Skip to main content
Erschienen in: Experimental Mechanics 5/2015

01.06.2015

Simultaneous Measurement of Elastic Properties and Friction Characteristics of Nanowires Using Atomic Force Microscopy

verfasst von: D. K. Tran, K.-H. Chung

Erschienen in: Experimental Mechanics | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Understanding of the mechanical properties and friction characteristics of nanowires (NW) with a one-dimensional structure is of great importance for the reliability of their applications involving mechanical interactions, such as contact and relative motion during operation. In this work, the lateral manipulation of a SiO NW with a fixed end and a free end on Si (100) substrate was performed using atomic force microscopy (AFM). Considering an AFM tip-NW-substrate contact system, a model based on the beam theory was proposed to simultaneously obtain both the elastic modulus and the friction characteristics of NWs. The results showed that the elastic moduli of the SiO NWs determined from the lateral manipulation are generally similar to those determined from CR-AFM, in the range of the reported values of SiO NWs. The friction per unit length of the SiO NW slid against Si (100) varied from 0.15 N/m to 0.68 N/m. Furthermore, the length dependence of friction was not clearly observed, which suggests that contacting asperities at the nano-scale may not increase significantly as the length of the NW increases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Duan X, Niu C, Sahi V, Chen J, Parce JW, Empedocles S, Goldman JL (2003) High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425:274–278CrossRef Duan X, Niu C, Sahi V, Chen J, Parce JW, Empedocles S, Goldman JL (2003) High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425:274–278CrossRef
2.
Zurück zum Zitat Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistors. Nano Lett 3:149–152CrossRef Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistors. Nano Lett 3:149–152CrossRef
3.
Zurück zum Zitat Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292CrossRef Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292CrossRef
4.
Zurück zum Zitat Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech 23:1294–1301CrossRef Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotech 23:1294–1301CrossRef
5.
Zurück zum Zitat Feng XL, He R, Yang P, Roukes ML (2007) Very high frequency silicon nanowire electromechanical resonators. Nano Lett 7:1953–1959CrossRef Feng XL, He R, Yang P, Roukes ML (2007) Very high frequency silicon nanowire electromechanical resonators. Nano Lett 7:1953–1959CrossRef
6.
Zurück zum Zitat Huang Y, Duan X, Lieber C (2005) Nanowires for integrated multicolor nanophotonics. Small 1:142–147CrossRef Huang Y, Duan X, Lieber C (2005) Nanowires for integrated multicolor nanophotonics. Small 1:142–147CrossRef
7.
Zurück zum Zitat Peng K, Xu Y, Wu Y, Yan Y, Lee S, Zhu J (2005) Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1:1062–1067CrossRef Peng K, Xu Y, Wu Y, Yan Y, Lee S, Zhu J (2005) Aligned single-crystalline Si nanowire arrays for photovoltaic applications. Small 1:1062–1067CrossRef
8.
Zurück zum Zitat Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4:525–529CrossRef Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4:525–529CrossRef
9.
Zurück zum Zitat Paulo AS, Bokor J, Howe RT, He R, Yang P, Gao D, Carraro C, Maboudian R (2005) Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor–liquid-solid method. Appl Phys Lett 87:053111CrossRef Paulo AS, Bokor J, Howe RT, He R, Yang P, Gao D, Carraro C, Maboudian R (2005) Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor–liquid-solid method. Appl Phys Lett 87:053111CrossRef
10.
Zurück zum Zitat Ni H, Li X, Gao H (2006) Elastic modulus of amorphous SiO2 nanowires. Appl Phys Lett 88:043108 Ni H, Li X, Gao H (2006) Elastic modulus of amorphous SiO2 nanowires. Appl Phys Lett 88:043108
11.
Zurück zum Zitat Ngo LT, Almécija D, Sader JE, Daly B, Petkov N, Holmes JD, Erts D, Boland JJ (2006) Ultimate-strength germanium nanowires. Nano Lett 6:2964–2968CrossRef Ngo LT, Almécija D, Sader JE, Daly B, Petkov N, Holmes JD, Erts D, Boland JJ (2006) Ultimate-strength germanium nanowires. Nano Lett 6:2964–2968CrossRef
12.
Zurück zum Zitat Song J, Wang X, Riedo E, Wang ZL (2005) Elastic property of vertically aligned nanowires. Nano Lett 5:1954–1958CrossRef Song J, Wang X, Riedo E, Wang ZL (2005) Elastic property of vertically aligned nanowires. Nano Lett 5:1954–1958CrossRef
13.
Zurück zum Zitat Hoffmann S, Utke I, Moser B, Michler J, Christiansen SH, Schmidt V, Senz S, Werner P, Gösele U, Ballif C (2006) Measurement of the bending strength of vapor–liquid-solid grown silicon nanowires. Nano Lett 6:622–625CrossRef Hoffmann S, Utke I, Moser B, Michler J, Christiansen SH, Schmidt V, Senz S, Werner P, Gösele U, Ballif C (2006) Measurement of the bending strength of vapor–liquid-solid grown silicon nanowires. Nano Lett 6:622–625CrossRef
14.
Zurück zum Zitat Rabe U, Janser K, Arnold W (1996) Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Rev Sci Instrum 67:3281–3293 Rabe U, Janser K, Arnold W (1996) Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Rev Sci Instrum 67:3281–3293
15.
Zurück zum Zitat Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef
16.
Zurück zum Zitat Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett 7:3691–3697CrossRef Stan G, Ciobanu CV, Parthangal PM, Cook RF (2007) Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Lett 7:3691–3697CrossRef
17.
Zurück zum Zitat Stan G, Krylyuk S, Davydov AV, Cook RF (2010) Compressive stress effect on the radial elastic modulus of oxidized Si nanowires. Nano Lett 10:2031–2037CrossRef Stan G, Krylyuk S, Davydov AV, Cook RF (2010) Compressive stress effect on the radial elastic modulus of oxidized Si nanowires. Nano Lett 10:2031–2037CrossRef
18.
Zurück zum Zitat Killgore JP, Geiss RH, Hurley DC (2011) Continuous measurement of atomic force microscope Tip wear by contact resonance force microscopy. Small 7:1018–1022CrossRef Killgore JP, Geiss RH, Hurley DC (2011) Continuous measurement of atomic force microscope Tip wear by contact resonance force microscopy. Small 7:1018–1022CrossRef
19.
Zurück zum Zitat Stan G, Krylyuk S, Davydov AV, Levin I, Cook RF (2012) Ultimate bending strength of Si nanowires. Nano Lett 12:2599–2604CrossRef Stan G, Krylyuk S, Davydov AV, Levin I, Cook RF (2012) Ultimate bending strength of Si nanowires. Nano Lett 12:2599–2604CrossRef
20.
Zurück zum Zitat Namazu T, Isono Y, Tanaka T (2000) Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J Microelectromech Syst 9:450–459CrossRef Namazu T, Isono Y, Tanaka T (2000) Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM. J Microelectromech Syst 9:450–459CrossRef
21.
Zurück zum Zitat Zhu Y, Xu F, Qin Q, Fung WY, Lu W (2009) Mechanical properties of vapor–liquid-solid synthesized silicon nanowires. Nano Lett 9:3934–3939CrossRef Zhu Y, Xu F, Qin Q, Fung WY, Lu W (2009) Mechanical properties of vapor–liquid-solid synthesized silicon nanowires. Nano Lett 9:3934–3939CrossRef
22.
Zurück zum Zitat Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139CrossRef Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139CrossRef
23.
Zurück zum Zitat Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410CrossRef Cuenot S, Frétigny C, Demoustier-Champagne S, Nysten B (2004) Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys Rev B 69:165410CrossRef
24.
Zurück zum Zitat Chen C, Shi Y, Zhang Y, Zhu J, Yan Y (2006) Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett 96:075505CrossRef Chen C, Shi Y, Zhang Y, Zhu J, Yan Y (2006) Size dependence of Young’s modulus in ZnO nanowires. Phys Rev Lett 96:075505CrossRef
25.
Zurück zum Zitat He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8:1798–1802CrossRef He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8:1798–1802CrossRef
26.
Zurück zum Zitat Yun G, Park H (2009) Surface stress effects on the bending properties of fcc metal nanowires. Phys Rev B 79:195421CrossRef Yun G, Park H (2009) Surface stress effects on the bending properties of fcc metal nanowires. Phys Rev B 79:195421CrossRef
27.
Zurück zum Zitat Bordag M, Ribayrol A, Conache G, Fröberg L, Gray S, Samuelson L, Montelius L, Pettersson H (2007) Shear stress measurements on InAs nanowires by AFM manipulation. Small 3:1398–1401CrossRef Bordag M, Ribayrol A, Conache G, Fröberg L, Gray S, Samuelson L, Montelius L, Pettersson H (2007) Shear stress measurements on InAs nanowires by AFM manipulation. Small 3:1398–1401CrossRef
28.
Zurück zum Zitat Conache G, Gray SM, Ribayrol A, Fröberg LE, Samuelson L, Pettersson H, Montelius L (2009) Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5:203–207CrossRef Conache G, Gray SM, Ribayrol A, Fröberg LE, Samuelson L, Pettersson H, Montelius L (2009) Friction measurements of InAs nanowires on silicon nitride by AFM manipulation. Small 5:203–207CrossRef
29.
Zurück zum Zitat Qin Q, Zhu Y (2011) Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5:7404–7410CrossRef Qin Q, Zhu Y (2011) Static friction between silicon nanowires and elastomeric substrates. ACS Nano 5:7404–7410CrossRef
30.
Zurück zum Zitat Polyakov B, Dorogin LM, Vlassov S, Kink I, Lohmus A, Romanov AE, Lohmus R (2011) Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope. Solid State Commun 151:1244–1247CrossRef Polyakov B, Dorogin LM, Vlassov S, Kink I, Lohmus A, Romanov AE, Lohmus R (2011) Real-time measurements of sliding friction and elastic properties of ZnO nanowires inside a scanning electron microscope. Solid State Commun 151:1244–1247CrossRef
31.
Zurück zum Zitat Polyakov B, Dorogin LM, Lohmus A, Romanov AE, Lohmus R (2012) In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope. Appl Surf Sci 258:3227–3231CrossRef Polyakov B, Dorogin LM, Lohmus A, Romanov AE, Lohmus R (2012) In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope. Appl Surf Sci 258:3227–3231CrossRef
32.
Zurück zum Zitat Kim H, Kang KH, Kim D (2013) Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 5:6081–6087CrossRef Kim H, Kang KH, Kim D (2013) Sliding and rolling frictional behavior of a single ZnO nanowire during manipulation with an AFM. Nanoscale 5:6081–6087CrossRef
33.
Zurück zum Zitat Larsen T, Moloni K, Flack F, Eriksson MA, Lagally MG, Black CT (2002) Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes. Appl Phys Lett. doi:10.1063/1.1452782 Larsen T, Moloni K, Flack F, Eriksson MA, Lagally MG, Black CT (2002) Comparison of wear characteristics of etched-silicon and carbon nanotube atomic-force microscopy probes. Appl Phys Lett. doi:10.​1063/​1.​1452782
34.
Zurück zum Zitat Chung K, Kim H, Lin L, Kim D (2008) Tribological characteristics of ZnO nanowires investigated by atomic force microscope. Appl Phys A 92:267–274CrossRef Chung K, Kim H, Lin L, Kim D (2008) Tribological characteristics of ZnO nanowires investigated by atomic force microscope. Appl Phys A 92:267–274CrossRef
35.
Zurück zum Zitat Bhushan B (1999) Principles and applications of tribology. John Wiley & Sons, Inc Bhushan B (1999) Principles and applications of tribology. John Wiley & Sons, Inc
36.
Zurück zum Zitat Carpick RW, Salmeron M (1997) Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem Rev 97:1163–1194CrossRef Carpick RW, Salmeron M (1997) Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem Rev 97:1163–1194CrossRef
37.
Zurück zum Zitat Mo Y, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457:1116–1119CrossRef Mo Y, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457:1116–1119CrossRef
38.
Zurück zum Zitat Varenberg M, Etsion I, Halperin G (2003) An improved wedge calibration method for lateral force in atomic force microscopy. Rev Sci Instrum 74:3362–3367CrossRef Varenberg M, Etsion I, Halperin G (2003) An improved wedge calibration method for lateral force in atomic force microscopy. Rev Sci Instrum 74:3362–3367CrossRef
39.
Zurück zum Zitat Chung KH, Pratt JR, Reitsma MG (2010) Lateral force calibration: accurate procedures for colloidal probe friction measurements in atomic force microscopy. Langmuir 26:1386–1394CrossRef Chung KH, Pratt JR, Reitsma MG (2010) Lateral force calibration: accurate procedures for colloidal probe friction measurements in atomic force microscopy. Langmuir 26:1386–1394CrossRef
40.
Zurück zum Zitat Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873CrossRef Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873CrossRef
41.
Zurück zum Zitat Cain RG, Reitsma MG, Biggs S, Page NW (2001) Quantitative comparison of three calibration techniques for the lateral force microscope. Rev Sci Instrum. doi:10.1063/1.1386631 Cain RG, Reitsma MG, Biggs S, Page NW (2001) Quantitative comparison of three calibration techniques for the lateral force microscope. Rev Sci Instrum. doi:10.​1063/​1.​1386631
42.
Zurück zum Zitat Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102:425–454CrossRef Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Inst Stand Technol 102:425–454CrossRef
43.
Zurück zum Zitat Polyakov B, Dorogin LM, Vlassov S, Kink I, Romanov AE, Lohmus R (2012) Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope. Micron 43:1140–1146CrossRef Polyakov B, Dorogin LM, Vlassov S, Kink I, Romanov AE, Lohmus R (2012) Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope. Micron 43:1140–1146CrossRef
44.
Zurück zum Zitat Dorogin LM, Polyakov B, Petruhins A, Vlassov S, Lõhmus R, Kink I, Romanov AE (2012) Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface. J Mater Res 27:580–585CrossRef Dorogin LM, Polyakov B, Petruhins A, Vlassov S, Lõhmus R, Kink I, Romanov AE (2012) Modeling of kinetic and static friction between an elastically bent nanowire and a flat surface. J Mater Res 27:580–585CrossRef
45.
Zurück zum Zitat Carpick RW, Ogletree DF, Salmeron M (1997) Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70:1548–1550CrossRef Carpick RW, Ogletree DF, Salmeron M (1997) Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett 70:1548–1550CrossRef
46.
Zurück zum Zitat Lantz MA, O’Shea SJ, Hoole ACF, Welland ME (1997) Lateral stiffness of the tip and tip-sample contact in frictional force microscopy. Appl Phys Lett. doi:10.1063/1.118476 MATH Lantz MA, O’Shea SJ, Hoole ACF, Welland ME (1997) Lateral stiffness of the tip and tip-sample contact in frictional force microscopy. Appl Phys Lett. doi:10.​1063/​1.​118476 MATH
47.
Zurück zum Zitat Chung KH, Lee YH, Kim DE (2005) Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip. Ultramicroscopy 102:161–171CrossRef Chung KH, Lee YH, Kim DE (2005) Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip. Ultramicroscopy 102:161–171CrossRef
48.
Zurück zum Zitat Chung KH (2014) Wear characteristics of atomic force microscopy tips: a reivew. Int J Precis Eng Manuf 15:2219–2230CrossRef Chung KH (2014) Wear characteristics of atomic force microscopy tips: a reivew. Int J Precis Eng Manuf 15:2219–2230CrossRef
49.
Zurück zum Zitat Conache G, Gray SM, Ribayrol A, Froberg LE, Samuelson L, Montelius L, Pettersson H (2010) Comparative friction measurements of InAs nanowires on three substrates. J Appl Phys 108:094307CrossRef Conache G, Gray SM, Ribayrol A, Froberg LE, Samuelson L, Montelius L, Pettersson H (2010) Comparative friction measurements of InAs nanowires on three substrates. J Appl Phys 108:094307CrossRef
50.
Zurück zum Zitat Chung K, Lee Y, Kim H, Kim D (2013) Fundamental investigation of the wear progression of silicon atomic force microscope probes. Tribol Lett 52:315–325CrossRef Chung K, Lee Y, Kim H, Kim D (2013) Fundamental investigation of the wear progression of silicon atomic force microscope probes. Tribol Lett 52:315–325CrossRef
Metadaten
Titel
Simultaneous Measurement of Elastic Properties and Friction Characteristics of Nanowires Using Atomic Force Microscopy
verfasst von
D. K. Tran
K.-H. Chung
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 5/2015
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-015-9992-5

Weitere Artikel der Ausgabe 5/2015

Experimental Mechanics 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.