Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2020

06.10.2020

Effect of Void on Yielding Behaviors in a Bicrystalline Copper

verfasst von: Lin Yuan, Chuanlong Xu, Jie Xu, Debin Shan, Bin Guo

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanovoids make a big contribution to the plasticity and failure of nanocrystalline metallic materials. To develop a further understanding of the role played by spherical voids in governing the plasticity of nanocrystalline metals, molecular dynamics simulations are performed on bicrystalline copper models with a spherical void at room temperature under 1 × 108 s−1 strain rate. The simulation results indicate that the introduction of void lead to the reduction in yield stress with increasing void diameter. The spherical void acts as either a barrier or a source for dislocations. For intergranular spherical void, the dislocations are emitted from the intersections between the void and grain boundary (GB). However, the initial dislocation nucleation site transits from GBs to spherical void surface at a critical diameter of 9.5 nm in the models with intragranular void. According to the Lubarda model, the dislocation emission critical stress at intermediate void diameters is effectively predicted, but it is not applicable for the model with extremely large and small void since the factors of GB and grain orientation are not considered. Some more suitable models need to be developed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Gleiter, Nanocrystalline Materials, Prog. Mater Sci., 1989, 33, p 223–315CrossRef H. Gleiter, Nanocrystalline Materials, Prog. Mater Sci., 1989, 33, p 223–315CrossRef
2.
Zurück zum Zitat M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater. Sci., 2006, 51, p 427–556CrossRef M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical Properties of Nanocrystalline Materials, Prog. Mater. Sci., 2006, 51, p 427–556CrossRef
3.
Zurück zum Zitat S. Traiviratana, E.M. Bringa, D.J. Benson, and M.A. Meyers, Void Growth in Metals: Atomistic Calculations, Acta Mater., 2008, 56, p 3874–3886CrossRef S. Traiviratana, E.M. Bringa, D.J. Benson, and M.A. Meyers, Void Growth in Metals: Atomistic Calculations, Acta Mater., 2008, 56, p 3874–3886CrossRef
4.
Zurück zum Zitat M.A. Bhatia, K.N. Solanki, A. Moitra, and M.A. Tschopp, Investigating Damage Evolution at the Nanoscale: Molecular Dynamics Simulations of Nanovoid Growth in Single-Crystal Aluminum, Metall. Mater. Trans. A, 2013, 44, p 617–626CrossRef M.A. Bhatia, K.N. Solanki, A. Moitra, and M.A. Tschopp, Investigating Damage Evolution at the Nanoscale: Molecular Dynamics Simulations of Nanovoid Growth in Single-Crystal Aluminum, Metall. Mater. Trans. A, 2013, 44, p 617–626CrossRef
5.
Zurück zum Zitat Z.L. Pan and T.J. Rupert, Damage Nucleation from Repeated Dislocation Absorption at a Grain Boundary, Comput. Mater. Sci., 2014, 93, p 206–209CrossRef Z.L. Pan and T.J. Rupert, Damage Nucleation from Repeated Dislocation Absorption at a Grain Boundary, Comput. Mater. Sci., 2014, 93, p 206–209CrossRef
6.
Zurück zum Zitat J. Li, Q.H. Fang, and Y.W. Liu, Void Formation of Nanocrystalline Materials at the Triple Junction of Grain Boundaries, Mater. Res. Express, 2014, 1, p 015013CrossRef J. Li, Q.H. Fang, and Y.W. Liu, Void Formation of Nanocrystalline Materials at the Triple Junction of Grain Boundaries, Mater. Res. Express, 2014, 1, p 015013CrossRef
7.
Zurück zum Zitat E.M. Bringa, S. Traiviratana, and M.A. Meyers, Void Initiation in fcc Metals: Effect of Loading Orientation and Nanocrystalline Effects, Acta Mater., 2010, 58, p 4458–4477CrossRef E.M. Bringa, S. Traiviratana, and M.A. Meyers, Void Initiation in fcc Metals: Effect of Loading Orientation and Nanocrystalline Effects, Acta Mater., 2010, 58, p 4458–4477CrossRef
8.
Zurück zum Zitat J. Sun, A Model for Shrinkage of a Spherical Void in the Center of a Grain: Influence of Lattice Diffusion, J. Mater. Eng. Perform., 2002, 11, p 322–331CrossRef J. Sun, A Model for Shrinkage of a Spherical Void in the Center of a Grain: Influence of Lattice Diffusion, J. Mater. Eng. Perform., 2002, 11, p 322–331CrossRef
9.
Zurück zum Zitat J. Wang, Atomistic Simulations of Dislocation Pileup: Grain Boundaries Interaction, JOM, 2015, 67, p 1515–1525CrossRef J. Wang, Atomistic Simulations of Dislocation Pileup: Grain Boundaries Interaction, JOM, 2015, 67, p 1515–1525CrossRef
10.
Zurück zum Zitat M. de Koning, R.J. Kurtz, V.V. Bulatov, C.H. Henager, R.G. Hoagland, W. Cai, and M. Nomura, Modeling of Dislocation-Grain Boundary Interactions in FCC Metals, J. Nucl. Mater., 2003, 323, p 281–289CrossRef M. de Koning, R.J. Kurtz, V.V. Bulatov, C.H. Henager, R.G. Hoagland, W. Cai, and M. Nomura, Modeling of Dislocation-Grain Boundary Interactions in FCC Metals, J. Nucl. Mater., 2003, 323, p 281–289CrossRef
11.
Zurück zum Zitat A. Stukowski, Structure Identification Methods for Atomistic Simulations of Crystalline Materials, Model. Simul. Mater. Sci. Eng., 2012, 20, p 045021CrossRef A. Stukowski, Structure Identification Methods for Atomistic Simulations of Crystalline Materials, Model. Simul. Mater. Sci. Eng., 2012, 20, p 045021CrossRef
12.
Zurück zum Zitat M.P. Dewald and W.A. Curtin, Multiscale Modelling of Dislocation/Grain Boundary Interactions. II. Screw Dislocations Impinging on Tilt Boundaries in Al, Philos. Mag., 2007, 87, p 4615–4641CrossRef M.P. Dewald and W.A. Curtin, Multiscale Modelling of Dislocation/Grain Boundary Interactions. II. Screw Dislocations Impinging on Tilt Boundaries in Al, Philos. Mag., 2007, 87, p 4615–4641CrossRef
13.
Zurück zum Zitat M.P. Dewald and W.A. Curtin, Multiscale Modeling of Dislocation/Grain-Boundary Interactions: III. 60° Dislocations Impinging on Σ3, Σ9 and Σ11 Tilt Boundaries in Al, Model. Simul. Mater. Sci. Eng., 2011, 19, p 055002CrossRef M.P. Dewald and W.A. Curtin, Multiscale Modeling of Dislocation/Grain-Boundary Interactions: III. 60° Dislocations Impinging on Σ3, Σ9 and Σ11 Tilt Boundaries in Al, Model. Simul. Mater. Sci. Eng., 2011, 19, p 055002CrossRef
14.
Zurück zum Zitat M.P. Dewald and W.A. Curtin, Multiscale Modelling of Dislocation/Grain-Boundary Interactions: I. Edge Dislocations Impinging on Σ11 (1 1 3) Tilt Boundary in Al, Model. Simul. Mater. Sci. Eng., 2007, 15, p S193–S215CrossRef M.P. Dewald and W.A. Curtin, Multiscale Modelling of Dislocation/Grain-Boundary Interactions: I. Edge Dislocations Impinging on Σ11 (1 1 3) Tilt Boundary in Al, Model. Simul. Mater. Sci. Eng., 2007, 15, p S193–S215CrossRef
15.
Zurück zum Zitat A.G. Perez-Bergquist, E.K. Cerreta, C.P. Trujillo, F. Cao, and G.T. Gray, Orientation Dependence of Void Formation and Substructure Deformation in a Spalled Copper Bicrystal, Scr. Mater., 2011, 65, p 1069–1072CrossRef A.G. Perez-Bergquist, E.K. Cerreta, C.P. Trujillo, F. Cao, and G.T. Gray, Orientation Dependence of Void Formation and Substructure Deformation in a Spalled Copper Bicrystal, Scr. Mater., 2011, 65, p 1069–1072CrossRef
16.
Zurück zum Zitat L. Capolungo, D.E. Spearot, M. Cherkaoui, D.L. McDowell, J. Qu, and K.I. Jacob, Dislocation Nucleation from Bicrystal Interfaces and Grain Boundary Ledges: Relationship to Nanocrystalline Deformation, J. Mech. Phys. Solids, 2007, 55, p 2300–2327CrossRef L. Capolungo, D.E. Spearot, M. Cherkaoui, D.L. McDowell, J. Qu, and K.I. Jacob, Dislocation Nucleation from Bicrystal Interfaces and Grain Boundary Ledges: Relationship to Nanocrystalline Deformation, J. Mech. Phys. Solids, 2007, 55, p 2300–2327CrossRef
17.
Zurück zum Zitat L.L. Li, P. Zhang, Z.J. Zhang, H.F. Zhou, S.X. Qu, J.B. Yang, and Z.F. Zhang, Strain Localization and Fatigue Cracking Behaviors of Cu Bicrystal with an Inclined Twin Boundary, Acta Mater., 2014, 73, p 167–176CrossRef L.L. Li, P. Zhang, Z.J. Zhang, H.F. Zhou, S.X. Qu, J.B. Yang, and Z.F. Zhang, Strain Localization and Fatigue Cracking Behaviors of Cu Bicrystal with an Inclined Twin Boundary, Acta Mater., 2014, 73, p 167–176CrossRef
18.
Zurück zum Zitat D.V. Bachurin and P. Gumbsch, Atomistic Simulation of the Deformation of Nanocrystalline Palladium: The Effect of Voids, Model. Simul. Mater. Sci. Eng., 2014, 22, p 025011CrossRef D.V. Bachurin and P. Gumbsch, Atomistic Simulation of the Deformation of Nanocrystalline Palladium: The Effect of Voids, Model. Simul. Mater. Sci. Eng., 2014, 22, p 025011CrossRef
19.
Zurück zum Zitat Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, Andembedded-Atom Calculations, Phys. Rev. B, 2001, 63, p 224106CrossRef Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress, Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, Andembedded-Atom Calculations, Phys. Rev. B, 2001, 63, p 224106CrossRef
20.
Zurück zum Zitat S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics, J. Comput. Phys., 1995, 117, p 1–19CrossRef S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular-Dynamics, J. Comput. Phys., 1995, 117, p 1–19CrossRef
21.
Zurück zum Zitat A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18, p 015012CrossRef A. Stukowski, Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, 18, p 015012CrossRef
22.
Zurück zum Zitat A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 1977, 99, p 297–300CrossRef A.L. Gurson, Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media, J. Eng. Mater. Technol., 1977, 99, p 297–300CrossRef
23.
Zurück zum Zitat C.W. Mi, D.A. Buttry, P. Sharma, and D. Kouris, Atomistic Insights into Dislocation-Based Mechanisms of Void Growth and Coalescence, J. Mech. Phys. Solid, 2011, 59, p 1858–1871CrossRef C.W. Mi, D.A. Buttry, P. Sharma, and D. Kouris, Atomistic Insights into Dislocation-Based Mechanisms of Void Growth and Coalescence, J. Mech. Phys. Solid, 2011, 59, p 1858–1871CrossRef
24.
Zurück zum Zitat V. Peron-Luhrs, F. Sansoz, and L. Noels, Quasicontinuum Study of the Shear Behavior of Defective Tilt Grain Boundaries in Cu, Acta Mater., 2014, 64, p 419–428CrossRef V. Peron-Luhrs, F. Sansoz, and L. Noels, Quasicontinuum Study of the Shear Behavior of Defective Tilt Grain Boundaries in Cu, Acta Mater., 2014, 64, p 419–428CrossRef
25.
Zurück zum Zitat V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington, and M.A. Meyers, Void Growth by Dislocation Emission, Acta Mater., 2004, 52, p 1397–1408CrossRef V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington, and M.A. Meyers, Void Growth by Dislocation Emission, Acta Mater., 2004, 52, p 1397–1408CrossRef
26.
Zurück zum Zitat P. Jing, L. Yuan, R. Shivpuri, C.L. Xu, Y.Q. Zhang, D.B. Shan, and B. Guo, Evolution of Spherical Nanovoids Within Copper Polycrystals During Plastic Straining: Atomistic Investigation, Int. J. Plast, 2018, 100, p 122–141CrossRef P. Jing, L. Yuan, R. Shivpuri, C.L. Xu, Y.Q. Zhang, D.B. Shan, and B. Guo, Evolution of Spherical Nanovoids Within Copper Polycrystals During Plastic Straining: Atomistic Investigation, Int. J. Plast, 2018, 100, p 122–141CrossRef
27.
Zurück zum Zitat D.E. Spearot, M.A. Tschopp, K.I. Jacob, and D.L. McDowell, Tensile Strength of <100> and <110> Tilt Bicrystal Copper Interfaces, Acta Mater., 2007, 55, p 705–714CrossRef D.E. Spearot, M.A. Tschopp, K.I. Jacob, and D.L. McDowell, Tensile Strength of <100> and <110> Tilt Bicrystal Copper Interfaces, Acta Mater., 2007, 55, p 705–714CrossRef
28.
Zurück zum Zitat M.A. Tschopp and D.L. McDowell, Grain Boundary Dislocation Sources in Nanocrystalline Copper, Scr. Mater., 2008, 58, p 299–302CrossRef M.A. Tschopp and D.L. McDowell, Grain Boundary Dislocation Sources in Nanocrystalline Copper, Scr. Mater., 2008, 58, p 299–302CrossRef
Metadaten
Titel
Effect of Void on Yielding Behaviors in a Bicrystalline Copper
verfasst von
Lin Yuan
Chuanlong Xu
Jie Xu
Debin Shan
Bin Guo
Publikationsdatum
06.10.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05159-0

Weitere Artikel der Ausgabe 10/2020

Journal of Materials Engineering and Performance 10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.