Skip to main content
Erschienen in: Experiments in Fluids 5/2011

01.11.2011 | Research Article

Effects of a trapped vortex cell on a thick wing airfoil

verfasst von: Davide Lasagna, Raffaele Donelli, Fabrizio De Gregorio, Gaetano Iuso

Erschienen in: Experiments in Fluids | Ausgabe 5/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of a trapped vortex cell (TVC) on the aerodynamic performance of a NACA0024 wing model were investigated experimentally at Re = 106 and \(6.67\times 10^{5}\). The static pressure distributions around the model and the wake velocity profiles were measured to obtain lift and drag coefficients, for both the clean airfoil and the controlled configurations. Suction was applied in the cavity region to stabilize the trapped vortex. For comparison, a classical boundary layer suction configuration was also tested. The drag coefficient curve of the TVC-controlled airfoil showed sharp discontinuities and bifurcative behavior, generating two drag modes. A strong influence of the angle of attack, the suction rate and the Reynolds number on the drag coefficient was observed. With respect to the clean airfoil, the control led to a drag reduction only if the suction was high enough. Compared to the classical boundary layer suction configuration, the drag reduction was higher for the same amount of suction only in a specific range of incidence, i.e., α = −2° to α = 6° and only for the higher Reynolds number. For all the other conditions, the classical boundary layer suction configuration gave better drag performances. Moderate increments of lift were observed for the TVC-controlled airfoil at low incidence, while a 20% lift enhancement was observed in the stall region with respect to the baseline. However, the same lift increments were also observed for the classical boundary layer suction configuration. Pressure fluctuation measurements in the cavity region suggested a very complex interaction of several flow features. The two drag modes were characterized by typical unsteady phenomena observed in rectangular cavity flows, namely the shear layer mode and the wake mode.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adkins R (1975) A short diffuser with low pressure loss. J Fluids Eng 97:297–302CrossRef Adkins R (1975) A short diffuser with low pressure loss. J Fluids Eng 97:297–302CrossRef
Zurück zum Zitat AGARD-AR-304: (1994) Quality assessment for wind tunnel testing. NATO Research and Technology Organisation, Neuilly-sur-Seine AGARD-AR-304: (1994) Quality assessment for wind tunnel testing. NATO Research and Technology Organisation, Neuilly-sur-Seine
Zurück zum Zitat AGARD-AR-336: (1998) Wind tunnel wall corrections. NATO Research and Technology Organisation, Neuilly-sur-Seine AGARD-AR-336: (1998) Wind tunnel wall corrections. NATO Research and Technology Organisation, Neuilly-sur-Seine
Zurück zum Zitat Brès A G, Colonius T (2008) Three-dimensional instabilities in compressible flow over open cavities. J Fluid Mech 599:309–339MATH Brès A G, Colonius T (2008) Three-dimensional instabilities in compressible flow over open cavities. J Fluid Mech 599:309–339MATH
Zurück zum Zitat Chernyshenko SI, Castro IP, Hetsch T, Iollo A, Minisci E, Savelsberg R (2008) Vortex cell shape optimization for separation control. In: 5th European congress on computational methods in applied sciences and engineering (ECCOMAS 2008), Venice, Italy Chernyshenko SI, Castro IP, Hetsch T, Iollo A, Minisci E, Savelsberg R (2008) Vortex cell shape optimization for separation control. In: 5th European congress on computational methods in applied sciences and engineering (ECCOMAS 2008), Venice, Italy
Zurück zum Zitat Choi KS, Fujisawa N (1993) Possibility of drag reduction using d-type roughness. Appl Sci Res 50:315–324 Choi KS, Fujisawa N (1993) Possibility of drag reduction using d-type roughness. Appl Sci Res 50:315–324
Zurück zum Zitat De Gregorio F, Fraioli G (2008) Flow control on a high thickness airfoil by a trapped vortex cavity. In: 14th International symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal De Gregorio F, Fraioli G (2008) Flow control on a high thickness airfoil by a trapped vortex cavity. In: 14th International symposium on applications of laser techniques to fluid mechanics, Lisbon, Portugal
Zurück zum Zitat Donelli R, Chernyshenko S, Iannelli P, Iollo A, Zannetti L (2009) Flow models for a vortex cell. AIAA Paper 2(47):451–467CrossRef Donelli R, Chernyshenko S, Iannelli P, Iollo A, Zannetti L (2009) Flow models for a vortex cell. AIAA Paper 2(47):451–467CrossRef
Zurück zum Zitat Faure T, Pastur L, Lusseyran F, Fraigneau Y, Bisch D (2009) Three-dimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape. Exp Fluids 47(3):395–410CrossRef Faure T, Pastur L, Lusseyran F, Fraigneau Y, Bisch D (2009) Three-dimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape. Exp Fluids 47(3):395–410CrossRef
Zurück zum Zitat Gharib M, Roshko A (1987) The effect of flow oscillations on cavity drag. J Fluid Mech 177(1):501–530CrossRef Gharib M, Roshko A (1987) The effect of flow oscillations on cavity drag. J Fluid Mech 177(1):501–530CrossRef
Zurück zum Zitat Hokpunna A, Manhart M (2007) A large-eddy simulation of vortex cell flow with incoming turbulent boundary layer. Int J Mech Syst Sci Eng 1:123–128 Hokpunna A, Manhart M (2007) A large-eddy simulation of vortex cell flow with incoming turbulent boundary layer. Int J Mech Syst Sci Eng 1:123–128
Zurück zum Zitat Hung L, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward-facing step. J Fluid Mech 330:349–374MATHCrossRef Hung L, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward-facing step. J Fluid Mech 330:349–374MATHCrossRef
Zurück zum Zitat Iollo A, Zannetti L (2001) Trapped vortex optimal control by suction and blowing at the wall. Eur J Mech B-Fluid 20(1):7–24MATHCrossRef Iollo A, Zannetti L (2001) Trapped vortex optimal control by suction and blowing at the wall. Eur J Mech B-Fluid 20(1):7–24MATHCrossRef
Zurück zum Zitat Kasper W (1974) Aircraft wing with vortex generation. US Patent 3831885 Kasper W (1974) Aircraft wing with vortex generation. US Patent 3831885
Zurück zum Zitat Larchevêque L, Sagaut P, Labbé O (2007) Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects. J Fluid Mech 577:105–126MATHCrossRef Larchevêque L, Sagaut P, Labbé O (2007) Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects. J Fluid Mech 577:105–126MATHCrossRef
Zurück zum Zitat Migeon C (2002) Details on the start-up development of the Taylor–Gortler-like vortices inside a square-section lid-driven cavity for 1,000 < Re < 3,200. Exp Fluids 33:594–602 Migeon C (2002) Details on the start-up development of the Taylor–Gortler-like vortices inside a square-section lid-driven cavity for 1,000 < Re < 3,200. Exp Fluids 33:594–602
Zurück zum Zitat Olsman WFJ, Colonius T (2011) Numerical simulation of flow over an airfoil with a cavity. AIAA J 49:143–149 Olsman WFJ, Colonius T (2011) Numerical simulation of flow over an airfoil with a cavity. AIAA J 49:143–149
Zurück zum Zitat Ringleb F (1961) Separation control by trapped vortices. In: Lachmann GV (ed) Boundary Layer and flow control. Pergamon Press Ringleb F (1961) Separation control by trapped vortices. In: Lachmann GV (ed) Boundary Layer and flow control. Pergamon Press
Zurück zum Zitat Rockwell D, Knisely C (1980) Observations of the three-dimensional nature of unstable flow past a cavity. Phys Fluids 23:425–431CrossRef Rockwell D, Knisely C (1980) Observations of the three-dimensional nature of unstable flow past a cavity. Phys Fluids 23:425–431CrossRef
Zurück zum Zitat Rockwell D, Naudascher E (1979) Self-sustained oscillations of impinging free shear layers. Annu Rev Fluid Mech (11):67–94 Rockwell D, Naudascher E (1979) Self-sustained oscillations of impinging free shear layers. Annu Rev Fluid Mech (11):67–94
Zurück zum Zitat Rossiter J (1964) Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aero Res Counc (No. 3438) Rossiter J (1964) Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aero Res Counc (No. 3438)
Zurück zum Zitat Rowley C, Colonius T, Basu A (2001) On self-sustained oscillations in two dimensional compressible flow over rectangular cavities. J Fluid Mech 455:315–345MathSciNet Rowley C, Colonius T, Basu A (2001) On self-sustained oscillations in two dimensional compressible flow over rectangular cavities. J Fluid Mech 455:315–345MathSciNet
Zurück zum Zitat Rowley C, Juttijudata V, Williams D (2005) Cavity flow control simulations and experiments. AIAA Paper 292:1–11 Rowley C, Juttijudata V, Williams D (2005) Cavity flow control simulations and experiments. AIAA Paper 292:1–11
Zurück zum Zitat Savelsberg R, Castro I (2008) Vortex flows in open cylindrical-section cavities. Exp Fluids 46(3):485–497CrossRef Savelsberg R, Castro I (2008) Vortex flows in open cylindrical-section cavities. Exp Fluids 46(3):485–497CrossRef
Zurück zum Zitat Savitsky A, Schukin L, Kareljn V (1995) Method for control of the boundary layer on the aerodynamic surface of an aircraft, and the aircraft provided with boundary layer control system. USPatent 5417391 Savitsky A, Schukin L, Kareljn V (1995) Method for control of the boundary layer on the aerodynamic surface of an aircraft, and the aircraft provided with boundary layer control system. USPatent 5417391
Zurück zum Zitat Schlichting H (1954) Boundary layer theory, 1st edn. Springer, Berlin Schlichting H (1954) Boundary layer theory, 1st edn. Springer, Berlin
Zurück zum Zitat Suponitsky V, Avital E, Gaster M (2005) On three dimensionality and control of incompressible cavity flow. Phys Fluids 17(104103):1–19 Suponitsky V, Avital E, Gaster M (2005) On three dimensionality and control of incompressible cavity flow. Phys Fluids 17(104103):1–19
Metadaten
Titel
Effects of a trapped vortex cell on a thick wing airfoil
verfasst von
Davide Lasagna
Raffaele Donelli
Fabrizio De Gregorio
Gaetano Iuso
Publikationsdatum
01.11.2011
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 5/2011
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-011-1160-9

Weitere Artikel der Ausgabe 5/2011

Experiments in Fluids 5/2011 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.