J. Appl. Phys. 44, 6136–6142 (2005)CrossRef
36.
Zurück zum Zitat N.M. Hagh, B. Jadidian, A. Safari, Property-processing relationship in lead-free (K, Na, Li)NbO3 solid solution systems. J. Electroceram. 18, 339–346 (2007)CrossRef N.M. Hagh, B. Jadidian, A. Safari, Property-processing relationship in lead-free (K, Na, Li)NbO3 solid solution systems. J. Electroceram. 18, 339–346 (2007)CrossRef
37.
Zurück zum Zitat G.C. Jiao, H.Q. Fan, L.J. Liu, W. Wang, Structure and piezoelectric properties of Cu-doped potassium sodium tantalate niobate ceramics. Mater. Lett. 61, 4185–4187 (2007)CrossRef G.C. Jiao, H.Q. Fan, L.J. Liu, W. Wang, Structure and piezoelectric properties of Cu-doped potassium sodium tantalate niobate ceramics. Mater. Lett. 61, 4185–4187 (2007)CrossRef
38.
Zurück zum Zitat B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Boston, 1978), p. 356 B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Boston, 1978), p. 356
39.
Zurück zum Zitat G.K. Williamson, W.H. Hall, X-ray line broadening from filed Al and W. Acta Metall. 1, 22–31 (1953)CrossRef G.K. Williamson, W.H. Hall, X-ray line broadening from filed Al and W. Acta Metall. 1, 22–31 (1953)CrossRef
40.
Zurück zum Zitat K. Kakimoto, K. Ando, H. Ohsato, Grain size control of lead-free Li0.06(Na0.5K0.5)0.94NbO3 piezoelectric ceramics by Ba and Ti doping. J. Eur. Ceram Soc. 30, 295–299 (2010)CrossRef K. Kakimoto, K. Ando, H. Ohsato, Grain size control of lead-free Li0.06(Na0.5K0.5)0.94NbO3 piezoelectric ceramics by Ba and Ti doping. J. Eur. Ceram Soc. 30, 295–299 (2010)CrossRef
41.
Zurück zum Zitat Y. Zhen, J.F. Li, Abnormal grain growth and new core–shell structure in (K, Na)NbO3-based lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 90, 3496–3502 (2007)CrossRef Y. Zhen, J.F. Li, Abnormal grain growth and new core–shell structure in (K, Na)NbO3-based lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 90, 3496–3502 (2007)CrossRef
42.
Zurück zum Zitat M.S. Kim, S.J. Jeong, J.S. Song, Microstructure and piezoelectric properties in the Li2O-excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 ceramics. J. Am. Ceram. Soc. 90, 3338–3340 (2007)CrossRef M.S. Kim, S.J. Jeong, J.S. Song, Microstructure and piezoelectric properties in the Li2O-excess 0.95(Na0.5K0.5)NbO3–0.05LiTaO3 ceramics. J. Am. Ceram. Soc. 90, 3338–3340 (2007)CrossRef
43.
Zurück zum Zitat F.R. Marcos, P. Ochoa, J.F. Fernandez, Sintering and properties of lead free (K, Na, Li)(Nb, Ta, Sb)O3 ceramics. J. Eur. Ceram. Soc. 27, 4125–4129 (2007)CrossRef F.R. Marcos, P. Ochoa, J.F. Fernandez, Sintering and properties of lead free (K, Na, Li)(Nb, Ta, Sb)O3 ceramics. J. Eur. Ceram. Soc. 27, 4125–4129 (2007)CrossRef
44.
Zurück zum Zitat K.C. Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, Structure and electrical properties of Li- and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders. J Alloys Compd. 496, 717–722 (2010)CrossRef K.C. Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, Structure and electrical properties of Li- and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders. J Alloys Compd. 496, 717–722 (2010)CrossRef
45.
Zurück zum Zitat R. Gaur, K.C. Singh, R. Laishram, Structural and piezoelectric properties of barium modified lead-free (K0.455Li0.045Na0.5)(Nb0.9Ta0.1)O3 ceramics. J. Mater. Sci. 48, 5607–5613 (2013)CrossRef R. Gaur, K.C. Singh, R. Laishram, Structural and piezoelectric properties of barium modified lead-free (K0.455Li0.045Na0.5)(Nb0.9Ta0.1)O3 ceramics. J. Mater. Sci. 48, 5607–5613 (2013)CrossRef
46.
Zurück zum Zitat C. Leu, C.Y. Chen, C.H. Chien, Domain structure study of SrBi2Ta2O9 ferroelectric thin films by scanning capacitance microscopy. Appl. Phys. Lett. 82, 3493–3495 (2003)CrossRef C. Leu, C.Y. Chen, C.H. Chien, Domain structure study of SrBi2Ta2O9 ferroelectric thin films by scanning capacitance microscopy. Appl. Phys. Lett. 82, 3493–3495 (2003)CrossRef
47.
Zurück zum Zitat J.S. Liu, S.R. Zhang, H.Z. Zeng, C.T. Yang, Y. Yuan, Coercive field dependence of the grain size of ferroelectric films. Phys. Rev B 72(17), 172101 (2005)CrossRef J.S. Liu, S.R. Zhang, H.Z. Zeng, C.T. Yang, Y. Yuan, Coercive field dependence of the grain size of ferroelectric films. Phys. Rev B 72(17), 172101 (2005)CrossRef
48.
Zurück zum Zitat K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B 37, 5852–5855 (1988)CrossRef K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys. Rev. B 37, 5852–5855 (1988)CrossRef
49.
Zurück zum Zitat M.H. Frey, D.A. Payne, Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54, 3158–3168 (1996)CrossRef M.H. Frey, D.A. Payne, Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54, 3158–3168 (1996)CrossRef
50.
Zurück zum Zitat S. Huo, S. Yuan, Z. Tian, C. Wang, Y. Qiu, Grain size effects on the ferroelectric and piezoelectric properties of Na0.5K0.5NbO3 ceramics prepared by Pechini method. J. Am. Ceram. Soc. 95, 1383–1387 (2012)CrossRef S. Huo, S. Yuan, Z. Tian, C. Wang, Y. Qiu, Grain size effects on the ferroelectric and piezoelectric properties of Na0.5K0.5NbO3 ceramics prepared by Pechini method. J. Am. Ceram. Soc. 95, 1383–1387 (2012)CrossRef
51.
Zurück zum Zitat J.S. Liu, S.R. Zhang, H.Z. Zeng, C.T. Yang, Y. Yuan, Coercive field dependence of the grain size of ferroelectric films. Phys. Rev. B 72, 172101 (2005)CrossRef J.S. Liu, S.R. Zhang, H.Z. Zeng, C.T. Yang, Y. Yuan, Coercive field dependence of the grain size of ferroelectric films. Phys. Rev. B 72, 172101 (2005)CrossRef
52.
Zurück zum Zitat W.F. Liang, W.J. Wu, D.Q. Xiao, J.G. Zhu, J.G. Wu, Construction of new morphotropic phase boundary in 0.94(K0.4−xNa0.6BaxNb1−xZrx)O3–0.06LiSbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 46, 6871–6876 (2011)CrossRef W.F. Liang, W.J. Wu, D.Q. Xiao, J.G. Zhu, J.G. Wu, Construction of new morphotropic phase boundary in 0.94(K0.4−xNa0.6BaxNb1−xZrx)O3–0.06LiSbO3 lead-free piezoelectric ceramics. J. Mater. Sci. 46, 6871–6876 (2011)CrossRef
53.
Zurück zum Zitat S.E. Park, T.R. Shrout, Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. 44, 1140–1147 (1997)CrossRef S.E. Park, T.R. Shrout, Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. 44, 1140–1147 (1997)CrossRef
54.
Zurück zum Zitat H. Birol, D. Damjanovic, Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 26, 861–866 (2006)CrossRef H. Birol, D. Damjanovic, Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 26, 861–866 (2006)CrossRef
55.
Zurück zum Zitat K.C. Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, Structure and electrical properties of Li-and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders. J. Alloys Compd. 496, 717–722 (2010)CrossRef K.C. Singh, C. Jiten, R. Laishram, O.P. Thakur, D.K. Bhattacharya, Structure and electrical properties of Li-and Ta-substituted K0.5Na0.5NbO3 lead-free piezoelectric ceramics prepared from nanopowders. J. Alloys Compd. 496, 717–722 (2010)CrossRef
56.
Zurück zum Zitat H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, S. Tsurekawa, Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Jpn. J. Appl. Phys. 45, L30–L32 (2006)CrossRef H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, S. Tsurekawa, Lead-free barium titanate ceramics with large piezoelectric constant fabricated by microwave sintering. Jpn. J. Appl. Phys. 45, L30–L32 (2006)CrossRef
57.
Zurück zum Zitat C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998)CrossRef C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81, 677–688 (1998)CrossRef
Metadaten
Titel
Effect of vanadium substitution on electrical and piezoelectric properties of lead-free (K0.5Na0.5)NbO3 ceramics
verfasst von
Chongtham Jiten
K. Chandramani Singh
Publikationsdatum
20.08.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 1/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5551-9

Weitere Artikel der Ausgabe 1/2017

Journal of Materials Science: Materials in Electronics 1/2017 Zur Ausgabe

Neuer Inhalt