Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 1/2017

04.05.2017 | Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications

Effects of curing and organic content on bioactivity and mechanical properties of hybrid sol–gel glass scaffolds made by indirect rapid prototyping

verfasst von: Stephan Hendrikx, Dzmitry Kuzmenka, Roberto Köferstein, Tobias Flath, Hans Uhlig, Dirk Enke, F. Peter Schulze, Michael C. Hacker, Michaela Schulz-Siegmund

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We employed indirect rapid prototyping templating to fabricate bioactive and macroporous scaffolds for bone regeneration. This templating technique utilizes lost molds made of polycaprolactone by fused deposition modeling, in which the organic/ inorganic hybrid silica sol was filled and cured. Finally, the molds were dissolved and extracted, and the remaining macroporous hybrid glass constructs were recovered. The hybrid glass scaffolds offered a fully interconnected pore structure with 63–72% porosity measured by N2-pycnometry and Hg-intrusion. In bioactive sol–gel glasses one issue is the insufficient and inhomogeneous incorporation of calcium (II) ions. To address this problem we varied the curing conditions and tested the effect of the organic crosslinker on calcium retention. We strengthened the silica network by covalent crosslinking with trimethylolpropane ethoxylate which was functionalized with 3-(triethoxysilyl)propyl isocyanate. Those scaffolds showed compressive yield strengths of up to 12.7 MPa and compressive moduli between 18 and 288 MPa. Energy dispersive X-ray spectroscopy showed that a crosslinker content of 60% in the hybrids resulted in a homogeneous calcium distribution in the glass, in contrast to 40% where we found a layer of CaCl2 on the scaffold surface. The materials exhibited bioactivity in simulated body fluid which was monitored by scanning electron microscopy and X-ray powder diffraction.

Graphical Abstract

https://static-content.springer.com/image/art%3A10.1007%2Fs10971-017-4395-y/MediaObjects/10971_2017_4395_Figa_HTML.gif

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Department of Health and Human Services, Food and Drug Administration. (2004) 510(k) Summary: NovaBone-AR-Resorbable Bone Graft Substitute. https://www.accessdata.fda.gov/cdrh_docs/pdf4/K041613.pdf Department of Health and Human Services, Food and Drug Administration. (2004) 510(k) Summary: NovaBone-AR-Resorbable Bone Graft Substitute. https://​www.​accessdata.​fda.​gov/​cdrh_​docs/​pdf4/​K041613.​pdf
2.
Zurück zum Zitat Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding-laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res 274:79–96. Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding-laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop Relat Res 274:79–96.
3.
Zurück zum Zitat Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA (2015) Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Bio Med Res Int 2015:729076CrossRef Velasco MA, Narváez-Tovar CA, Garzón-Alvarado DA (2015) Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. Bio Med Res Int 2015:729076CrossRef
4.
Zurück zum Zitat Valliant EM, Jones JR (2011) Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter 7:5083–5095CrossRef Valliant EM, Jones JR (2011) Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter 7:5083–5095CrossRef
5.
Zurück zum Zitat Rhee SH (2003) Effect of molecular weight of poly(ε-caprolactone) on interpenetrating network structure, apatite-forming ability, and degradability of poly(ε-caprolactone)/silica nano-hybrid materials. Biomaterials 24:1721–1727CrossRef Rhee SH (2003) Effect of molecular weight of poly(ε-caprolactone) on interpenetrating network structure, apatite-forming ability, and degradability of poly(ε-caprolactone)/silica nano-hybrid materials. Biomaterials 24:1721–1727CrossRef
6.
Zurück zum Zitat Gao C, Rahaman MN, Gao Q, Teramoto A, Abe K (2013) Robotic deposition and in vitro characterization of 3D gelatin−bioactive glass hybrid scaffolds for biomedical applications. J Biomed Mater Res A 101:2027–2037CrossRef Gao C, Rahaman MN, Gao Q, Teramoto A, Abe K (2013) Robotic deposition and in vitro characterization of 3D gelatin−bioactive glass hybrid scaffolds for biomedical applications. J Biomed Mater Res A 101:2027–2037CrossRef
7.
Zurück zum Zitat Li A, Shen H, Ren H, Wang C, Wu D, Martin RA, Qiu D (2015) Bioactive organic/inorganic hybrids with improved mechanical performance. J Mater Chem B 3:1379–1390CrossRef Li A, Shen H, Ren H, Wang C, Wu D, Martin RA, Qiu D (2015) Bioactive organic/inorganic hybrids with improved mechanical performance. J Mater Chem B 3:1379–1390CrossRef
8.
Zurück zum Zitat Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith ME et al. (2010) Silica-Gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater 20:3835–3845CrossRef Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith ME et al. (2010) Silica-Gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater 20:3835–3845CrossRef
9.
Zurück zum Zitat Negahi Shirazi A, Fathi A, Suarez FG, Wang Y, Maitz PK, Dehghani F (2016) A novel strategy for softening gelatin-bioactive-glass hybrids. ACS Appl Mater Interfaces 8:1676–1686CrossRef Negahi Shirazi A, Fathi A, Suarez FG, Wang Y, Maitz PK, Dehghani F (2016) A novel strategy for softening gelatin-bioactive-glass hybrids. ACS Appl Mater Interfaces 8:1676–1686CrossRef
10.
Zurück zum Zitat Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C (2014) Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 10:2269–2281CrossRef Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C (2014) Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 10:2269–2281CrossRef
11.
Zurück zum Zitat Roohani-Esfahani SI, Newman P, Zreiqat H (2016) Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep 6:19468CrossRef Roohani-Esfahani SI, Newman P, Zreiqat H (2016) Design and fabrication of 3D printed scaffolds with a mechanical strength comparable to cortical bone to repair large bone defects. Sci Rep 6:19468CrossRef
12.
Zurück zum Zitat Fu Q, Saiz E, Rahaman MN, Tomsia AP (2013) Toward strong and tough glass and ceramic scaffolds for bone repair. Adv Funct Mater 23:5461–5476CrossRef Fu Q, Saiz E, Rahaman MN, Tomsia AP (2013) Toward strong and tough glass and ceramic scaffolds for bone repair. Adv Funct Mater 23:5461–5476CrossRef
13.
Zurück zum Zitat Hendrikx S, Kascholke C, Flath T, Schumann D, Gressenbuch M, Schulze P, Hacker MC et al. (2016) Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - effects of organic crosslinker valence, content and molecular weight on mechanical properties. Acta Biomater 35:318–329CrossRef Hendrikx S, Kascholke C, Flath T, Schumann D, Gressenbuch M, Schulze P, Hacker MC et al. (2016) Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - effects of organic crosslinker valence, content and molecular weight on mechanical properties. Acta Biomater 35:318–329CrossRef
14.
Zurück zum Zitat Saravanapavan P, Hench LL (2001) Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. J Biomed Mater Res A 54:608–618CrossRef Saravanapavan P, Hench LL (2001) Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. J Biomed Mater Res A 54:608–618CrossRef
15.
Zurück zum Zitat Allo BA, Rizkalla AS, Mequanint K (2012) Hydroxyapatite formation on sol–gel derived Poly(ε-Caprolactone)/bioactive glass hybrid biomaterials. ACS Appl Mater Interfaces 4:3148–3156CrossRef Allo BA, Rizkalla AS, Mequanint K (2012) Hydroxyapatite formation on sol–gel derived Poly(ε-Caprolactone)/bioactive glass hybrid biomaterials. ACS Appl Mater Interfaces 4:3148–3156CrossRef
16.
Zurück zum Zitat Catauro M, Bollino F, Renella RA, Papale F (2015) Sol–gel synthesis of SiO2–CaO–P2O5 glasses: influence of the heat treatment on their bioactivity and biocompatibility. Ceram Int 41:12578–12588CrossRef Catauro M, Bollino F, Renella RA, Papale F (2015) Sol–gel synthesis of SiO2–CaO–P2O5 glasses: influence of the heat treatment on their bioactivity and biocompatibility. Ceram Int 41:12578–12588CrossRef
17.
Zurück zum Zitat Kim IY, Ohtsuki C, Kawachi G, Kamitakahara M, Cho SB (2008) Preparation of bioactive microspheres of organic modified calcium silicates through sol–gel processing. J Sol–Gel Sci Technol 45:43–49CrossRef Kim IY, Ohtsuki C, Kawachi G, Kamitakahara M, Cho SB (2008) Preparation of bioactive microspheres of organic modified calcium silicates through sol–gel processing. J Sol–Gel Sci Technol 45:43–49CrossRef
18.
Zurück zum Zitat Saravanapavan P, Jones JR, Verrier S, Beilby R, Shirtliff VJ, Hench LL, Polak JM (2004) Binary CaO-SiO2 gel-glasses for biomedical applications. Bio Med Mater Eng 14:467–486 Saravanapavan P, Jones JR, Verrier S, Beilby R, Shirtliff VJ, Hench LL, Polak JM (2004) Binary CaO-SiO2 gel-glasses for biomedical applications. Bio Med Mater Eng 14:467–486
19.
Zurück zum Zitat Catauro M, Renella RA, Papale F, Vecchio Ciprioti S (2016) Investigation of bioactivity, biocompatibility and thermal behavior of sol–gel silica glass containing a high PEG percentage. Mater Sci Eng C Mater Biol Appl 61:51–55CrossRef Catauro M, Renella RA, Papale F, Vecchio Ciprioti S (2016) Investigation of bioactivity, biocompatibility and thermal behavior of sol–gel silica glass containing a high PEG percentage. Mater Sci Eng C Mater Biol Appl 61:51–55CrossRef
20.
Zurück zum Zitat Yun HS, Kim SE, Park EK (2011) Bioactive glass–poly (ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks. Mater Sci Eng C Mater Biol Appl 31:198–205CrossRef Yun HS, Kim SE, Park EK (2011) Bioactive glass–poly (ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks. Mater Sci Eng C Mater Biol Appl 31:198–205CrossRef
21.
Zurück zum Zitat Bosetti M, Zanardi L, Hench LL, Cannas M (2003) Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. J Biomed Mater Res A 64A:189–195CrossRef Bosetti M, Zanardi L, Hench LL, Cannas M (2003) Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. J Biomed Mater Res A 64A:189–195CrossRef
22.
Zurück zum Zitat O’Donnell MD, Watts SJ, Law RV, Hill RG (2008) Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties–Part I: NMR. J Non-Cryst Solids 354:3554–3560CrossRef O’Donnell MD, Watts SJ, Law RV, Hill RG (2008) Effect of P2O5 content in two series of soda lime phosphosilicate glasses on structure and properties–Part I: NMR. J Non-Cryst Solids 354:3554–3560CrossRef
23.
Zurück zum Zitat Saravanapavan P, Jones JR, Pryce RS, Hench LL (2003) Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J Biomed Mater Res A 66:110–119CrossRef Saravanapavan P, Jones JR, Pryce RS, Hench LL (2003) Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). J Biomed Mater Res A 66:110–119CrossRef
24.
Zurück zum Zitat Kaur G, Pickrell G, Kimsawatde G, Homa D, Allbee HA, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep 4:4392CrossRef Kaur G, Pickrell G, Kimsawatde G, Homa D, Allbee HA, Sriranganathan N (2014) Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-B2O3-ZnO bioactive glasses. Sci Rep 4:4392CrossRef
25.
Zurück zum Zitat Salinas AJ, Martin AI, Vallet-Regí M (2002) Bioactivity of three CaO-P 2 O 5 -SiO 2 sol-gel glasses. J Biomed Mater Res A 61:524–532CrossRef Salinas AJ, Martin AI, Vallet-Regí M (2002) Bioactivity of three CaO-P 2 O 5 -SiO 2 sol-gel glasses. J Biomed Mater Res A 61:524–532CrossRef
26.
Zurück zum Zitat Pereira MM, Clark AE, Hench LL (1994) Calcium phosphate formation on sol–gel-derived bioactive glasses in vitro. J Biomed Mater Res A 28:693–698CrossRef Pereira MM, Clark AE, Hench LL (1994) Calcium phosphate formation on sol–gel-derived bioactive glasses in vitro. J Biomed Mater Res A 28:693–698CrossRef
27.
Zurück zum Zitat Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19:1276CrossRef Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19:1276CrossRef
28.
Zurück zum Zitat Lin S, Ionescu C, Baker S, Smith ME, Jones JR (2010) Characterisation of the inhomogeneity of sol–gel-derived SiO2–CaO bioactive glass and a strategy for its improvement. J Sol–Gel Sci Technol 53:255–262CrossRef Lin S, Ionescu C, Baker S, Smith ME, Jones JR (2010) Characterisation of the inhomogeneity of sol–gel-derived SiO2–CaO bioactive glass and a strategy for its improvement. J Sol–Gel Sci Technol 53:255–262CrossRef
29.
Zurück zum Zitat Messori M, Toselli M, Pilati F, Fabbri E, Fabbri P, Pasquali L, Nannarone S (2004) Prevention of plasticizer leaching from PVC medical devices by using organic–inorganic hybrid coatings. Polymer (Guildf) 45:805–813CrossRef Messori M, Toselli M, Pilati F, Fabbri E, Fabbri P, Pasquali L, Nannarone S (2004) Prevention of plasticizer leaching from PVC medical devices by using organic–inorganic hybrid coatings. Polymer (Guildf) 45:805–813CrossRef
30.
Zurück zum Zitat Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRef
31.
Zurück zum Zitat Poologasundarampillai G, Ionescu C, Tsigkou O, Murugesan M, Hill RG, Stevens MM, Hanna JV et al. (2010) Synthesis of bioactive class II poly(γ-glutamic acid)/silica hybrids for bone regeneration. J Mater Chem 20:8952CrossRef Poologasundarampillai G, Ionescu C, Tsigkou O, Murugesan M, Hill RG, Stevens MM, Hanna JV et al. (2010) Synthesis of bioactive class II poly(γ-glutamic acid)/silica hybrids for bone regeneration. J Mater Chem 20:8952CrossRef
32.
Zurück zum Zitat Poologasundarampillai G, Yu B, Tsigkou O, Valliant EM, Yue S, Lee PD, Hamilton RW et al. (2012) Bioactive silica–poly(γ-glutamic acid) hybrids for bone regeneration: effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds. Soft Matter 8:4822CrossRef Poologasundarampillai G, Yu B, Tsigkou O, Valliant EM, Yue S, Lee PD, Hamilton RW et al. (2012) Bioactive silica–poly(γ-glutamic acid) hybrids for bone regeneration: effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds. Soft Matter 8:4822CrossRef
33.
Zurück zum Zitat He L, Li J, Zhou C, Zhu H, Cao X, Tang B (2014) Phase change characteristics of shape-stabilized PEG/SiO2 composites using calcium chloride-assisted and temperature-assisted sol gel methods. Sol Energy 103:448–455CrossRef He L, Li J, Zhou C, Zhu H, Cao X, Tang B (2014) Phase change characteristics of shape-stabilized PEG/SiO2 composites using calcium chloride-assisted and temperature-assisted sol gel methods. Sol Energy 103:448–455CrossRef
34.
Zurück zum Zitat Brinker CJ, Scherer GW (1993) Sol-gel science: the physics and chemistry of sol-gel processing, 5th edn. Academic, Boston, MA Brinker CJ, Scherer GW (1993) Sol-gel science: the physics and chemistry of sol-gel processing, 5th edn. Academic, Boston, MA
35.
Zurück zum Zitat Pope E, Mackenzie JD (1986) Sol-gel processing of silica. J Non-Cryst Solids 87:185–198CrossRef Pope E, Mackenzie JD (1986) Sol-gel processing of silica. J Non-Cryst Solids 87:185–198CrossRef
36.
Zurück zum Zitat Keaveny TM, Wachtel EF, Ford CM, Hayes WC (1994) Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J Biomech 27:1137–1146CrossRef Keaveny TM, Wachtel EF, Ford CM, Hayes WC (1994) Differences between the tensile and compressive strengths of bovine tibial trabecular bone depend on modulus. J Biomech 27:1137–1146CrossRef
37.
Zurück zum Zitat Kopperdahl DL, Keaveny TM (1998) Yield strain behavior of trabecular bone. J Biomech 31:601–608CrossRef Kopperdahl DL, Keaveny TM (1998) Yield strain behavior of trabecular bone. J Biomech 31:601–608CrossRef
38.
Zurück zum Zitat Wang J, Zhou B, Liu XS, Fields AJ, Sanyal A, Shi X, Adams M et al. (2015) Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone 72:71–80CrossRef Wang J, Zhou B, Liu XS, Fields AJ, Sanyal A, Shi X, Adams M et al. (2015) Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone 72:71–80CrossRef
39.
Zurück zum Zitat Zhou B, Liu XS, Wang J, Lu XL, Fields AJ, Guo XE (2014) Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J Biomech 47:702–708CrossRef Zhou B, Liu XS, Wang J, Lu XL, Fields AJ, Guo XE (2014) Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J Biomech 47:702–708CrossRef
40.
Zurück zum Zitat Brauer DS (2015) Bioactive glasses-structure and properties. Angew Chem Int Ed 54:4160–4181CrossRef Brauer DS (2015) Bioactive glasses-structure and properties. Angew Chem Int Ed 54:4160–4181CrossRef
41.
Zurück zum Zitat Hall BK (ed.) (1993) Mechanical properties of cortical and trabecular bone. CRC, London, Tokyo Hall BK (ed.) (1993) Mechanical properties of cortical and trabecular bone. CRC, London, Tokyo
42.
Zurück zum Zitat Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491CrossRef
43.
Zurück zum Zitat Chen Q, Baino F, Spriano S, Pugno NM, Vitale-Brovarone C (2014) Modelling of the strength–porosity relationship in glass-ceramic foam scaffolds for bone repair. J Eur Ceram Soc 34:2663–2673CrossRef Chen Q, Baino F, Spriano S, Pugno NM, Vitale-Brovarone C (2014) Modelling of the strength–porosity relationship in glass-ceramic foam scaffolds for bone repair. J Eur Ceram Soc 34:2663–2673CrossRef
44.
Zurück zum Zitat Olmo N (2003) Bioactive sol–gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomaterials 24:3383–3393CrossRef Olmo N (2003) Bioactive sol–gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomaterials 24:3383–3393CrossRef
45.
Zurück zum Zitat Inzunza D, Covarrubias C, Marttens AV, Leighton Y, Carvajal JC, Valenzuela F, Díaz-Dosque M et al. (2014) Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties. J Biomed Mater Res A 102:37–48CrossRef Inzunza D, Covarrubias C, Marttens AV, Leighton Y, Carvajal JC, Valenzuela F, Díaz-Dosque M et al. (2014) Synthesis of nanostructured porous silica coatings on titanium and their cell adhesive and osteogenic differentiation properties. J Biomed Mater Res A 102:37–48CrossRef
46.
Zurück zum Zitat Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW et al. (2016) Sol–gel based materials for biomedical applications. Prog Mater Sci 77:1–79CrossRef Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han CM, Mahapatra C, Kim HW et al. (2016) Sol–gel based materials for biomedical applications. Prog Mater Sci 77:1–79CrossRef
Metadaten
Titel
Effects of curing and organic content on bioactivity and mechanical properties of hybrid sol–gel glass scaffolds made by indirect rapid prototyping
verfasst von
Stephan Hendrikx
Dzmitry Kuzmenka
Roberto Köferstein
Tobias Flath
Hans Uhlig
Dirk Enke
F. Peter Schulze
Michael C. Hacker
Michaela Schulz-Siegmund
Publikationsdatum
04.05.2017
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 1/2017
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-017-4395-y

Weitere Artikel der Ausgabe 1/2017

Journal of Sol-Gel Science and Technology 1/2017 Zur Ausgabe

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

A facile method to prepare cellulose whiskers–silica aerogel composites

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Surface engineering of TiO2-MWCNT nanocomposites towards tuning of functionalities and minimizing toxicity

Original Paper: Functional coatings, thin films and membranes (including deposition techniques)

Permeation and optical properties of YAG:Er3+ fiber membrane scintillators prepared by novel sol–gel/electrospinning method

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.