Skip to main content
Erschienen in: Journal of Polymer Research 5/2012

01.05.2012 | Original Paper

Effects of dopant, coagulant, and reinforcing nanofiller on mechanical and electrical properties of wet-spun polyaniline nanocomposite fibers

verfasst von: A. Mirmohseni, M. S. Seyed Dorraji

Erschienen in: Journal of Polymer Research | Ausgabe 5/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper describes the application of Taguchi experimental design to study the simultaneous effects of the dopant, the coagulant, and multiwalled carbon nanotubes (MWCNTs) used as reinforcing filler on the properties (tensile strength and electrical conductivity) of polyaniline (PANI) nanocomposite fibers produced via a wet spinning process. The MWCNT content was found to be the most significant factor, accounting for 72.8 % of the total contribution of the three selected parameters to the tensile strength. The dopant contributed 17.6 %, while the coagulant had a negligible effect and was therefore pooled. MWCNT content provided the maximum contribution of 98 % to the electrical conductivity, whereas the dopant and the coagulant had negligible effects, with contributions of 0.021 % and 0.247 %, respectively. A scanning electron microscope (SEM) and a tapping-mode atomic force microscope (AFM) were employed to study the morphology of the fibers. The electrochemical and pseudocapacitive properties of the fibers were investigated using cyclic voltammetry (CV). The PANI-AMPSA-MWCNT presented a specific capacitance value of 12.8 F cm−2. The thermal characteristics of the nanocomposite fibers were studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Elemental analysis of the fibers showed a high degree of doping: about 47–55 %.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bowman D, Mattes BR (2005) Conductive fibre prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications. Synth Met 154:29–32CrossRef Bowman D, Mattes BR (2005) Conductive fibre prepared from ultra-high molecular weight polyaniline for smart fabric and interactive textile applications. Synth Met 154:29–32CrossRef
2.
Zurück zum Zitat Chiu CW, Lin CA, Hong PD (2011) Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers. J Polym Res 18:367–372CrossRef Chiu CW, Lin CA, Hong PD (2011) Melt-spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers. J Polym Res 18:367–372CrossRef
3.
Zurück zum Zitat Arbab S, Noorpanah P, Mohammadi N, Zeinolebadi A (2011) Exploring the effects of non-solvent concentration, jet-stretching and hot-drawing on microstructure formation of poly(acrylonitrile) fibers during wet-spinning. J Polym Res 18:1343–1351 Arbab S, Noorpanah P, Mohammadi N, Zeinolebadi A (2011) Exploring the effects of non-solvent concentration, jet-stretching and hot-drawing on microstructure formation of poly(acrylonitrile) fibers during wet-spinning. J Polym Res 18:1343–1351
4.
Zurück zum Zitat Skothem TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers. Marcel Dekker, New York Skothem TA, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers. Marcel Dekker, New York
5.
Zurück zum Zitat Soroudi A, Skrifvars M (2010) Melt blending of carbon nanotubes/polyaniline/polypropylene compounds and their melt spinning to conductive fibres. Synth Met 160:1143–1147CrossRef Soroudi A, Skrifvars M (2010) Melt blending of carbon nanotubes/polyaniline/polypropylene compounds and their melt spinning to conductive fibres. Synth Met 160:1143–1147CrossRef
6.
Zurück zum Zitat Notin L, Viton C, Lucas JM, Domard A (2006) Pseudo-dry-spinning of chitosan. Acta Biomater 2:297–311CrossRef Notin L, Viton C, Lucas JM, Domard A (2006) Pseudo-dry-spinning of chitosan. Acta Biomater 2:297–311CrossRef
7.
Zurück zum Zitat Jianming J, Wei P, Shenglin Y, Guang L (2005) Electrically conductive PANI-DBSA/Co-PAN composite fibers prepared by wet spinning. Synth Met 149:181–186CrossRef Jianming J, Wei P, Shenglin Y, Guang L (2005) Electrically conductive PANI-DBSA/Co-PAN composite fibers prepared by wet spinning. Synth Met 149:181–186CrossRef
8.
Zurück zum Zitat Mattes BR, Wang HL, Yang D, Zhua YT, Blumenthala WR, Hundleya MF (1997) Formation of conductive polyaniline fibers derived from highly concentrated emeraldine base solutions. Synth Met 84:45–49CrossRef Mattes BR, Wang HL, Yang D, Zhua YT, Blumenthala WR, Hundleya MF (1997) Formation of conductive polyaniline fibers derived from highly concentrated emeraldine base solutions. Synth Met 84:45–49CrossRef
9.
Zurück zum Zitat Zhou J, Tzamalis G, Zaidi NA, Comfort NP, Monkman AP (2001) Effect of thermal aging on electrical conductivity of the 2-acrylamido-2-methyl-1-propanesulfonic acid-doped polyaniline fiber. J Appl Polym Sci 79:2503–2508CrossRef Zhou J, Tzamalis G, Zaidi NA, Comfort NP, Monkman AP (2001) Effect of thermal aging on electrical conductivity of the 2-acrylamido-2-methyl-1-propanesulfonic acid-doped polyaniline fiber. J Appl Polym Sci 79:2503–2508CrossRef
10.
Zurück zum Zitat Mottaghitalab V, Xi B, Spinks GM, Wallace GG (2006) Polyaniline fibres containing single walled carbon nanotubes: enhanced performance artificial muscles. Synth Met 156:796–803 Mottaghitalab V, Xi B, Spinks GM, Wallace GG (2006) Polyaniline fibres containing single walled carbon nanotubes: enhanced performance artificial muscles. Synth Met 156:796–803
11.
Zurück zum Zitat Mottaghitalab V, Spinks GM, Wallace GG (2006) The development and characterisation of polyaniline—single walled carbon nanotube composite fibres using 2-acrylamido-2 methyl-1-propane sulfonic acid (AMPSA) through one step wet spinning process. Polymer 47:4996–5002CrossRef Mottaghitalab V, Spinks GM, Wallace GG (2006) The development and characterisation of polyaniline—single walled carbon nanotube composite fibres using 2-acrylamido-2 methyl-1-propane sulfonic acid (AMPSA) through one step wet spinning process. Polymer 47:4996–5002CrossRef
12.
Zurück zum Zitat Wang YZ, Joo J, Hsu CH, Epstein AJ (1995) Charge transport of camphor sulfonic acid-doped polyaniline and poly(o-toluidine) fibers: role of processing. Synth Met 68:207–211CrossRef Wang YZ, Joo J, Hsu CH, Epstein AJ (1995) Charge transport of camphor sulfonic acid-doped polyaniline and poly(o-toluidine) fibers: role of processing. Synth Met 68:207–211CrossRef
13.
Zurück zum Zitat Pomfret SJ, Adams PN, Comfort NP, Monkman AP (2000) Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process. Polymer 41:2265–2269CrossRef Pomfret SJ, Adams PN, Comfort NP, Monkman AP (2000) Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning process. Polymer 41:2265–2269CrossRef
14.
Zurück zum Zitat Pomfret SJ, Adams PN, Comfort NP, Monkman AP (1998) Inherently electrically conductive fibers wet spun from a sulfonic acid–doped polyaniline solution. Adv Mater 10:1351–1353 Pomfret SJ, Adams PN, Comfort NP, Monkman AP (1998) Inherently electrically conductive fibers wet spun from a sulfonic acid–doped polyaniline solution. Adv Mater 10:1351–1353
15.
Zurück zum Zitat Liu Y, Li J, Pan ZJ (2011) Effect of spinning conditions on the mechanical properties of PA6/MWNTs nanofiber filaments. J Polym Res 18:2055–2060 Liu Y, Li J, Pan ZJ (2011) Effect of spinning conditions on the mechanical properties of PA6/MWNTs nanofiber filaments. J Polym Res 18:2055–2060
16.
Zurück zum Zitat Ross PJ (1996) Taguchi techniques for quality engineering. McGraw-Hill, New York Ross PJ (1996) Taguchi techniques for quality engineering. McGraw-Hill, New York
17.
Zurück zum Zitat Stejskal J, Gilbert RG (2002) Polyaniline: preparation of a conducting polymer. Pure Appl Chem 74:857–867CrossRef Stejskal J, Gilbert RG (2002) Polyaniline: preparation of a conducting polymer. Pure Appl Chem 74:857–867CrossRef
18.
Zurück zum Zitat Yang D, Adams PN, Mattes BR (2001) Intrinsic viscosity measurement of dilute emeraldine base solutions for estimating the weight average molecular weight of polyaniline. Synth Met 119:301–302CrossRef Yang D, Adams PN, Mattes BR (2001) Intrinsic viscosity measurement of dilute emeraldine base solutions for estimating the weight average molecular weight of polyaniline. Synth Met 119:301–302CrossRef
19.
Zurück zum Zitat Mirmohseni A, Zavareh S (2010) Preparation and characterization of an epoxy nanocomposite toughened by a combination of thermoplastic, layered and particulate nano-filler. Mater Design 31:2699–2706CrossRef Mirmohseni A, Zavareh S (2010) Preparation and characterization of an epoxy nanocomposite toughened by a combination of thermoplastic, layered and particulate nano-filler. Mater Design 31:2699–2706CrossRef
20.
Zurück zum Zitat Sinha S, Bhadra S, Khastgir D (2009) Effect of dopant type on the properties of polyaniline. J Appl Polym Sci 112:3135–3140CrossRef Sinha S, Bhadra S, Khastgir D (2009) Effect of dopant type on the properties of polyaniline. J Appl Polym Sci 112:3135–3140CrossRef
21.
Zurück zum Zitat Chung SF, Wen TC, Gopalan A (2005) Influence of dopant size on the junction properties of polyaniline. Mater Sci Eng B 116:125–130CrossRef Chung SF, Wen TC, Gopalan A (2005) Influence of dopant size on the junction properties of polyaniline. Mater Sci Eng B 116:125–130CrossRef
22.
Zurück zum Zitat Yoon SB, Yoon EH, Jim KB (2011) Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-Wall carbon nanotube nanocomposites for supercapacitor applications. J Power Sources 196:10791–10797 Yoon SB, Yoon EH, Jim KB (2011) Electrochemical properties of leucoemeraldine, emeraldine, and pernigraniline forms of polyaniline/multi-Wall carbon nanotube nanocomposites for supercapacitor applications. J Power Sources 196:10791–10797
23.
Zurück zum Zitat Zhou J, Tzamalis G, Zaidi NA, Comfort NP, Monkman AP (2001) Electrically conductive PAni multifilaments spun by a wet-spinning process. J Mater Sci 36:3089–3095CrossRef Zhou J, Tzamalis G, Zaidi NA, Comfort NP, Monkman AP (2001) Electrically conductive PAni multifilaments spun by a wet-spinning process. J Mater Sci 36:3089–3095CrossRef
Metadaten
Titel
Effects of dopant, coagulant, and reinforcing nanofiller on mechanical and electrical properties of wet-spun polyaniline nanocomposite fibers
verfasst von
A. Mirmohseni
M. S. Seyed Dorraji
Publikationsdatum
01.05.2012
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2012
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-012-9852-2

Weitere Artikel der Ausgabe 5/2012

Journal of Polymer Research 5/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.