Skip to main content
Erschienen in: Experiments in Fluids 1/2011

01.07.2011 | Research Article

Effect of wing–wake interaction on aerodynamic force generation on a 2D flapping wing

verfasst von: K. B. Lua, T. T. Lim, K. S. Yeo

Erschienen in: Experiments in Fluids | Ausgabe 1/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper is motivated by the works of Dickinson et al. (Science 284:1954–1960, 1999) and Sun and Tang (J Exp Biol 205:55–70, 2002) which provided two different perspectives on the influence of wing–wake interaction (or wake capture) on lift generation during flapping motion. Dickinson et al. (Science 284:1954–1960, 1999) hypothesize that wake capture is responsible for the additional lift generated at the early phase of each stroke, while Sun and Tang (J Exp Biol 205:55–70, 2002) believe otherwise. Here, we take a more fundamental approach to study the effect of wing–wake interaction on the aerodynamic force generation by carrying out simultaneous force and flow field measurements on a two-dimensional wing subjected to two different types of motion. In one of the motions, the wing at a fixed angle of attack was made to follow a motion profile described by “acceleration-constant velocity-deceleration”. Here, the wing was first linearly accelerated from rest to a predetermined maximum velocity and remains at that speed for set duration before linearly decelerating to a stop. The acceleration and deceleration phase each accounted for only 10% of the stroke, and the stroke covered a total distance of three chord lengths. In another motion, the wing was subjected to the same above-mentioned movement, but in a back and forth manner over twenty strokes. Results show that there are two possible outcomes of wing–wake interaction. The first outcome occurs when the wing encounters a pair of counter-rotating wake vortices on the reverse stroke, and the induced velocity of these vortices impinges directly on the windward side of the wing, resulting in a higher oncoming flow to the wing, which translates into a higher lift. Another outcome is when the wing encounters one vortex on the reverse stroke, and the close proximity of this vortex to the windward surface of the wing, coupled with the vortex suction effect (caused by low pressure region at the center of the vortex), causes the net force on the wing to decrease momentarily. These results suggest that wing–wake interaction does not always lead to lift enhancement, and it can also cause lift reduction. As to which outcome prevails depend very much on the flapping motion and the timing of the reverse stroke.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aono H, Shyy W, Liu H (2009) Near wake vortex dynamics of a hovering hawkmoth. Acta Mech Sin 25(1):23–36CrossRef Aono H, Shyy W, Liu H (2009) Near wake vortex dynamics of a hovering hawkmoth. Acta Mech Sin 25(1):23–36CrossRef
Zurück zum Zitat Birch JM, Dickinson MH (2003) The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight. J Exp Biol 206:2257–2272CrossRef Birch JM, Dickinson MH (2003) The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight. J Exp Biol 206:2257–2272CrossRef
Zurück zum Zitat Bourgoyne DA, Hamel JM, Ceccio SL, Dowling DR (2003) Time-averaged flow over a hydrofoil at high Reynolds number. J Fluid Mech 496:365–404MATHCrossRef Bourgoyne DA, Hamel JM, Ceccio SL, Dowling DR (2003) Time-averaged flow over a hydrofoil at high Reynolds number. J Fluid Mech 496:365–404MATHCrossRef
Zurück zum Zitat Dennis SCR, Qiang W, Coutanceau M, Launay J-L (1993) Viscous flow normal to a flat plate at moderate Reynolds numbers. J Fluid Mech 248:605–635CrossRef Dennis SCR, Qiang W, Coutanceau M, Launay J-L (1993) Viscous flow normal to a flat plate at moderate Reynolds numbers. J Fluid Mech 248:605–635CrossRef
Zurück zum Zitat Dickinson MH, Gotz KG (1993) Unsteady aerodynamic performance of model wings at low Reynolds numbers. J Exp Biol 174:45–64 Dickinson MH, Gotz KG (1993) Unsteady aerodynamic performance of model wings at low Reynolds numbers. J Exp Biol 174:45–64
Zurück zum Zitat Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRef
Zurück zum Zitat Ellington CP (1984) The aerodynamics of hovering insect flight. VI. Lift and power. Philos Trans R Soc Lond B 305(1122):145–181CrossRef Ellington CP (1984) The aerodynamics of hovering insect flight. VI. Lift and power. Philos Trans R Soc Lond B 305(1122):145–181CrossRef
Zurück zum Zitat Ellington CP (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol 202(23):3439–3448 Ellington CP (1999) The novel aerodynamics of insect flight: applications to micro-air vehicles. J Exp Biol 202(23):3439–3448
Zurück zum Zitat Hubel TY, Tropea C (2009) Experimental investigation of a flapping wing model. Exp Fluids 46:945–961CrossRef Hubel TY, Tropea C (2009) Experimental investigation of a flapping wing model. Exp Fluids 46:945–961CrossRef
Zurück zum Zitat Ingham DB, Tang T (1991) Steady two-dimensional flow past a normal flat plate. J Appl Math Phys 42:584–604MATHCrossRef Ingham DB, Tang T (1991) Steady two-dimensional flow past a normal flat plate. J Appl Math Phys 42:584–604MATHCrossRef
Zurück zum Zitat Koumoutsakos P, Shiels D (1996) Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate. J Fluid Mech 328:177–227MATHCrossRef Koumoutsakos P, Shiels D (1996) Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate. J Fluid Mech 328:177–227MATHCrossRef
Zurück zum Zitat Lehmann FO, Sane SP, Dickinson M (2005) The aerodynamics of wing-wing interaction in flapping insect wings. J Exp Biol 208(16):3075–3092CrossRef Lehmann FO, Sane SP, Dickinson M (2005) The aerodynamics of wing-wing interaction in flapping insect wings. J Exp Biol 208(16):3075–3092CrossRef
Zurück zum Zitat Lewin GC, Haj-Hariri H (2003) Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow. J Fluid Mech 492:339–362MATHCrossRef Lewin GC, Haj-Hariri H (2003) Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow. J Fluid Mech 492:339–362MATHCrossRef
Zurück zum Zitat Lua KB, Lim TT, Yeo KS, Oo GY (2007) Wake-structure formation of a heaving two-dimensional elliptic airfoil. AIAA J 45:1571–1583CrossRef Lua KB, Lim TT, Yeo KS, Oo GY (2007) Wake-structure formation of a heaving two-dimensional elliptic airfoil. AIAA J 45:1571–1583CrossRef
Zurück zum Zitat Lua KB, Lim TT, Yeo KS (2008) Aerodynamic forces and flow fields of a two-dimensional hovering wing. Exp Fluids 45(6):1047–1065CrossRef Lua KB, Lim TT, Yeo KS (2008) Aerodynamic forces and flow fields of a two-dimensional hovering wing. Exp Fluids 45(6):1047–1065CrossRef
Zurück zum Zitat Lua KB, Lim TT, Yeo KS (2010) On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings. Exp Fluids 49(6):1263–1291CrossRef Lua KB, Lim TT, Yeo KS (2010) On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings. Exp Fluids 49(6):1263–1291CrossRef
Zurück zum Zitat Luff JD, Drouillard T, Rompage AM, Linne MA, Hertzberg JR (1999) Experimental uncertainties associated with particle image velocimetry (PIV) based vorticity algorithms. Exp Fluids 26:36–54CrossRef Luff JD, Drouillard T, Rompage AM, Linne MA, Hertzberg JR (1999) Experimental uncertainties associated with particle image velocimetry (PIV) based vorticity algorithms. Exp Fluids 26:36–54CrossRef
Zurück zum Zitat Mueller T.J. (2001) Fixed and flapping wing aerodynamics for micro air vehicle applications. AIAA progress in astronautics and aeronautics, vol 195. The American Institute of Aeronautics and Astronautics Mueller T.J. (2001) Fixed and flapping wing aerodynamics for micro air vehicle applications. AIAA progress in astronautics and aeronautics, vol 195. The American Institute of Aeronautics and Astronautics
Zurück zum Zitat Ol MV, Bernal L, Kang CK, Shyy W (2009) Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp Fluids 46:883–901CrossRef Ol MV, Bernal L, Kang CK, Shyy W (2009) Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp Fluids 46:883–901CrossRef
Zurück zum Zitat Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping-wing aerodynamics: progress and challenges. AIAA J 46(9):2136–2149CrossRef Platzer MF, Jones KD, Young J, Lai JCS (2008) Flapping-wing aerodynamics: progress and challenges. AIAA J 46(9):2136–2149CrossRef
Zurück zum Zitat Ringuette MJ, Milano M, Gharib M (2007) Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J Fluid Mech 581:453–468MATHCrossRef Ringuette MJ, Milano M, Gharib M (2007) Role of the tip vortex in the force generation of low-aspect-ratio normal flat plates. J Fluid Mech 581:453–468MATHCrossRef
Zurück zum Zitat Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205(8):1087–1096 Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205(8):1087–1096
Zurück zum Zitat Shyy W, Lian YS, Tang J, Viieru D, Liu H (2008) Aerodynamics of low Reynolds number flyers. Cambridge aerospace series. Cambridge University Press, Cambridge Shyy W, Lian YS, Tang J, Viieru D, Liu H (2008) Aerodynamics of low Reynolds number flyers. Cambridge aerospace series. Cambridge University Press, Cambridge
Zurück zum Zitat Smith MJC (1996) Simulating moth wing aerodynamics: towards the development of flapping-wing technology. AIAA J 34(7):1348–1355MATHCrossRef Smith MJC (1996) Simulating moth wing aerodynamics: towards the development of flapping-wing technology. AIAA J 34(7):1348–1355MATHCrossRef
Zurück zum Zitat Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping Motion. J Exp Biol 205:55–70 Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping Motion. J Exp Biol 205:55–70
Zurück zum Zitat Tang J, Viieru D, Shyy W (2007) Effects of Reynolds number and flapping kinematics on hovering aerodynamics. AIAA paper 2007-129 Tang J, Viieru D, Shyy W (2007) Effects of Reynolds number and flapping kinematics on hovering aerodynamics. AIAA paper 2007-129
Zurück zum Zitat Wang ZJ (2000a) Two dimensional mechanism for insect hovering. Phys Rev Lett 85:2216–2219CrossRef Wang ZJ (2000a) Two dimensional mechanism for insect hovering. Phys Rev Lett 85:2216–2219CrossRef
Zurück zum Zitat Wang ZJ (2000b) Vortex shedding and frequency selection in flapping flight. J Fluid Mech 410:323–341MATHCrossRef Wang ZJ (2000b) Vortex shedding and frequency selection in flapping flight. J Fluid Mech 410:323–341MATHCrossRef
Metadaten
Titel
Effect of wing–wake interaction on aerodynamic force generation on a 2D flapping wing
verfasst von
K. B. Lua
T. T. Lim
K. S. Yeo
Publikationsdatum
01.07.2011
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 1/2011
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-010-1032-8

Weitere Artikel der Ausgabe 1/2011

Experiments in Fluids 1/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.