Skip to main content

2024 | OriginalPaper | Buchkapitel

Effects of Hydrate Saturation and Sand-Filling Content on Hydrate Exploitation Using In-Situ Heat Supply with Chemical Reagents

verfasst von : Yangyang Zhang, Zhiyuan Wang, Longqiao Chen, Hua Li, Jianbo Zhang, Hemin Yang

Erschienen in: Proceedings of the Fifth International Technical Symposium on Deepwater Oil and Gas Engineering

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The methods of gas recovery from hydrate-bearing sediments (HBS) for the earth are on further validating and field trial, which is quite far from a technical and commercial demonstration. Based on the efficient heating way to accelerate the hydrate dissociation, a new gas recovery from HBS termed the “in-situ heat generation method with chemical reagents” is proposed by our previous work, and the chemical reagent huff and puff method (CHP) can achieve better gas production and higher energy efficiency (η) and thermal efficiency (ξ) than chemical reagent thermal flooding method (CTF). In this work, the influences of the hydrate saturation and sand-filling content in a three-dimensional cylindrical hydrate simulator (CHS) on the response characteristics (including gas production, temperature change, and ξ) during hydrate exploitation via CHP with separated injection mode are obtained by laboratory experiment. The results indicate that by this method, we could obtain advantageous gas production and realize high η with ideal heat utilization by reducing the heat lost for the HBS framework. In addition, the higher hydrate saturation and more extensive sand-filling scale benefit hydrate exploitation. However, high η cannot be considered a qualitative improvement, and how to efficiently mix the chemical reagents in HBS to generate sufficient heat for hydrate dissociation has not been broken through.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Makogon, Y.F.: Natural gas hydrates–a promising source of energy. J. Nat. Gas Sci. Eng. 2(1), 49–59 (2010)CrossRef Makogon, Y.F.: Natural gas hydrates–a promising source of energy. J. Nat. Gas Sci. Eng. 2(1), 49–59 (2010)CrossRef
2.
Zurück zum Zitat Feng, J., Sun, L., Wang, Y., et al.: Advances of experimental study on gas production from synthetic hydrate reservoir in China. Chin. J. Chem. Eng. 27(9), 2213–2225 (2019)CrossRef Feng, J., Sun, L., Wang, Y., et al.: Advances of experimental study on gas production from synthetic hydrate reservoir in China. Chin. J. Chem. Eng. 27(9), 2213–2225 (2019)CrossRef
3.
Zurück zum Zitat Zhu, Y., Wang, P., Pang, S., et al.: A review of the resource and test production of natural gas hydrates in China. Energy Fuels 35(11), 9137–9150 (2021)CrossRef Zhu, Y., Wang, P., Pang, S., et al.: A review of the resource and test production of natural gas hydrates in China. Energy Fuels 35(11), 9137–9150 (2021)CrossRef
4.
Zurück zum Zitat Yin, Z., Linga, P.: Methane hydrates: a future clean energy resource. Chin. J. Chem. Eng. 27(9), 2026–2036 (2019)CrossRef Yin, Z., Linga, P.: Methane hydrates: a future clean energy resource. Chin. J. Chem. Eng. 27(9), 2026–2036 (2019)CrossRef
5.
Zurück zum Zitat Xiao, K., Zou, C., Yang, Y., et al.: A preliminary study of the gas hydrate stability zone in a gas hydrate potential region of China. Energy Sci. Eng. 8(4), 1080–1091 (2020)CrossRef Xiao, K., Zou, C., Yang, Y., et al.: A preliminary study of the gas hydrate stability zone in a gas hydrate potential region of China. Energy Sci. Eng. 8(4), 1080–1091 (2020)CrossRef
6.
Zurück zum Zitat Wang, Z., Wang, Q., Fan, Z., et al.: Equivalency and replaceability between different permeability models of hydrate-bearing porous media when applied to numerical modeling of hydrate dissociation: implications for model selection and parameter assignment. Energy Fuels 35(7), 6090–6100 (2021)CrossRef Wang, Z., Wang, Q., Fan, Z., et al.: Equivalency and replaceability between different permeability models of hydrate-bearing porous media when applied to numerical modeling of hydrate dissociation: implications for model selection and parameter assignment. Energy Fuels 35(7), 6090–6100 (2021)CrossRef
7.
Zurück zum Zitat Deng, X., Pan, S., Zhang, J., et al.: Numerical investigation on abnormally elevated pressure in laboratory-scale porous media caused by depressurized hydrate dissociation. Fuel 271, 117679 (2020)CrossRef Deng, X., Pan, S., Zhang, J., et al.: Numerical investigation on abnormally elevated pressure in laboratory-scale porous media caused by depressurized hydrate dissociation. Fuel 271, 117679 (2020)CrossRef
8.
Zurück zum Zitat Sun, X., Luo, T., Wang, L., et al.: Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization. Appl. Energy 250, 7–18 (2019)CrossRef Sun, X., Luo, T., Wang, L., et al.: Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization. Appl. Energy 250, 7–18 (2019)CrossRef
9.
Zurück zum Zitat Deng, X., Feng, J., Pan, S., et al.: An improved model for the migration of fluids caused by hydrate dissociation in porous media. J. Petrol. Sci. Eng. 188, 106876 (2020)CrossRef Deng, X., Feng, J., Pan, S., et al.: An improved model for the migration of fluids caused by hydrate dissociation in porous media. J. Petrol. Sci. Eng. 188, 106876 (2020)CrossRef
10.
Zurück zum Zitat Wang, Y., Lang, X., Fan, S., et al.: Review on enhanced technology of natural gas hydrate recovery by carbon dioxide replacement. Energy Fuels 35(5), 3659–3674 (2021)CrossRef Wang, Y., Lang, X., Fan, S., et al.: Review on enhanced technology of natural gas hydrate recovery by carbon dioxide replacement. Energy Fuels 35(5), 3659–3674 (2021)CrossRef
11.
Zurück zum Zitat Liu, Y., Hou, J., Zhao, H., et al.: A method to recover natural gas hydrates with geothermal energy conveyed by CO2. Energy 144, 265–278 (2018)CrossRef Liu, Y., Hou, J., Zhao, H., et al.: A method to recover natural gas hydrates with geothermal energy conveyed by CO2. Energy 144, 265–278 (2018)CrossRef
12.
Zurück zum Zitat Wang, X., Wang, Y., Xie, Y., et al.: Study on the decomposition conditions of gas hydrate in quartz sand-brine mixture systems. J. Chem. Thermodyn. 131, 247–253 (2019)CrossRef Wang, X., Wang, Y., Xie, Y., et al.: Study on the decomposition conditions of gas hydrate in quartz sand-brine mixture systems. J. Chem. Thermodyn. 131, 247–253 (2019)CrossRef
13.
Zurück zum Zitat Feng, J., Wang, Y., Li, X.: Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand. Appl. Energy 174, 181–191 (2016)CrossRef Feng, J., Wang, Y., Li, X.: Hydrate dissociation induced by depressurization in conjunction with warm brine stimulation in cubic hydrate simulator with silica sand. Appl. Energy 174, 181–191 (2016)CrossRef
14.
Zurück zum Zitat Wang, Z., Zhang, Y., Peng, Z., et al.: Recent advances in methods of gas recovery from hydrate-bearing sediments: a review. Energy Fuels 36(11), 5550–5593 (2022)CrossRef Wang, Z., Zhang, Y., Peng, Z., et al.: Recent advances in methods of gas recovery from hydrate-bearing sediments: a review. Energy Fuels 36(11), 5550–5593 (2022)CrossRef
15.
Zurück zum Zitat Li, J., Ye, J., Qin, X., et al.: The first offshore natural gas hydrate production test in South China Sea. China Geology 1(1), 5–16 (2018)CrossRef Li, J., Ye, J., Qin, X., et al.: The first offshore natural gas hydrate production test in South China Sea. China Geology 1(1), 5–16 (2018)CrossRef
16.
Zurück zum Zitat Liu, C., Ye, Y., Meng, Q., et al.: The characteristics of gas hydrates recovered from shenhu area in the South China Sea. Mar. Geol. 307–310, 22–27 (2012)CrossRef Liu, C., Ye, Y., Meng, Q., et al.: The characteristics of gas hydrates recovered from shenhu area in the South China Sea. Mar. Geol. 307–310, 22–27 (2012)CrossRef
17.
Zurück zum Zitat Ye, J., Qin, X., Xie, W., et al.: The second natural gas hydrate production test in the South China Sea. China Geol. 3(2), 197–209 (2020)CrossRef Ye, J., Qin, X., Xie, W., et al.: The second natural gas hydrate production test in the South China Sea. China Geol. 3(2), 197–209 (2020)CrossRef
18.
Zurück zum Zitat Qina, X., Lu, J., Lu, H., et al.: Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea. China Geol. 3(2), 210–220 (2020)CrossRef Qina, X., Lu, J., Lu, H., et al.: Coexistence of natural gas hydrate, free gas and water in the gas hydrate system in the Shenhu Area, South China Sea. China Geol. 3(2), 210–220 (2020)CrossRef
19.
Zurück zum Zitat Moridis, G., Collett, T.S., Pooladi-Darvish, M., et al.: Challenges, uncertainties and issues facing gas production from gas hydrate deposits. SPE Reservoir Eval. Eng. 14(1), 76–112 (2011)CrossRef Moridis, G., Collett, T.S., Pooladi-Darvish, M., et al.: Challenges, uncertainties and issues facing gas production from gas hydrate deposits. SPE Reservoir Eval. Eng. 14(1), 76–112 (2011)CrossRef
20.
Zurück zum Zitat Sloan, E.J.: Fundamental principles and applications of natural gas hydrates. Nature 426, 353–359 (2003)CrossRef Sloan, E.J.: Fundamental principles and applications of natural gas hydrates. Nature 426, 353–359 (2003)CrossRef
21.
Zurück zum Zitat Giraldo, C., Clarke, M.: Stoichiometric approach toward modeling the decomposition kinetics of gas hydrates formed from mixed gases. Energy Fuels 27(8), 4534–4544 (2013)CrossRef Giraldo, C., Clarke, M.: Stoichiometric approach toward modeling the decomposition kinetics of gas hydrates formed from mixed gases. Energy Fuels 27(8), 4534–4544 (2013)CrossRef
22.
Zurück zum Zitat Sun, X., Mohanty, K.K.: Kinetic simulation of methane hydrate formation and dissociation in porous media. Chem. Eng. Sci. 61(11), 3476–3495 (2006)CrossRef Sun, X., Mohanty, K.K.: Kinetic simulation of methane hydrate formation and dissociation in porous media. Chem. Eng. Sci. 61(11), 3476–3495 (2006)CrossRef
23.
Zurück zum Zitat Wang, Y., Feng, J., Li, X.: Experimental investigation into methane hydrate dissociation by thermal stimulation with dual vertical well. Energy Procedia 105, 4738–4744 (2017)CrossRef Wang, Y., Feng, J., Li, X.: Experimental investigation into methane hydrate dissociation by thermal stimulation with dual vertical well. Energy Procedia 105, 4738–4744 (2017)CrossRef
24.
Zurück zum Zitat Yousif, M.H., Abass, H.H., Selim, M.S., et al.: Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE Reserv. Eng. 6(1), 69–76 (1991)CrossRef Yousif, M.H., Abass, H.H., Selim, M.S., et al.: Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE Reserv. Eng. 6(1), 69–76 (1991)CrossRef
25.
Zurück zum Zitat Zheng, R., Li, S., Li, Q., et al.: Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs. Appl. Energy 215, 405–415 (2018)CrossRef Zheng, R., Li, S., Li, Q., et al.: Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs. Appl. Energy 215, 405–415 (2018)CrossRef
26.
Zurück zum Zitat Wang, X., Dong, B., Wang, F., et al.: Pore-scale investigations on the effects of ice formation/melting on methane hydrate dissociation using depressurization. Int. J. Heat Mass Transf. 131, 737–749 (2019)CrossRef Wang, X., Dong, B., Wang, F., et al.: Pore-scale investigations on the effects of ice formation/melting on methane hydrate dissociation using depressurization. Int. J. Heat Mass Transf. 131, 737–749 (2019)CrossRef
27.
Zurück zum Zitat Chong, Z.R., Yin, Z., Tan, J.H.C., et al.: Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach. Appl. Energy 204, 1513–1525 (2017)CrossRef Chong, Z.R., Yin, Z., Tan, J.H.C., et al.: Experimental investigations on energy recovery from water-saturated hydrate bearing sediments via depressurization approach. Appl. Energy 204, 1513–1525 (2017)CrossRef
28.
Zurück zum Zitat Wang, P., Yang, M., Chen, B., et al.: Methane hydrate reformation in porous media with methane migration. Chem. Eng. Sci. 168(31), 344–351 (2017)CrossRef Wang, P., Yang, M., Chen, B., et al.: Methane hydrate reformation in porous media with methane migration. Chem. Eng. Sci. 168(31), 344–351 (2017)CrossRef
29.
Zurück zum Zitat Seol, Y., Myshakin, E.: Experimental and numerical observations of hydrate reformation during depressurization in a core-scale reactor. Energy Fuels 25(3), 1099–1110 (2011)CrossRef Seol, Y., Myshakin, E.: Experimental and numerical observations of hydrate reformation during depressurization in a core-scale reactor. Energy Fuels 25(3), 1099–1110 (2011)CrossRef
30.
Zurück zum Zitat Wang, B., Dong, H., Liu, Y., et al.: Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits☆. Appl. Energy 227, 710–718 (2018)CrossRef Wang, B., Dong, H., Liu, Y., et al.: Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits☆. Appl. Energy 227, 710–718 (2018)CrossRef
31.
Zurück zum Zitat Yamada, H., Chen, L., Lacaille, G., et al.: Experimental study of methane hydrate dissociation and gas production behaviors under depressurization. Int. J. Mech. Eng. Robot. Res. 140–146 (2017) Yamada, H., Chen, L., Lacaille, G., et al.: Experimental study of methane hydrate dissociation and gas production behaviors under depressurization. Int. J. Mech. Eng. Robot. Res. 140–146 (2017)
32.
Zurück zum Zitat Wang, B., Dong, H., Liu, Y., et al.: Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits. Appl. Energy 227, 710–718 (2018)CrossRef Wang, B., Dong, H., Liu, Y., et al.: Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits. Appl. Energy 227, 710–718 (2018)CrossRef
33.
Zurück zum Zitat Li, B., Liu, S., Liang, Y.: Experimental study of methane hydrate dissociation by depressurization and electrical heating. Energy Procedia 105, 5018–5025 (2017)CrossRef Li, B., Liu, S., Liang, Y.: Experimental study of methane hydrate dissociation by depressurization and electrical heating. Energy Procedia 105, 5018–5025 (2017)CrossRef
34.
Zurück zum Zitat Wang, B., Dong, H., Fan, Z., et al.: Gas production from methane hydrate deposits induced by depressurization in conjunction with thermal stimulation. Energy Procedia 105, 4713–4717 (2017)CrossRef Wang, B., Dong, H., Fan, Z., et al.: Gas production from methane hydrate deposits induced by depressurization in conjunction with thermal stimulation. Energy Procedia 105, 4713–4717 (2017)CrossRef
35.
Zurück zum Zitat Sun, Y., Jia, R., Guo, W., et al.: Design and experimental study of the steam mining system for natural gas hydrates. Energy Fuels 26(12), 7280–7287 (2012)CrossRef Sun, Y., Jia, R., Guo, W., et al.: Design and experimental study of the steam mining system for natural gas hydrates. Energy Fuels 26(12), 7280–7287 (2012)CrossRef
36.
Zurück zum Zitat Song, Y., Kuang, Y., Fan, Z., et al.: Influence of core scale permeability on gas production from methane hydrate by thermal stimulation. Int. J. Heat Mass Transf. 121, 207–214 (2018)CrossRef Song, Y., Kuang, Y., Fan, Z., et al.: Influence of core scale permeability on gas production from methane hydrate by thermal stimulation. Int. J. Heat Mass Transf. 121, 207–214 (2018)CrossRef
37.
Zurück zum Zitat Li, S., Wang, Z., Xu, X., et al.: Experimental study on dissociation of hydrate reservoirs with different saturations by hot brine injection. J. Nat. Gas Sci. Eng. 46, 555–562 (2017)MathSciNetCrossRef Li, S., Wang, Z., Xu, X., et al.: Experimental study on dissociation of hydrate reservoirs with different saturations by hot brine injection. J. Nat. Gas Sci. Eng. 46, 555–562 (2017)MathSciNetCrossRef
38.
Zurück zum Zitat Liu, S., Zhang, Y., Luo, Y., et al.: Analysis of hydrate exploitation by a new in-situ heat generation method with chemical reagents based on heat utilization. J. Clean. Prod. 249, 119399 (2020)CrossRef Liu, S., Zhang, Y., Luo, Y., et al.: Analysis of hydrate exploitation by a new in-situ heat generation method with chemical reagents based on heat utilization. J. Clean. Prod. 249, 119399 (2020)CrossRef
39.
Zurück zum Zitat Ruan, X., Li, X., Xu, C.: Numerical investigation of the production behavior of methane hydrates under depressurization conditions combined with well-wall heating. Energies 10(2), 161 (2017)CrossRef Ruan, X., Li, X., Xu, C.: Numerical investigation of the production behavior of methane hydrates under depressurization conditions combined with well-wall heating. Energies 10(2), 161 (2017)CrossRef
40.
Zurück zum Zitat Minagawa, H., Ito, T., Kimura, S., et al.: Depressurization and electrical heating of methane hydrate sediment for gas production: laboratory-scale experiments. J. Nat. Gas Sci. Eng. 50, 147–156 (2018)CrossRef Minagawa, H., Ito, T., Kimura, S., et al.: Depressurization and electrical heating of methane hydrate sediment for gas production: laboratory-scale experiments. J. Nat. Gas Sci. Eng. 50, 147–156 (2018)CrossRef
41.
Zurück zum Zitat Wan, Q., Si, H., Li, B., et al.: Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization. Appl. Energy 278, 115612 (2020)CrossRef Wan, Q., Si, H., Li, B., et al.: Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization. Appl. Energy 278, 115612 (2020)CrossRef
42.
Zurück zum Zitat Mukhametshina, A., Martynova, E.: Electromagnetic heating of heavy oil and bitumen: a review of experimental studies and field applications. J. Petrol. Eng. 2013, 1–7 (2013)CrossRef Mukhametshina, A., Martynova, E.: Electromagnetic heating of heavy oil and bitumen: a review of experimental studies and field applications. J. Petrol. Eng. 2013, 1–7 (2013)CrossRef
43.
Zurück zum Zitat Misyura, S.Y.: Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation. Energy 181, 589–602 (2019)CrossRef Misyura, S.Y.: Non-stationary combustion of natural and artificial methane hydrate at heterogeneous dissociation. Energy 181, 589–602 (2019)CrossRef
44.
Zurück zum Zitat Zhao, E., Hou, J., Du, Q., et al.: Numerical modeling of gas production from methane hydrate deposits using low-frequency electrical heating assisted depressurization method. Fuel 290, 120075 (2021)CrossRef Zhao, E., Hou, J., Du, Q., et al.: Numerical modeling of gas production from methane hydrate deposits using low-frequency electrical heating assisted depressurization method. Fuel 290, 120075 (2021)CrossRef
45.
Zurück zum Zitat Chen, G.: A review: enhanced recovery of natural gas hydrate reservoirs. Chin. J. Chem. Eng. (2018) Chen, G.: A review: enhanced recovery of natural gas hydrate reservoirs. Chin. J. Chem. Eng. (2018)
46.
Zurück zum Zitat Zhang, Y.: Experimental Study on Gas Production from Hydrate Reservoir Using Self-heating System Injection Method. ChongQing University (2019) Zhang, Y.: Experimental Study on Gas Production from Hydrate Reservoir Using Self-heating System Injection Method. ChongQing University (2019)
47.
Zurück zum Zitat Li, G., Li, X., Wang, Y., et al.: Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator. Energy 36(5), 3170–3178 (2011)CrossRef Li, G., Li, X., Wang, Y., et al.: Production behavior of methane hydrate in porous media using huff and puff method in a novel three-dimensional simulator. Energy 36(5), 3170–3178 (2011)CrossRef
48.
Zurück zum Zitat Li, S., Zheng, R., Xu, X., et al.: Energy efficiency analysis of hydrate dissociation by thermal stimulation. J. Nat. Gas Sci. Eng. 30, 148–155 (2016)CrossRef Li, S., Zheng, R., Xu, X., et al.: Energy efficiency analysis of hydrate dissociation by thermal stimulation. J. Nat. Gas Sci. Eng. 30, 148–155 (2016)CrossRef
49.
Zurück zum Zitat Park, Y., Kim, D., Lee, J., et al.: Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proc. Natl. Acad. Sci. U.S.A. 103(34), 12690–12694 (2006)CrossRef Park, Y., Kim, D., Lee, J., et al.: Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proc. Natl. Acad. Sci. U.S.A. 103(34), 12690–12694 (2006)CrossRef
50.
Zurück zum Zitat Li, X.S., Wang, Y., Li, G., et al.: Experimental investigation into methane hydrate decomposition during three-dimensional thermal huff and puff. Appl. Energy 94(10), 48–57 (2012)CrossRef Li, X.S., Wang, Y., Li, G., et al.: Experimental investigation into methane hydrate decomposition during three-dimensional thermal huff and puff. Appl. Energy 94(10), 48–57 (2012)CrossRef
51.
Zurück zum Zitat Wang, Y., Li, X., Li, G., et al.: Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method. Fuel 117, 688–696 (2014)CrossRef Wang, Y., Li, X., Li, G., et al.: Experimental study on the hydrate dissociation in porous media by five-spot thermal huff and puff method. Fuel 117, 688–696 (2014)CrossRef
52.
Zurück zum Zitat Duo-Fu, C., Xu-Xuan, L., Bin, X.: Distribution of gas hydrate stable zones and resource prediction in the QiongDongNan basin of the south Chian sea. Chin. J. Geophys. 47(03), 483–489 (2004) Duo-Fu, C., Xu-Xuan, L., Bin, X.: Distribution of gas hydrate stable zones and resource prediction in the QiongDongNan basin of the south Chian sea. Chin. J. Geophys. 47(03), 483–489 (2004)
Metadaten
Titel
Effects of Hydrate Saturation and Sand-Filling Content on Hydrate Exploitation Using In-Situ Heat Supply with Chemical Reagents
verfasst von
Yangyang Zhang
Zhiyuan Wang
Longqiao Chen
Hua Li
Jianbo Zhang
Hemin Yang
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1309-7_50