Skip to main content
Erschienen in: Journal of Materials Science 12/2015

01.06.2015

Effects of incoherent nanoinclusions on stress-driven migration of low-angle grain boundaries in nanocomposites

verfasst von: I. A. Ovid’ko, A. G. Sheinerman

Erschienen in: Journal of Materials Science | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stress-driven migration of grain boundaries (GBs) is theoretically described as a plastic deformation mode in metal matrix nanocomposites containing incoherent reinforcing (ceramic or metallic) nanoinclusions. We considered the exemplary case of low-angle tilt boundaries migrating in nanocrystalline or ultrafine-grained metallic matrixes and analytically calculated the effects of reinforcing nanoinclusions on the GB migration process. In doing so, migrating low-angle tilt boundaries are represented as walls of edge lattice dislocations that cooperatively glide in a metal matrix but cannot penetrate wire nanoinclusions. It is theoretically revealed that the nanoinclusions typically hamper the stress-driven GB migration. At the same time, in the situation with small (ultrafine) nanoinclusions, they cause an anomalous effect enhancing (or, in other terms, decreasing the critical stress for unlimited migration) the stress-driven GB migration in metal–metal and metal–ceramic nanocomposites. The results of our theoretical examination are consistent with the corresponding experimental data reported in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Koch CC (2007) Structural nanocrystalline materials: an overview. J Mater Sci 42:1403–1414CrossRef Koch CC (2007) Structural nanocrystalline materials: an overview. J Mater Sci 42:1403–1414CrossRef
2.
Zurück zum Zitat Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796CrossRef Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796CrossRef
3.
Zurück zum Zitat Ovid’ko IA (2007) Review on the fracture processes in nanocrystalline materials. J Mater Sci 42:1694–1708CrossRef Ovid’ko IA (2007) Review on the fracture processes in nanocrystalline materials. J Mater Sci 42:1694–1708CrossRef
4.
Zurück zum Zitat Koch CC, Ovid’ko IA, Seal S, Veprek S (2007) Structural Nanocrystalline Materials: Fundamentals and Applications. Cambridge University Press, CambridgeCrossRef Koch CC, Ovid’ko IA, Seal S, Veprek S (2007) Structural Nanocrystalline Materials: Fundamentals and Applications. Cambridge University Press, CambridgeCrossRef
5.
Zurück zum Zitat Ovid’ko IA, Sheinerman AG (2009) Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Mater 57:2217–2228CrossRef Ovid’ko IA, Sheinerman AG (2009) Enhanced ductility of nanomaterials through optimization of grain boundary sliding and diffusion processes. Acta Mater 57:2217–2228CrossRef
6.
Zurück zum Zitat Pande CS, Cooper KP (2009) Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Progr Mater Sci 54:689–706CrossRef Pande CS, Cooper KP (2009) Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Progr Mater Sci 54:689–706CrossRef
7.
Zurück zum Zitat Abdolrahim N, Mastorakos IN, Zbib HM (2010) Deformation mechanisms and pseudoelastic behaviors in trilayer composite metal nanowires. Phys Rev B 81:054117CrossRef Abdolrahim N, Mastorakos IN, Zbib HM (2010) Deformation mechanisms and pseudoelastic behaviors in trilayer composite metal nanowires. Phys Rev B 81:054117CrossRef
8.
Zurück zum Zitat Abdolrahim N, Mastorakos IN, Zbib HM (2012) Precipitate strengthening in nanostructured metallic material composites. Philos Mag Lett 92:597–607CrossRef Abdolrahim N, Mastorakos IN, Zbib HM (2012) Precipitate strengthening in nanostructured metallic material composites. Philos Mag Lett 92:597–607CrossRef
9.
Zurück zum Zitat Zhu YT, Liao XZ, Wu X-L (2012) Deformation twinning in nanocrystalline materials. Progr Mater Sci 57:1–62CrossRef Zhu YT, Liao XZ, Wu X-L (2012) Deformation twinning in nanocrystalline materials. Progr Mater Sci 57:1–62CrossRef
10.
Zurück zum Zitat Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817CrossRef Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817CrossRef
11.
Zurück zum Zitat Abdolrahim N, Zbib HM, Bahr DF (2014) Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int J Plasticity 52:33–50CrossRef Abdolrahim N, Zbib HM, Bahr DF (2014) Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. Int J Plasticity 52:33–50CrossRef
12.
Zurück zum Zitat Jin M, Minor AM, Stach EA, Morris JW Jr (2004) Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater 52:5381–5387CrossRef Jin M, Minor AM, Stach EA, Morris JW Jr (2004) Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater 52:5381–5387CrossRef
13.
Zurück zum Zitat Soer WA, De Hosson JTM, Minor AM, Morris JW Jr, Stach EA (2004) Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films. Acta Mater 52:5783–5790CrossRef Soer WA, De Hosson JTM, Minor AM, Morris JW Jr, Stach EA (2004) Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films. Acta Mater 52:5783–5790CrossRef
14.
Zurück zum Zitat Gutkin MY, Ovid’ko IA (2005) Grain boundary migration as rotational deformation mode in nanocrystalline materials. Appl Phys Lett 87:251916CrossRef Gutkin MY, Ovid’ko IA (2005) Grain boundary migration as rotational deformation mode in nanocrystalline materials. Appl Phys Lett 87:251916CrossRef
15.
Zurück zum Zitat Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ (2006) Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54:2253–2263CrossRef Gianola DS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ (2006) Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater 54:2253–2263CrossRef
16.
Zurück zum Zitat Cahn JW, Mishin Y, Suzuki A (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54:4953–4975CrossRef Cahn JW, Mishin Y, Suzuki A (2006) Coupling grain boundary motion to shear deformation. Acta Mater 54:4953–4975CrossRef
17.
Zurück zum Zitat Sansoz F, Dupont V (2006) Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl Phys Lett 89:111901CrossRef Sansoz F, Dupont V (2006) Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl Phys Lett 89:111901CrossRef
18.
Zurück zum Zitat Gai PL, Zhang K, Weertman J (2007) Electron microscopy study of nanocrystalline copper deformed by a microhardness indenter. Scripta Mater 56:25–28CrossRef Gai PL, Zhang K, Weertman J (2007) Electron microscopy study of nanocrystalline copper deformed by a microhardness indenter. Scripta Mater 56:25–28CrossRef
19.
Zurück zum Zitat Pan D, Kuwano S, Fujita T, Chen MW (2007) Ultra-large room-temperature compressive plasticity of a nanocrystalline metal. Nano Lett 7:2108–2111CrossRef Pan D, Kuwano S, Fujita T, Chen MW (2007) Ultra-large room-temperature compressive plasticity of a nanocrystalline metal. Nano Lett 7:2108–2111CrossRef
20.
Zurück zum Zitat Ivanov VA, Mishin Y (2008) Dynamics of grain boundary motion coupled to shear deformation: an analytical model and its verification by molecular dynamics. Phys Rev B 78:064106CrossRef Ivanov VA, Mishin Y (2008) Dynamics of grain boundary motion coupled to shear deformation: an analytical model and its verification by molecular dynamics. Phys Rev B 78:064106CrossRef
21.
Zurück zum Zitat Ovid’ko IA, Sheinerman AG, Aifantis EC (2008) Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater 56:2718–2727CrossRef Ovid’ko IA, Sheinerman AG, Aifantis EC (2008) Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater 56:2718–2727CrossRef
22.
Zurück zum Zitat Rupert TJ, Gianola DS, Gan Y, Hemker KJ (2009) Experimental observations of stress-driven grain boundary migration. Science 326:1686–1690CrossRef Rupert TJ, Gianola DS, Gan Y, Hemker KJ (2009) Experimental observations of stress-driven grain boundary migration. Science 326:1686–1690CrossRef
23.
Zurück zum Zitat Ovid’ko IA, Sheinerman AG, Aifantis EC (2011) Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater 59:5023–5031CrossRef Ovid’ko IA, Sheinerman AG, Aifantis EC (2011) Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater 59:5023–5031CrossRef
24.
Zurück zum Zitat Bobylev SV, Morozov NF, Ovid’ko IA (2010) Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys Rev Lett 105:055504CrossRef Bobylev SV, Morozov NF, Ovid’ko IA (2010) Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys Rev Lett 105:055504CrossRef
25.
Zurück zum Zitat Cheng S, Zhao Y, Wang Y, Li Y, Wang X-L, Liaw PK, Lavernia EJ (2010) Structure modulation driven by cyclic deformation in nanocrystalline NiFe. Phys Rev Lett 104:255501CrossRef Cheng S, Zhao Y, Wang Y, Li Y, Wang X-L, Liaw PK, Lavernia EJ (2010) Structure modulation driven by cyclic deformation in nanocrystalline NiFe. Phys Rev Lett 104:255501CrossRef
26.
Zurück zum Zitat Molodov DA, Gorkaya T, Gottstein G (2011) Dynamics of grain boundaries under applied mechanical stress. J Mater Sci 46:4318–4326CrossRef Molodov DA, Gorkaya T, Gottstein G (2011) Dynamics of grain boundaries under applied mechanical stress. J Mater Sci 46:4318–4326CrossRef
27.
Zurück zum Zitat Mompiou F, Legros M, Caillard D (2011) Direct observation and quantification of grain boundary shear-migration coupling in polycrystalline Al. J Mater Sci 46:4308–4313CrossRef Mompiou F, Legros M, Caillard D (2011) Direct observation and quantification of grain boundary shear-migration coupling in polycrystalline Al. J Mater Sci 46:4308–4313CrossRef
28.
Zurück zum Zitat Bobylev SV, Ovid’ko IA (2012) Grain boundary rotations in solids. Phys Rev Lett 109:175501CrossRef Bobylev SV, Ovid’ko IA (2012) Grain boundary rotations in solids. Phys Rev Lett 109:175501CrossRef
29.
Zurück zum Zitat Trautt ZT, Adland A, Karma A, Mishin Y (2012) Coupled motion of asymmetrical tilt grain boundaries: molecular dynamics and phase field crystal simulations. Acta Mater 60:6528–6546CrossRef Trautt ZT, Adland A, Karma A, Mishin Y (2012) Coupled motion of asymmetrical tilt grain boundaries: molecular dynamics and phase field crystal simulations. Acta Mater 60:6528–6546CrossRef
30.
Zurück zum Zitat Karma A, Trautt ZT, Mishin Y (2012) Relationship between equilibrium fluctuations and shear-coupled motion of grain boundaries. Phys Rev Lett 109:095501CrossRef Karma A, Trautt ZT, Mishin Y (2012) Relationship between equilibrium fluctuations and shear-coupled motion of grain boundaries. Phys Rev Lett 109:095501CrossRef
31.
Zurück zum Zitat Yu M, Fang Q, Feng H, Liu Y (2014) Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids. Acta Mech 225:2005–2019CrossRef Yu M, Fang Q, Feng H, Liu Y (2014) Effect of cooperative grain boundary sliding and migration on dislocation emitting from a semi-elliptical blunt crack tip in nanocrystalline solids. Acta Mech 225:2005–2019CrossRef
32.
Zurück zum Zitat Zhao Y, Fang Q, Liu Y (2014) Effect of cooperative nanograin boundary sliding and migration on dislocation emission from a blunt nanocrack tip in nanocrystalline materials. Philos Mag 94:700–730CrossRef Zhao Y, Fang Q, Liu Y (2014) Effect of cooperative nanograin boundary sliding and migration on dislocation emission from a blunt nanocrack tip in nanocrystalline materials. Philos Mag 94:700–730CrossRef
33.
Zurück zum Zitat Chan T, Zhou Y, Brooks I, Palumbo G, Erb U (2014) Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe. J Mater Sci 49:3847–3859CrossRef Chan T, Zhou Y, Brooks I, Palumbo G, Erb U (2014) Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe. J Mater Sci 49:3847–3859CrossRef
34.
Zurück zum Zitat Gregory F, Murakami K, Bacroix B (2014) The influence of microstructural features of individual grains on texture formation by strain-induced boundary migration in non-oriented electrical steels. J Mater Sci 49:1764–1775CrossRef Gregory F, Murakami K, Bacroix B (2014) The influence of microstructural features of individual grains on texture formation by strain-induced boundary migration in non-oriented electrical steels. J Mater Sci 49:1764–1775CrossRef
35.
Zurück zum Zitat Rios PR (1987) Overview no. 62: a theory for grain boundary pinning by particles. Acta Metall 35:2805–2814CrossRef Rios PR (1987) Overview no. 62: a theory for grain boundary pinning by particles. Acta Metall 35:2805–2814CrossRef
36.
Zurück zum Zitat Manohar PA, Ferry M, Chandra T (1998) Review: five Decades of the Zener Equation. ISIJ International 38:913–924CrossRef Manohar PA, Ferry M, Chandra T (1998) Review: five Decades of the Zener Equation. ISIJ International 38:913–924CrossRef
37.
Zurück zum Zitat Kim G-H, Hong S-M, Lee M-K, Kim S-H, Ioka I, Kim B-S, Kim I-S (2010) Effect of oxide dispersion on dendritic grain growth characteristics of cast aluminum alloy. Mater Trans A 51:1951–1957CrossRef Kim G-H, Hong S-M, Lee M-K, Kim S-H, Ioka I, Kim B-S, Kim I-S (2010) Effect of oxide dispersion on dendritic grain growth characteristics of cast aluminum alloy. Mater Trans A 51:1951–1957CrossRef
38.
Zurück zum Zitat Guo JF, Lio J, Sun CN, Maleksaeedi S, Bi G, Tan MJ, Wei J (2014) Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. Mater Sci Eng, A 602:143–149CrossRef Guo JF, Lio J, Sun CN, Maleksaeedi S, Bi G, Tan MJ, Wei J (2014) Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. Mater Sci Eng, A 602:143–149CrossRef
39.
Zurück zum Zitat Torizuka S, Muramatsu E, Narayana Murty SVS, Nagai K (2006) Microstructure evolution and strength-reduction in area balance of ultrafine-grained steels processed by warm caliber rolling. Scr Mater 55:751–754CrossRef Torizuka S, Muramatsu E, Narayana Murty SVS, Nagai K (2006) Microstructure evolution and strength-reduction in area balance of ultrafine-grained steels processed by warm caliber rolling. Scr Mater 55:751–754CrossRef
40.
Zurück zum Zitat Askari H, Zbib H, Sun X (2013) Multiscale modeling of inclusions and precipitation hardening in metal matrix composites: application to advanced high-strength steels. J Nanomech Micromech 3:24–33CrossRef Askari H, Zbib H, Sun X (2013) Multiscale modeling of inclusions and precipitation hardening in metal matrix composites: application to advanced high-strength steels. J Nanomech Micromech 3:24–33CrossRef
41.
Zurück zum Zitat Davidson DL (1993) Fatigue and fracture toughness of aluminium alloys reinforced with SiC and alumina particles. Composites 24:248–255CrossRef Davidson DL (1993) Fatigue and fracture toughness of aluminium alloys reinforced with SiC and alumina particles. Composites 24:248–255CrossRef
42.
Zurück zum Zitat Feng H, Zhou Y, Dechang J, Qingchang M (2004) Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering. Comp Sci Technol 64:2495–2500CrossRef Feng H, Zhou Y, Dechang J, Qingchang M (2004) Microstructure and mechanical properties of in situ TiB reinforced titanium matrix composites based on Ti–FeMo–B prepared by spark plasma sintering. Comp Sci Technol 64:2495–2500CrossRef
43.
Zurück zum Zitat Li J, Fang Q, Liu Y (2013) Crack interaction with a second phase nanoscale circular inclusion in an elastic matrix. Int J Engn Sci 72:89–97CrossRef Li J, Fang Q, Liu Y (2013) Crack interaction with a second phase nanoscale circular inclusion in an elastic matrix. Int J Engn Sci 72:89–97CrossRef
44.
Zurück zum Zitat Lin Y, Wen H, Li Y, Wen B, Lavernia EJ (2014) Stress-induced grain growth in an ultra-fine grained Al alloy. Metall Mater Trans B 45:795–810CrossRef Lin Y, Wen H, Li Y, Wen B, Lavernia EJ (2014) Stress-induced grain growth in an ultra-fine grained Al alloy. Metall Mater Trans B 45:795–810CrossRef
45.
Zurück zum Zitat Lin Y, Xu B, Feng Y, Lavernia EJ (2014) Stress-induced grain growth during high-temperature deformation of nanostructured Al containing nanoscale oxide particles. J Alloys and Compounds 596:79–85CrossRef Lin Y, Xu B, Feng Y, Lavernia EJ (2014) Stress-induced grain growth during high-temperature deformation of nanostructured Al containing nanoscale oxide particles. J Alloys and Compounds 596:79–85CrossRef
46.
Zurück zum Zitat Dám K, Lejček P (2013) In situ TEM investigation of microstructural behavior of superplastic Al–Mg–Sc alloy. Mater Charact 76:69–75CrossRef Dám K, Lejček P (2013) In situ TEM investigation of microstructural behavior of superplastic Al–Mg–Sc alloy. Mater Charact 76:69–75CrossRef
47.
Zurück zum Zitat Lin Y, Wen H, Li Y, Wen B, Wei L, Lavernia EJ (2015) An analytical model for stress-induced grain growth in the presence of both second-phase particles and solute segregation at grain boundaries. Acta Mater 82:304–315CrossRef Lin Y, Wen H, Li Y, Wen B, Wei L, Lavernia EJ (2015) An analytical model for stress-induced grain growth in the presence of both second-phase particles and solute segregation at grain boundaries. Acta Mater 82:304–315CrossRef
48.
Zurück zum Zitat Zálezák T, Dlouhý A (2012) 3D discrete dislocation dynamics applied to interactions between dislocation walls and particles. Acta Phys Pol, A 122:450–452 Zálezák T, Dlouhý A (2012) 3D discrete dislocation dynamics applied to interactions between dislocation walls and particles. Acta Phys Pol, A 122:450–452
49.
Zurück zum Zitat Gianola DS, Farkas D, Gamarra M, He M (2012) The role of confinement on stress-driven grain boundary motion in nanocrystalline aluminum thin films. J Appl Phys 112:124313CrossRef Gianola DS, Farkas D, Gamarra M, He M (2012) The role of confinement on stress-driven grain boundary motion in nanocrystalline aluminum thin films. J Appl Phys 112:124313CrossRef
50.
Zurück zum Zitat Tengen TB (2012) The response of the statistics of the cumulative features on grains in nanomaterials to different grain growth phenomena. Int J Mech Mater Des 8:101–112CrossRef Tengen TB (2012) The response of the statistics of the cumulative features on grains in nanomaterials to different grain growth phenomena. Int J Mech Mater Des 8:101–112CrossRef
51.
Zurück zum Zitat Aramfard M, Deng C (2014) Influences of triple junctions on stress-assisted grain boundary motion in nanocrystalline materials. Model Simul Mater Sci Eng 22:055012CrossRef Aramfard M, Deng C (2014) Influences of triple junctions on stress-assisted grain boundary motion in nanocrystalline materials. Model Simul Mater Sci Eng 22:055012CrossRef
52.
Zurück zum Zitat Sutton AP, Balluffi RW (1995) Interfaces in Crystalline Materials. Clarendon, Oxford, pp 70–96 Sutton AP, Balluffi RW (1995) Interfaces in Crystalline Materials. Clarendon, Oxford, pp 70–96
53.
Zurück zum Zitat Bollmann W (1984) Triple lines in polycrystalline aggregates as disclinations. Philos Mag A 49:73–79CrossRef Bollmann W (1984) Triple lines in polycrystalline aggregates as disclinations. Philos Mag A 49:73–79CrossRef
54.
Zurück zum Zitat Bollmann W (1988) Triple-line disclinations: representations, continuity and reactions. Philos Mag A 57:637–649CrossRef Bollmann W (1988) Triple-line disclinations: representations, continuity and reactions. Philos Mag A 57:637–649CrossRef
55.
Zurück zum Zitat Ovid’ko IA, Sheinerman AG (2014) Stress-driven migration of low-angle tilt boundaries in nanocrystalline and ultrafine-grained metals containing coherent nanoinclusions. Rev Adv Mater Sci 39:99–107 Ovid’ko IA, Sheinerman AG (2014) Stress-driven migration of low-angle tilt boundaries in nanocrystalline and ultrafine-grained metals containing coherent nanoinclusions. Rev Adv Mater Sci 39:99–107
56.
Zurück zum Zitat Bobylev SV, Gutkin MY, Ovid’ko IA (2004) Decay of low-angle tilt boundaries in deformed nanocrystalline materials. J Phys D 37:269–272CrossRef Bobylev SV, Gutkin MY, Ovid’ko IA (2004) Decay of low-angle tilt boundaries in deformed nanocrystalline materials. J Phys D 37:269–272CrossRef
57.
Zurück zum Zitat Bobylev SV, Gutkin MY, Ovid’ko IA (2004) Transformations of grain boundaries in deformed nanocrystalline materials. Acta Mater 52:3793–3805CrossRef Bobylev SV, Gutkin MY, Ovid’ko IA (2004) Transformations of grain boundaries in deformed nanocrystalline materials. Acta Mater 52:3793–3805CrossRef
58.
Zurück zum Zitat Rzhavtsev EA, Gutkin MY (2015) The dynamics of dislocation wall generation in metals and alloys under shock loading. Scripta Mater 100:102–105CrossRef Rzhavtsev EA, Gutkin MY (2015) The dynamics of dislocation wall generation in metals and alloys under shock loading. Scripta Mater 100:102–105CrossRef
59.
Zurück zum Zitat Bobylev SV, Ovid’ko IA (2015) Stress-driven migration of deformation-distorted grain boundaries in nanomaterials. Acta Mater 88:260–270CrossRef Bobylev SV, Ovid’ko IA (2015) Stress-driven migration of deformation-distorted grain boundaries in nanomaterials. Acta Mater 88:260–270CrossRef
60.
Zurück zum Zitat Bulatov V, Cai W (2006) Computer Simulations of Dislocations. Oxford University Press, Oxford Bulatov V, Cai W (2006) Computer Simulations of Dislocations. Oxford University Press, Oxford
61.
Zurück zum Zitat Groh S, Zbib M (2009) Advances in discrete dislocation dynamics and multiscale modeling. J Ing Mater Tech 131:041209CrossRef Groh S, Zbib M (2009) Advances in discrete dislocation dynamics and multiscale modeling. J Ing Mater Tech 131:041209CrossRef
62.
Zurück zum Zitat Arsenlis T, Bulatov VV, Cai W, Hommes G, Rhee M, Tang M (2011) Documentation of ParaDiS V2. 5. 1 Arsenlis T, Bulatov VV, Cai W, Hommes G, Rhee M, Tang M (2011) Documentation of ParaDiS V2. 5. 1
63.
Zurück zum Zitat Zbib HM (2012) Introduction to discrete dislocation dynamics. In: Sansour C, Skatulla S (eds) CISM Cources and Lectures, vol 537. Springer, New York, pp 289–317 Generalized Continua and Dislocation Theory Zbib HM (2012) Introduction to discrete dislocation dynamics. In: Sansour C, Skatulla S (eds) CISM Cources and Lectures, vol 537. Springer, New York, pp 289–317 Generalized Continua and Dislocation Theory
64.
Zurück zum Zitat Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–288CrossRef Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–288CrossRef
65.
Zurück zum Zitat Hirth JP, Lothe J (1982) Theory of Dislocations. Wiley, New York Hirth JP, Lothe J (1982) Theory of Dislocations. Wiley, New York
Metadaten
Titel
Effects of incoherent nanoinclusions on stress-driven migration of low-angle grain boundaries in nanocomposites
verfasst von
I. A. Ovid’ko
A. G. Sheinerman
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9011-3

Weitere Artikel der Ausgabe 12/2015

Journal of Materials Science 12/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.