Skip to main content
Erschienen in: Wireless Personal Communications 2/2020

17.10.2019

Effective User-Pair Association Schemes for Relay-Based Multi-tier Heterogeneous Networks with Physical Layer Security

verfasst von: Xiangdong Jia, Xiaorong Yang, Wenjuan Xu

Erschienen in: Wireless Personal Communications | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper focuses on relay-assisted multi-tier heterogeneous networks (HetNets) in term of feasible user-pair association (UPA) criterions and physical layer secrecy analysis. In the interesting relay-assisted multi-tier HetNets, the randomly located mobile user-pair communicates with the help of the relay of its associated tier. We model the locations of all network elements as independent Poisson point process. For such relay-assisted HetNets, similar to the nearest relay defined for user association in traditional single-hop HetNets, we define the so-called best relay in each tier for a typical mobile user-pair by using the equivalent end-to-end biased received power (BRP). Then based on the defined best-relay, we first propose the max–min user-pair association (MM-UPA) criterion. Due to the fact that the MM-UPA criterion is dominated by the bottleneck link’s BRP and does not exploit the joint effect of both the source-relay and relay-destination links, we present the maximum harmonic mean user-pair association (MHM-UPA) criterion, again. For the two UPA criterions, by using feasible mathematical analysis, we derive the corresponding UPA probabilities. Finally, as an implement of the two proposed UPA criterions, by using stochastic geometry, we perform the secrecy performance analysis of the considered relay-assisted multi-tier HetNets. The presented numerical analysis first validates our derivations through the comparison analysis with traditional single-hop user association criterion. At the same time, we also present the comparison analysis between the two proposed MM-UPA and MHM-UPA criterions. It is found that when the transmission power \(P_{R(S)}^{k}\) is small, the MHM-UPA scheme outperforms the MM-UPA one in term of UPA probability. On the contrary, the two schemes achieve approximately the same UPA probability. For the total secrecy probability, we find that when transmit power is small, the MHM-UPA achieves the higher secrecy probabilities. Moreover, the achieved gain by MHM-UPA is increasing with the decrease of transmission power. Contrarily, when the transmission power is large, although the MM-UPA outperforms the MHM-UPA, the achieved gain by MM-UPA cover MHM-UPA is small.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications,32(6), 1065–1082.CrossRef Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications,32(6), 1065–1082.CrossRef
2.
Zurück zum Zitat Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine,52(5), 94–101.CrossRef Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine,52(5), 94–101.CrossRef
3.
Zurück zum Zitat Wang, S. W., & Sun, Y. (2017). Enhancing performance of heterogeneous cloud radio access networks with efficient user association. In Proceeding of the ICC (pp. 1–6). Wang, S. W., & Sun, Y. (2017). Enhancing performance of heterogeneous cloud radio access networks with efficient user association. In Proceeding of the ICC (pp. 1–6).
4.
Zurück zum Zitat Chen, S. Y., Zhao, T. Y., Chen, H. H., Lu, Z. P., & Meng, W. X. (2017). Performance analysis of downlink coordinated multipoint joint transmission in ultra-dense networks. IEEE Network,31(5), 106–114.CrossRef Chen, S. Y., Zhao, T. Y., Chen, H. H., Lu, Z. P., & Meng, W. X. (2017). Performance analysis of downlink coordinated multipoint joint transmission in ultra-dense networks. IEEE Network,31(5), 106–114.CrossRef
5.
Zurück zum Zitat Wang, S. W., & Ran, C. (2016). Rethinking cellular network planning and optimization. IEEE Wireless Communications,23(2), 118–125.MathSciNetCrossRef Wang, S. W., & Ran, C. (2016). Rethinking cellular network planning and optimization. IEEE Wireless Communications,23(2), 118–125.MathSciNetCrossRef
6.
Zurück zum Zitat Goyal, S. J., Mezzavilla, M., Rangan, S., Panwar, S., & Zorzi, M. (2017). User association in 5G mmwave networks. In IEEE Wireless Communications and Networking Conference (pp. 1–6). Goyal, S. J., Mezzavilla, M., Rangan, S., Panwar, S., & Zorzi, M. (2017). User association in 5G mmwave networks. In IEEE Wireless Communications and Networking Conference (pp. 1–6).
7.
Zurück zum Zitat Liu, D. T., Wang, L. F., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys & Tutorials,18(2), 1018–1044.CrossRef Liu, D. T., Wang, L. F., Chen, Y., Elkashlan, M., Wong, K. K., Schober, R., et al. (2016). User association in 5G networks: A survey and an outlook. IEEE Communications Surveys & Tutorials,18(2), 1018–1044.CrossRef
8.
Zurück zum Zitat Andrews, J. G., Singh, S., & Ye, Q. Y. (2014). An overview of load balancing in HetNets: Old myths and open problems. IEEE Wireless Communications,21(2), 18–25.CrossRef Andrews, J. G., Singh, S., & Ye, Q. Y. (2014). An overview of load balancing in HetNets: Old myths and open problems. IEEE Wireless Communications,21(2), 18–25.CrossRef
9.
Zurück zum Zitat Gong, J., Thompson, J. S., Zhou, S., & Niu, Z. S. (2014). Base station sleeping and resource allocation in renewable energy powered cellular networks. IEEE Transactions on Communications,62(11), 3801–3813.CrossRef Gong, J., Thompson, J. S., Zhou, S., & Niu, Z. S. (2014). Base station sleeping and resource allocation in renewable energy powered cellular networks. IEEE Transactions on Communications,62(11), 3801–3813.CrossRef
10.
Zurück zum Zitat Yang, Y., Chen, L., Dong, W. X., & Wang, W. D. (2015). Active base station set optimization for minimal energy consumption in green cellular networks. IEEE Transactions on Vehicular Technology,64(11), 5340–5349.CrossRef Yang, Y., Chen, L., Dong, W. X., & Wang, W. D. (2015). Active base station set optimization for minimal energy consumption in green cellular networks. IEEE Transactions on Vehicular Technology,64(11), 5340–5349.CrossRef
11.
Zurück zum Zitat Tabassum, H., Siddique, U., Hossain, E., & Hossain, M. J. (2014). Downlink performance of cellular systems with base station sleeping, user association, and scheduling. IEEE Transactions on Wireless Communications,13(10), 5752–5767.CrossRef Tabassum, H., Siddique, U., Hossain, E., & Hossain, M. J. (2014). Downlink performance of cellular systems with base station sleeping, user association, and scheduling. IEEE Transactions on Wireless Communications,13(10), 5752–5767.CrossRef
12.
Zurück zum Zitat 3GPP TR 36.912 V2.0.0. (2009). Technical specification group radio access network; requirements for further advancements for evolved universal terrestrial radio access (E-UTRA) (LTE-advanced) (Release 9). 3rd Generation Partnership Project (3GPP). 3GPP TR 36.912 V2.0.0. (2009). Technical specification group radio access network; requirements for further advancements for evolved universal terrestrial radio access (E-UTRA) (LTE-advanced) (Release 9). 3rd Generation Partnership Project (3GPP).
13.
Zurück zum Zitat Chen, Y. J., Li, J., Lin, Z. H., Mao, G. Q., & Vucetic, B. (2016). User association with unequal user priorities in heterogeneous cellular networks. IEEE Transactions on Vehicular Technology,65(9), 7374–7388.CrossRef Chen, Y. J., Li, J., Lin, Z. H., Mao, G. Q., & Vucetic, B. (2016). User association with unequal user priorities in heterogeneous cellular networks. IEEE Transactions on Vehicular Technology,65(9), 7374–7388.CrossRef
14.
Zurück zum Zitat Khandekar, A., Bhushan, N., Ji, T. F., & Vanghi, V. (2010). LTE-advanced: Heterogeneous networks. In Proceedings of the WC (pp. 978–982). Khandekar, A., Bhushan, N., Ji, T. F., & Vanghi, V. (2010). LTE-advanced: Heterogeneous networks. In Proceedings of the WC (pp. 978–982).
15.
Zurück zum Zitat Jo, H. S., Sang, Y. J., Xia, P., & Andrews, J. G. (2011). Outage probability for heterogeneous cellular networks with biased cell association. In Proceedings of global telecommunications conference (pp. 1–5). Jo, H. S., Sang, Y. J., Xia, P., & Andrews, J. G. (2011). Outage probability for heterogeneous cellular networks with biased cell association. In Proceedings of global telecommunications conference (pp. 1–5).
16.
Zurück zum Zitat Fooladivanda, D., & Rosenberg, C. (2012). Joint resource allocation and user association for heterogeneous wireless cellular networks. IEEE Transactions on Wireless Communications,12(1), 248–257.CrossRef Fooladivanda, D., & Rosenberg, C. (2012). Joint resource allocation and user association for heterogeneous wireless cellular networks. IEEE Transactions on Wireless Communications,12(1), 248–257.CrossRef
17.
Zurück zum Zitat Jha, S. C., Sivanesan, K., Vannithamby, R., Koc, A. T. (2014). Dual connectivity in LTE small cell networks. In Proceedings of the Globecom Workshops (pp. 1205–1210). Jha, S. C., Sivanesan, K., Vannithamby, R., Koc, A. T. (2014). Dual connectivity in LTE small cell networks. In Proceedings of the Globecom Workshops (pp. 1205–1210).
18.
Zurück zum Zitat Sekander, S., Tabassum, H., & Hossain, E. (2016). Decoupled uplink-downlink user association in multi-tier full-duplex cellular networks: A two-sided matching game. IEEE Transactions Mobile on Computing,16(10), 2778–2791.CrossRef Sekander, S., Tabassum, H., & Hossain, E. (2016). Decoupled uplink-downlink user association in multi-tier full-duplex cellular networks: A two-sided matching game. IEEE Transactions Mobile on Computing,16(10), 2778–2791.CrossRef
19.
Zurück zum Zitat Semiari, O., Saad, W., Valentin, S., Bennis, M., & Maham, B. (2014). Matching theory for priority-based cell association in the downlink of wireless small cell networks. In Proceedings of acoustics, speech, and signal processing (pp. 444–448). Semiari, O., Saad, W., Valentin, S., Bennis, M., & Maham, B. (2014). Matching theory for priority-based cell association in the downlink of wireless small cell networks. In Proceedings of acoustics, speech, and signal processing (pp. 444–448).
20.
Zurück zum Zitat Jia, X. D., Fu, H., & Yang, L. X. (2010). Superposition coding cooperative relaying communications: Outage performance analysis. The International Journal of Communication Systems,24(3), 384–397.CrossRef Jia, X. D., Fu, H., & Yang, L. X. (2010). Superposition coding cooperative relaying communications: Outage performance analysis. The International Journal of Communication Systems,24(3), 384–397.CrossRef
21.
Zurück zum Zitat Jia, X. D., & Yang, L. X. (2012). Upper and lower bounds of two-way opportunistic amplify-and-forward relaying channels. IEEE Communications Letters,16(8), 1180–1183.CrossRef Jia, X. D., & Yang, L. X. (2012). Upper and lower bounds of two-way opportunistic amplify-and-forward relaying channels. IEEE Communications Letters,16(8), 1180–1183.CrossRef
22.
Zurück zum Zitat Jia, X. D., Yang, L. X., & Zhu, H. B. (2014). Cognitive opportunistic relaying systems with mobile nodes: Average outage rates and outage durations. IET Communications,8(6), 789–799.CrossRef Jia, X. D., Yang, L. X., & Zhu, H. B. (2014). Cognitive opportunistic relaying systems with mobile nodes: Average outage rates and outage durations. IET Communications,8(6), 789–799.CrossRef
23.
Zurück zum Zitat Ali, M., Qaisar, S., Naeem, M., & Mumtaz, S. (2016). Energy efficient resource allocation in D2D-assisted heterogeneous networks with relays. IEEE Access,4, 4902–4911.CrossRef Ali, M., Qaisar, S., Naeem, M., & Mumtaz, S. (2016). Energy efficient resource allocation in D2D-assisted heterogeneous networks with relays. IEEE Access,4, 4902–4911.CrossRef
24.
Zurück zum Zitat Al-Hourani, A., Kandeepan, S., & Hossain, E. (2016). Relay-assisted device-to-device communication: A stochastic analysis of energy saving. IEEE Transactions Mobile on Computing,15(12), 3129–3141.CrossRef Al-Hourani, A., Kandeepan, S., & Hossain, E. (2016). Relay-assisted device-to-device communication: A stochastic analysis of energy saving. IEEE Transactions Mobile on Computing,15(12), 3129–3141.CrossRef
25.
Zurück zum Zitat Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communication Surveys & Tutorials,18(3), 1617–1655.CrossRef Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communication Surveys & Tutorials,18(3), 1617–1655.CrossRef
26.
Zurück zum Zitat Wang, C. X., Haider, F., Gao, X. Q., You, X. H., Yang, Y., Yuan, D. F., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine,52(2), 122–130.CrossRef Wang, C. X., Haider, F., Gao, X. Q., You, X. H., Yang, Y., Yuan, D. F., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine,52(2), 122–130.CrossRef
27.
Zurück zum Zitat Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access,3, 1206–1232.CrossRef Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access,3, 1206–1232.CrossRef
28.
Zurück zum Zitat Jo, H. S., Sang, Y. J., & Xia, P. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun,11(10), 3484–3495.CrossRef Jo, H. S., Sang, Y. J., & Xia, P. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun,11(10), 3484–3495.CrossRef
29.
Zurück zum Zitat Dhillon, H. S., Ganti, R. K., & Baccelli, F. (2012). Modeling and analysis of k-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications,30(3), 550–560.CrossRef Dhillon, H. S., Ganti, R. K., & Baccelli, F. (2012). Modeling and analysis of k-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications,30(3), 550–560.CrossRef
30.
Zurück zum Zitat Hung, H. J., Ho, T. Y., Lee, S. Y., Yang, C. Y., & Yang, D. N. (2017). Relay selection for heterogeneous cellular networks with renewable green energy sources. IEEE Transactions on Mobile Computing,17(3), 661–674.CrossRef Hung, H. J., Ho, T. Y., Lee, S. Y., Yang, C. Y., & Yang, D. N. (2017). Relay selection for heterogeneous cellular networks with renewable green energy sources. IEEE Transactions on Mobile Computing,17(3), 661–674.CrossRef
31.
Zurück zum Zitat Stoyan, D., Kendall, W., & Mecke, J. (1987). Stochastic geometry and its applications. Berlin: Wiley.MATH Stoyan, D., Kendall, W., & Mecke, J. (1987). Stochastic geometry and its applications. Berlin: Wiley.MATH
32.
Zurück zum Zitat Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications,59(11), 3122–3134.CrossRef Andrews, J. G., Baccelli, F., & Ganti, R. K. (2011). A tractable approach to coverage and rate in cellular networks. IEEE Transactions on Communications,59(11), 3122–3134.CrossRef
33.
Zurück zum Zitat Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine,53(4), 20–27.CrossRef Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan, J., & Renzo, M. D. (2015). Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine,53(4), 20–27.CrossRef
34.
Zurück zum Zitat Barros, J., & Rodrigues, M. R. D. (2006). Secrecy capacity of wireless channels. In IEEE international symposium on information theory (pp. 356–360). Barros, J., & Rodrigues, M. R. D. (2006). Secrecy capacity of wireless channels. In IEEE international symposium on information theory (pp. 356–360).
35.
Zurück zum Zitat Mukherjee, A., Fakoorian, S. A. A., Jing, H., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys & Tutorials,16(3), 1550–1573.CrossRef Mukherjee, A., Fakoorian, S. A. A., Jing, H., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys & Tutorials,16(3), 1550–1573.CrossRef
36.
Zurück zum Zitat Shiu, Y. S., Chang, S. Y., Wu, H. C., Huang, S. C. H., & Chen, H. H. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications,18(2), 66–74.CrossRef Shiu, Y. S., Chang, S. Y., Wu, H. C., Huang, S. C. H., & Chen, H. H. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications,18(2), 66–74.CrossRef
37.
Zurück zum Zitat Wang, H. M., Zheng, T. X., Yuan, J., Towsley, D., & Lee, M. H. (2016). Physical layer security in heterogeneous cellular networks. IEEE Transactions on Communications,64(3), 1204–1219.CrossRef Wang, H. M., Zheng, T. X., Yuan, J., Towsley, D., & Lee, M. H. (2016). Physical layer security in heterogeneous cellular networks. IEEE Transactions on Communications,64(3), 1204–1219.CrossRef
38.
Zurück zum Zitat Wu, H. C., Tao, X. F., Li, N., & Xu, J. (2016). Secrecy outage probability in multi-RAT heterogeneous networks. IEEE Communications Letters,20(1), 53–56.CrossRef Wu, H. C., Tao, X. F., Li, N., & Xu, J. (2016). Secrecy outage probability in multi-RAT heterogeneous networks. IEEE Communications Letters,20(1), 53–56.CrossRef
39.
Zurück zum Zitat Tolossa, Y. J., Vuppala, S., & Abreu, G. (2017). Secrecy rate analysis in multi-tier heterogeneous networks over generalized fading model. IEEE Internet of Things (IoT) Journal,4(1), 101–110. Tolossa, Y. J., Vuppala, S., & Abreu, G. (2017). Secrecy rate analysis in multi-tier heterogeneous networks over generalized fading model. IEEE Internet of Things (IoT) Journal,4(1), 101–110.
40.
Zurück zum Zitat Kamel, M., Hamouda, W., & Youssef, A. (2017). Physical layer security in ultra-dense networks. IEEE Wireless Communications Letters,6(5), 1–1.CrossRef Kamel, M., Hamouda, W., & Youssef, A. (2017). Physical layer security in ultra-dense networks. IEEE Wireless Communications Letters,6(5), 1–1.CrossRef
41.
Zurück zum Zitat Chen, J., Chen, X. M., Gerstacker, W. H., & Ng, D. W. K. (2016). Resource allocation for a massive MIMO relay aided secure communication. IEEE Transactions on Information Forensics and Security,11(8), 1700–1711.CrossRef Chen, J., Chen, X. M., Gerstacker, W. H., & Ng, D. W. K. (2016). Resource allocation for a massive MIMO relay aided secure communication. IEEE Transactions on Information Forensics and Security,11(8), 1700–1711.CrossRef
42.
Zurück zum Zitat He, H. L., Ren, P. Y., Du, Q. H., & Sun, L. (2016). Full-Duplex or half-duplex? Hybrid relay selection for physical layer secrecy. In IEEE 83rd vehicular technology conference (pp. 1–5). He, H. L., Ren, P. Y., Du, Q. H., & Sun, L. (2016). Full-Duplex or half-duplex? Hybrid relay selection for physical layer secrecy. In IEEE 83rd vehicular technology conference (pp. 1–5).
43.
Zurück zum Zitat Duong, T. Q., Zepernick, H. J., Tsiftsis, T. A., & Bao, V. N. Q. (2010). Amplify-and-forward MIMO relaying with OSTBC over Nakagami-m fading channels. Proceedings of IEEE International Conference on Communications,29(16), 1–6. Duong, T. Q., Zepernick, H. J., Tsiftsis, T. A., & Bao, V. N. Q. (2010). Amplify-and-forward MIMO relaying with OSTBC over Nakagami-m fading channels. Proceedings of IEEE International Conference on Communications,29(16), 1–6.
44.
Zurück zum Zitat Bao, V. N. Q., Duong, T. Q., Costa, D. B. D., Alexandropoulos, G. C., & Nallanathan, A. (2013). Cognitive amplify-and-forward relaying with best relay selection in non-identical Rayleigh fading. IEEE Communications Letters,17(3), 475–478.CrossRef Bao, V. N. Q., Duong, T. Q., Costa, D. B. D., Alexandropoulos, G. C., & Nallanathan, A. (2013). Cognitive amplify-and-forward relaying with best relay selection in non-identical Rayleigh fading. IEEE Communications Letters,17(3), 475–478.CrossRef
45.
Zurück zum Zitat Duong, T. Q., & Zepernick, H. (2009). On the performance of selection decode-and-forward relay networks over Nakagami-m fading channels. IEEE Communications Letters,13(3), 172–174.CrossRef Duong, T. Q., & Zepernick, H. (2009). On the performance of selection decode-and-forward relay networks over Nakagami-m fading channels. IEEE Communications Letters,13(3), 172–174.CrossRef
46.
Zurück zum Zitat Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products. Cambridge: Academic Press.MATH Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products. Cambridge: Academic Press.MATH
47.
Zurück zum Zitat David, H. A., & Nagaraja, H. N. (2003). Order statistics. New York: Wiley.CrossRef David, H. A., & Nagaraja, H. N. (2003). Order statistics. New York: Wiley.CrossRef
48.
Zurück zum Zitat Haenggi, M., & Ganti, R. K. (2009). Interference in large wireless networks. Foundations and Trends in Networking,3(2), 127–248.CrossRef Haenggi, M., & Ganti, R. K. (2009). Interference in large wireless networks. Foundations and Trends in Networking,3(2), 127–248.CrossRef
Metadaten
Titel
Effective User-Pair Association Schemes for Relay-Based Multi-tier Heterogeneous Networks with Physical Layer Security
verfasst von
Xiangdong Jia
Xiaorong Yang
Wenjuan Xu
Publikationsdatum
17.10.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06895-w

Weitere Artikel der Ausgabe 2/2020

Wireless Personal Communications 2/2020 Zur Ausgabe

Neuer Inhalt