Skip to main content
Erschienen in: Tribology Letters 1/2018

01.03.2018 | Original Paper

Effects of Surface Roughness on the Kinetic Friction of SiC Nanowires on SiN Substrates

verfasst von: Hongtao Xie, Shiliang Wang, Han Huang

Erschienen in: Tribology Letters | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effects of surface roughness on the kinetic friction between SiC nanowires and SiN substrates were investigated by use of experimental testing and numerical modelling. The experimental measurements showed that the shear stress, or the frictional force per unit projected contact area, was significantly affected by the substrate roughness, decreased from 0.38 to 0.02 MPa for the increase in roughness from 0.5 to 23 nm. A power-law relationship between frictional stress and surface roughness was found. The numerical modelling based on the lowest energy principle and the Monte Carlo method revealed that the substrate effect was through the variation in the number of contact asperities between a nanowire and a substrate, which was much fewer on a rougher surface. The real contact area also exhibited a power-law dependence on the substrate roughness. The frictional forces normalized using the real contact areas obtained from the simulation were reasonably consistent, varying from 127 to 166 MPa for the five substrates of different roughnesses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kim, H.-J., Nguyen, G.H., Ky, D.L.C., Tran, D.K., Jeon, K.-J., Chung, K.-H.: Static and kinetic friction characteristics of nanowire on different substrates. Appl. Surf. Sci. 379, 452–461 (2016)CrossRef Kim, H.-J., Nguyen, G.H., Ky, D.L.C., Tran, D.K., Jeon, K.-J., Chung, K.-H.: Static and kinetic friction characteristics of nanowire on different substrates. Appl. Surf. Sci. 379, 452–461 (2016)CrossRef
2.
Zurück zum Zitat Kim, H.-J., Kang, K.H., Kim, D.-E.: Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 5, 6081 (2013)CrossRef Kim, H.-J., Kang, K.H., Kim, D.-E.: Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 5, 6081 (2013)CrossRef
3.
Zurück zum Zitat Sergei, V., Boris, P., Sven, O., Mikk, V., Mikk, A., Andris, Š., Krisjanis, S., Leonid, M.D., Rünno, L.: Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations. Nanotechnology 27, 335701 (2016)CrossRef Sergei, V., Boris, P., Sven, O., Mikk, V., Mikk, A., Andris, Š., Krisjanis, S., Leonid, M.D., Rünno, L.: Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations. Nanotechnology 27, 335701 (2016)CrossRef
4.
Zurück zum Zitat Wang, S., Hou, L., Xie, H., Huang, H.: The kinetic friction between a nanowire and a flat substrate measured using nanomanipulation with optical microscopy. Appl. Phys. Lett. 107, 103102 (2015)CrossRef Wang, S., Hou, L., Xie, H., Huang, H.: The kinetic friction between a nanowire and a flat substrate measured using nanomanipulation with optical microscopy. Appl. Phys. Lett. 107, 103102 (2015)CrossRef
5.
Zurück zum Zitat Xie, H., Wang, S., Huang, H.: Kinetic and static friction between alumina nanowires and a Si substrate characterized using a bending manipulation method. J. Mater. Res. 30, 1852–1860 (2015)CrossRef Xie, H., Wang, S., Huang, H.: Kinetic and static friction between alumina nanowires and a Si substrate characterized using a bending manipulation method. J. Mater. Res. 30, 1852–1860 (2015)CrossRef
6.
Zurück zum Zitat Roy, A., Xie, H., Wang, S., Huang, H.: The kinetic friction of ZnO nanowires on amorphous SiO2 and SiN substrates. Appl. Surf. Sci. 389, 797–801 (2016)CrossRef Roy, A., Xie, H., Wang, S., Huang, H.: The kinetic friction of ZnO nanowires on amorphous SiO2 and SiN substrates. Appl. Surf. Sci. 389, 797–801 (2016)CrossRef
7.
Zurück zum Zitat Tran, D.K., Chung, K.H.: Simultaneous measurement of elastic properties and friction characteristics of nanowires using atomic force microscopy. Exp. Mech. 55, 903–915 (2015)CrossRef Tran, D.K., Chung, K.H.: Simultaneous measurement of elastic properties and friction characteristics of nanowires using atomic force microscopy. Exp. Mech. 55, 903–915 (2015)CrossRef
8.
Zurück zum Zitat Tayebi, N., Polycarpou, A.A.: Adhesion and contact modeling and experiments in microelectromechanical systems including roughness effects. Microsyst. Technol. 12, 854–869 (2006)CrossRef Tayebi, N., Polycarpou, A.A.: Adhesion and contact modeling and experiments in microelectromechanical systems including roughness effects. Microsyst. Technol. 12, 854–869 (2006)CrossRef
9.
Zurück zum Zitat Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys.: Condens. Matter 17, R1–R62 (2005) Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys.: Condens. Matter 17, R1–R62 (2005)
10.
Zurück zum Zitat Jacobs, T.D.B., Ryan, K.E., Keating, P.L., Grierson, D.S., Lefever, J.A., Turner, K.T., Harrison, J.A., Carpick, R.W.: The effect of atomic-scale roughness on the adhesion of nanoscale asperities: a combined simulation and experimental investigation. Tribol. Lett. 50, 81–93 (2013)CrossRef Jacobs, T.D.B., Ryan, K.E., Keating, P.L., Grierson, D.S., Lefever, J.A., Turner, K.T., Harrison, J.A., Carpick, R.W.: The effect of atomic-scale roughness on the adhesion of nanoscale asperities: a combined simulation and experimental investigation. Tribol. Lett. 50, 81–93 (2013)CrossRef
11.
Zurück zum Zitat Çolak, A., Wormeester, H., Zandvliet, H.J.W., Poelsema, B.: Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip. Appl. Surf. Sci. 258, 6938–6942 (2012)CrossRef Çolak, A., Wormeester, H., Zandvliet, H.J.W., Poelsema, B.: Surface adhesion and its dependence on surface roughness and humidity measured with a flat tip. Appl. Surf. Sci. 258, 6938–6942 (2012)CrossRef
12.
Zurück zum Zitat Pastewka, L., Robbinsa, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. In: Israelachvili, J.N. (Ed.) Proceedings of the National Academy of Sciences, pp. 3298–3303 (2014) Pastewka, L., Robbinsa, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. In: Israelachvili, J.N. (Ed.) Proceedings of the National Academy of Sciences, pp. 3298–3303 (2014)
13.
Zurück zum Zitat Persson, B.N.J., Scaraggi, M.: Theory of adhesion: Role of surface roughness. J. Chem. Phys. 141, 124701 (2014)CrossRef Persson, B.N.J., Scaraggi, M.: Theory of adhesion: Role of surface roughness. J. Chem. Phys. 141, 124701 (2014)CrossRef
14.
Zurück zum Zitat Maugis, D.: On the contact and adhesion of rough surfaces. J. Adhes. Sci. Technol. 10, 161–175 (1996)CrossRef Maugis, D.: On the contact and adhesion of rough surfaces. J. Adhes. Sci. Technol. 10, 161–175 (1996)CrossRef
15.
Zurück zum Zitat Conache, G., Gray, S., Ribayrol, A., Fröberg, L.E., Samuelson, L., Pettersson, H., Montelius, L.: Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5, 203–207 (2009)CrossRef Conache, G., Gray, S., Ribayrol, A., Fröberg, L.E., Samuelson, L., Pettersson, H., Montelius, L.: Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5, 203–207 (2009)CrossRef
16.
Zurück zum Zitat Dorogin, L.M., Vlassov, S., Polyakov, B., Antsov, M., Lõhmus, R., Kink, I., Romanov, A.E.: Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: experimental methods and modeling. Phys. Status Solidi. B 250, 305–317 (2013)CrossRef Dorogin, L.M., Vlassov, S., Polyakov, B., Antsov, M., Lõhmus, R., Kink, I., Romanov, A.E.: Real-time manipulation of ZnO nanowires on a flat surface employed for tribological measurements: experimental methods and modeling. Phys. Status Solidi. B 250, 305–317 (2013)CrossRef
17.
Zurück zum Zitat Bordag, M., Ribayrol, A., Conache, G., Fröberg, L.E., Gray, S., Samuelson, L., Montelius, L., Pettersson, H.: Shear stress measurements on InAs nanowires by AFM manipulation. Small 3, 1398–1401 (2007)CrossRef Bordag, M., Ribayrol, A., Conache, G., Fröberg, L.E., Gray, S., Samuelson, L., Montelius, L., Pettersson, H.: Shear stress measurements on InAs nanowires by AFM manipulation. Small 3, 1398–1401 (2007)CrossRef
18.
Zurück zum Zitat Chai, Z., Liu, Y., Lu, X., He, D.: Reducing adhesion force by means of atomic layer deposition of ZnO films with nanoscale surface roughness. ACS Appl. Mater. Interfaces 6, 3325–3330 (2014)CrossRef Chai, Z., Liu, Y., Lu, X., He, D.: Reducing adhesion force by means of atomic layer deposition of ZnO films with nanoscale surface roughness. ACS Appl. Mater. Interfaces 6, 3325–3330 (2014)CrossRef
19.
Zurück zum Zitat DelRio, F.W., de Boer, M.P., Knapp, J.A., David Reedy, E., Clews, P.J., Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005)CrossRef DelRio, F.W., de Boer, M.P., Knapp, J.A., David Reedy, E., Clews, P.J., Dunn, M.L.: The role of van der Waals forces in adhesion of micromachined surfaces. Nat. Mater. 4, 629–634 (2005)CrossRef
20.
Zurück zum Zitat Rana, A., Patra, A., Annamalai, M., Srivastava, A., Ghosh, S., Stoerzinger, K., Lee, Y.-L., Prakash, S., Jueyuan, R.Y., Goohpattader, P.S.: Correlation of nanoscale behaviour of forces and macroscale surface wettability. Nanoscale 8, 15597–15603 (2016)CrossRef Rana, A., Patra, A., Annamalai, M., Srivastava, A., Ghosh, S., Stoerzinger, K., Lee, Y.-L., Prakash, S., Jueyuan, R.Y., Goohpattader, P.S.: Correlation of nanoscale behaviour of forces and macroscale surface wettability. Nanoscale 8, 15597–15603 (2016)CrossRef
21.
Zurück zum Zitat Si, L., Wang, X., Xie, G., Sun, N.: Nano adhesion and friction of multi asperity contact: a molecular dynamics simulation study. Surf. Interf. Anal. 47, 919–925 (2015)CrossRef Si, L., Wang, X., Xie, G., Sun, N.: Nano adhesion and friction of multi asperity contact: a molecular dynamics simulation study. Surf. Interf. Anal. 47, 919–925 (2015)CrossRef
22.
Zurück zum Zitat Gao, W., Huang, R.: Effect of surface roughness on adhesion of graphene membranes. J. Phys. D Appl. Phys. 44, 452001 (2011)CrossRef Gao, W., Huang, R.: Effect of surface roughness on adhesion of graphene membranes. J. Phys. D Appl. Phys. 44, 452001 (2011)CrossRef
23.
Zurück zum Zitat Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., Tosatti, E.: Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013)CrossRef Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., Tosatti, E.: Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–552 (2013)CrossRef
24.
Zurück zum Zitat Xu, J., Shingaya, Y., Zhao, Y., Nakayama, T.: In situ, controlled and reproducible attachment of carbon nanotubes onto conductive AFM tips. Appl. Surf. Sci. 335, 11–16 (2015)CrossRef Xu, J., Shingaya, Y., Zhao, Y., Nakayama, T.: In situ, controlled and reproducible attachment of carbon nanotubes onto conductive AFM tips. Appl. Surf. Sci. 335, 11–16 (2015)CrossRef
25.
Zurück zum Zitat Kim, K., Xu, X., Guo, J., Fan, D.L.: Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat. Commun. 5, 18441 (2014) Kim, K., Xu, X., Guo, J., Fan, D.L.: Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat. Commun. 5, 18441 (2014)
26.
Zurück zum Zitat Conache, G., Ribayrol, A., Fröberg, L.E., Borgström, M.T., Samuelson, L., Montelius, L., Pettersson, H., Gray, S.M.: Bias-controlled friction of InAs nanowires on a silicon nitride layer studied by atomic force microscopy. Phys. Rev. B 82, 035403 (2010)CrossRef Conache, G., Ribayrol, A., Fröberg, L.E., Borgström, M.T., Samuelson, L., Montelius, L., Pettersson, H., Gray, S.M.: Bias-controlled friction of InAs nanowires on a silicon nitride layer studied by atomic force microscopy. Phys. Rev. B 82, 035403 (2010)CrossRef
27.
Zurück zum Zitat Polyakov, B., Vlassov, S., Dorogin, L.M., Kulis, P., Kink, I., Lohmus, R.: The effect of substrate roughness on the static friction of CuO nanowires. Surf. Sci. 606, 1393–1399 (2012)CrossRef Polyakov, B., Vlassov, S., Dorogin, L.M., Kulis, P., Kink, I., Lohmus, R.: The effect of substrate roughness on the static friction of CuO nanowires. Surf. Sci. 606, 1393–1399 (2012)CrossRef
28.
Zurück zum Zitat Dorogin, L.M., Polyakov, B., Petruhins, A., Vlassov, S., Lõhmus, R., Kink, I., Romanov, A.E.: Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface. J. Mater. Res. 27, 580–585 (2011)CrossRef Dorogin, L.M., Polyakov, B., Petruhins, A., Vlassov, S., Lõhmus, R., Kink, I., Romanov, A.E.: Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface. J. Mater. Res. 27, 580–585 (2011)CrossRef
29.
Zurück zum Zitat Xie, H., Wang, S., Huang, H.: Characterising the nanoscale kinetic friction using force-equilibrium and energy-conservation models with optical manipulation. Nanotechnology 27, 065709 (2016)CrossRef Xie, H., Wang, S., Huang, H.: Characterising the nanoscale kinetic friction using force-equilibrium and energy-conservation models with optical manipulation. Nanotechnology 27, 065709 (2016)CrossRef
30.
Zurück zum Zitat Strus, M.C., Lahiji, R.R., Ares, P., López, V., Raman, A., Reifenberger, R.: Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy. Nanotechnology 20, 385709 (2009)CrossRef Strus, M.C., Lahiji, R.R., Ares, P., López, V., Raman, A., Reifenberger, R.: Strain energy and lateral friction force distributions of carbon nanotubes manipulated into shapes by atomic force microscopy. Nanotechnology 20, 385709 (2009)CrossRef
31.
Zurück zum Zitat Qin, Q., Zhu, Y.: Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5, 7404–7410 (2011)CrossRef Qin, Q., Zhu, Y.: Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5, 7404–7410 (2011)CrossRef
32.
Zurück zum Zitat Xie, H., Mead, J., Wang, S., Huang, H.: The effect of surface texture on the kinetic friction of a nanowire on a substrate. Scientific report 7, 44907 (2016)CrossRef Xie, H., Mead, J., Wang, S., Huang, H.: The effect of surface texture on the kinetic friction of a nanowire on a substrate. Scientific report 7, 44907 (2016)CrossRef
33.
Zurück zum Zitat Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1997) Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1997)
34.
Zurück zum Zitat Wang, S., Wu, Y., Lin, L., He, Y., Huang, H.: Fracture strain of SiC nanowires and direct evidence of electron-beam induced amorphisation in the strained nanowires. Small 11, 1672–1676 (2015)CrossRef Wang, S., Wu, Y., Lin, L., He, Y., Huang, H.: Fracture strain of SiC nanowires and direct evidence of electron-beam induced amorphisation in the strained nanowires. Small 11, 1672–1676 (2015)CrossRef
35.
Zurück zum Zitat Wang, S., He, Y., Huang, H., Zou, J., Auchterlonie, G.J., Hou, L., Huang, B.: An improved loop test for experimentally approaching the intrinsic strength of alumina nanoscale whiskers. Nanotechnology 24, 285703 (2013)CrossRef Wang, S., He, Y., Huang, H., Zou, J., Auchterlonie, G.J., Hou, L., Huang, B.: An improved loop test for experimentally approaching the intrinsic strength of alumina nanoscale whiskers. Nanotechnology 24, 285703 (2013)CrossRef
36.
Zurück zum Zitat Wang, S., Chen, G., Huang, H., Ma, S., Xu, H., He, Y., Zou, J.: Vapor-phase synthesis, growth mechanism and thickness-independent elastic modulus of single-crystal tungsten nanobelts. Nanotechnology 24, 505705 (2013)CrossRef Wang, S., Chen, G., Huang, H., Ma, S., Xu, H., He, Y., Zou, J.: Vapor-phase synthesis, growth mechanism and thickness-independent elastic modulus of single-crystal tungsten nanobelts. Nanotechnology 24, 505705 (2013)CrossRef
37.
Zurück zum Zitat Polyakov, B., Dorogin, L.M., Lohmus, A., Romanov, A.E., Lohmus, R.: In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope. Appl. Surf. Sci. 258, 3227–3231 (2012)CrossRef Polyakov, B., Dorogin, L.M., Lohmus, A., Romanov, A.E., Lohmus, R.: In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope. Appl. Surf. Sci. 258, 3227–3231 (2012)CrossRef
38.
Zurück zum Zitat Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)CrossRef Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)CrossRef
39.
Zurück zum Zitat Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 295, 300–319 (1966)CrossRef Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 295, 300–319 (1966)CrossRef
40.
Zurück zum Zitat Ford, I.J.: Roughness effect on friction for multi-asperity contact between surfaces. J. Phys. D Appl. Phys. 26, 2219–2225 (1993)CrossRef Ford, I.J.: Roughness effect on friction for multi-asperity contact between surfaces. J. Phys. D Appl. Phys. 26, 2219–2225 (1993)CrossRef
41.
Zurück zum Zitat Ogilvy, J.A.: Numerical simulation of friction between contacting rough surfaces. J. Appl. Phys. 24, 2019–2096 (1991) Ogilvy, J.A.: Numerical simulation of friction between contacting rough surfaces. J. Appl. Phys. 24, 2019–2096 (1991)
42.
Zurück zum Zitat Bergström, L.: Hamaker constants of inorganic materials. Adv. Coll. Interface. Sci. 70, 125–169 (1997)CrossRef Bergström, L.: Hamaker constants of inorganic materials. Adv. Coll. Interface. Sci. 70, 125–169 (1997)CrossRef
43.
Zurück zum Zitat Kim, D., Grobelny, J., Pradeep, N., Cook, R.: Origin of adhesion in humid air. Langmuir 24, 1873–1877 (2008)CrossRef Kim, D., Grobelny, J., Pradeep, N., Cook, R.: Origin of adhesion in humid air. Langmuir 24, 1873–1877 (2008)CrossRef
44.
Zurück zum Zitat Popov, P.D.V.L.: In: Popov, P.D.V.L. (ed.) Contact Mechanics and Friction. Institute of Mechanics, Berlin University of Technology, Berlin (2010)CrossRef Popov, P.D.V.L.: In: Popov, P.D.V.L. (ed.) Contact Mechanics and Friction. Institute of Mechanics, Berlin University of Technology, Berlin (2010)CrossRef
45.
Zurück zum Zitat de Boer, M.P., Michalske, T.A.: Accurate method for determining adhesion of cantilever beams. J. Appl. Phys. 86, 817 (1999)CrossRef de Boer, M.P., Michalske, T.A.: Accurate method for determining adhesion of cantilever beams. J. Appl. Phys. 86, 817 (1999)CrossRef
46.
Zurück zum Zitat Robert, C.P.: Monte Carlo Methods. Wiley Online Library, Hoboken (2004) Robert, C.P.: Monte Carlo Methods. Wiley Online Library, Hoboken (2004)
47.
Zurück zum Zitat Xu, D., Ravi-Chandar, K., Liechti, K.M.: On scale dependence in friction: transition from intimate to monolayer-lubricated contact. J. Colloid Interface Sci. 318, 507–519 (2008)CrossRef Xu, D., Ravi-Chandar, K., Liechti, K.M.: On scale dependence in friction: transition from intimate to monolayer-lubricated contact. J. Colloid Interface Sci. 318, 507–519 (2008)CrossRef
48.
Zurück zum Zitat Daly, M., Cao, C., Sun, H., Sun, Y., Filleter, T., Singh, C.V.: Interfacial shear strength of multilayer graphene oxide films. ACS Nano 10, 1939–1947 (2016)CrossRef Daly, M., Cao, C., Sun, H., Sun, Y., Filleter, T., Singh, C.V.: Interfacial shear strength of multilayer graphene oxide films. ACS Nano 10, 1939–1947 (2016)CrossRef
Metadaten
Titel
Effects of Surface Roughness on the Kinetic Friction of SiC Nanowires on SiN Substrates
verfasst von
Hongtao Xie
Shiliang Wang
Han Huang
Publikationsdatum
01.03.2018
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 1/2018
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-017-0956-z

Weitere Artikel der Ausgabe 1/2018

Tribology Letters 1/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.