Skip to main content
Erschienen in: Journal of Polymer Research 3/2018

01.03.2018 | ORIGINAL PAPER

Effects of various monomers and micro-structure of polyhydroxyalkanoates on the behavior of endothelial progenitor cells and endothelial cells for vascular tissue engineering

verfasst von: Chao-Ling Yao, Jian-Haw Chen, Cheng-Hung Lee

Erschienen in: Journal of Polymer Research | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cardiovascular diseases are a leading cause of mortality in the world today. Vascular tissue engineering is an important and attractive research issue for the repair and regeneration of blood vessels. Two bio-based polymers, poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), which both belong to the polyhydroxyalkanoate (PHA) family, were used in this study. The aim of this study is to assess the potential application of PHB and PHBV to serve as a scaffold that is seeded with human umbilical vein endothelial cells (HUVECs) or endothelial progenitor cells (EPCs) for vascular tissue engineering. PHA films with various surface characteristics were prepared by solution-casting (surface roughness) and electrospinning (mesh-like structure). First, the mechanical and physical properties of various types of PHA films were analyzed. Then, the PHAs films were examined for cytotoxicity, biocompatibility and proliferation ability using cell lines (3 T3 and L929) and primary cells (HUVECs and EPCs). The cell morphology cultured on the PHA films was observed by fluorescence microscope and scanning electron microscopy. In addition, cultured EPCs on various types of PHA films were analyzed for whether the cells maintained the abilities of Ac-LDL uptake and UEA-1 lectin binding and exhibited specific gene expressions, including VEGFR-2, vWF, CD31, CD34 and CD133. Importantly, the cell retention rate and anti-coagulation ability of HUVECs or EPCs cultured on the various types of PHA films were also evaluated at the indicated time points. Our results showed that PHA films that were prepared using electrospinning methods (Ele-PHB and Ele-PHBV) had good mechanical and physical properties. HUVECs and EPCs can attach and grow on Ele-PHB and Ele-PHBV films without showing cytotoxicity. After a one-week culture, expanded HUVECs or EPCs maintained the correct cell morphologies and exhibited correct cell functions, such as high cell attachment rate and anti-coagulation ability. Taken together, Ele-PHB and Ele-PHBV films were ideal bio-based polymers to combine with HUVECs or EPCs for vascular tissue engineering.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB (2016) Executive Summary: Heart Disease and Stroke Statistics--2016 Update: A Report From the American Heart Association. Circulation 133:447–454 Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB (2016) Executive Summary: Heart Disease and Stroke Statistics--2016 Update: A Report From the American Heart Association. Circulation 133:447–454
2.
Zurück zum Zitat Modine T, Al-Ruzzeh S, Mazrani W, Azeem F, Bustami M, Ilsley C, Amrani M (2002) Use of radial artery graft reduces the morbidity of coronary artery bypass graft surgery in patients aged 65 years and older. Ann Thorac Surg 74:1144–1147CrossRef Modine T, Al-Ruzzeh S, Mazrani W, Azeem F, Bustami M, Ilsley C, Amrani M (2002) Use of radial artery graft reduces the morbidity of coronary artery bypass graft surgery in patients aged 65 years and older. Ann Thorac Surg 74:1144–1147CrossRef
3.
Zurück zum Zitat Bonacchi M, Prifti E, Maiani M, Frati G, Giunti G, Di Eusanio M, Di Eusanio G, Leacche M (2006) Perioperative and clinical-angiographic late outcome of total arterial myocardial revascularization according to different composite original graft techniques. Heart Vessel 21:69–77CrossRef Bonacchi M, Prifti E, Maiani M, Frati G, Giunti G, Di Eusanio M, Di Eusanio G, Leacche M (2006) Perioperative and clinical-angiographic late outcome of total arterial myocardial revascularization according to different composite original graft techniques. Heart Vessel 21:69–77CrossRef
4.
Zurück zum Zitat Cheng A, Slaughter MS (2013) How I choose conduits and configure grafts for my patients-rationales and practices. Ann Cardiothorac Surg 2:527–532 Cheng A, Slaughter MS (2013) How I choose conduits and configure grafts for my patients-rationales and practices. Ann Cardiothorac Surg 2:527–532
5.
Zurück zum Zitat Nataf P, Guettier C, Hadjiisky P, Lechat P, Regan M, Gouezo R, Gerota J, Pavie A, Cabrol C, Gandjbakhch I (1995) Evaluation of cryopreserved arteries as alternative small vessel prostheses. Int J Artif Organs 18:197–202CrossRef Nataf P, Guettier C, Hadjiisky P, Lechat P, Regan M, Gouezo R, Gerota J, Pavie A, Cabrol C, Gandjbakhch I (1995) Evaluation of cryopreserved arteries as alternative small vessel prostheses. Int J Artif Organs 18:197–202CrossRef
6.
Zurück zum Zitat Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402CrossRef Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402CrossRef
7.
Zurück zum Zitat Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430CrossRef Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430CrossRef
8.
Zurück zum Zitat Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102CrossRef Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102CrossRef
9.
Zurück zum Zitat Jang BS, Jung Y, Kwon IK, Mun CH, Kim SH (2012) Fibroblast culture on poly (L-lactide-co-ɛ-caprolactone) an electrospun nanofiber sheet. Macromol Res 20:1234–1242CrossRef Jang BS, Jung Y, Kwon IK, Mun CH, Kim SH (2012) Fibroblast culture on poly (L-lactide-co-ɛ-caprolactone) an electrospun nanofiber sheet. Macromol Res 20:1234–1242CrossRef
10.
Zurück zum Zitat Bonassar LJ, Vacanti CA (1998) Vacanti, Tissue engineering: the first decade and beyond. J Cell Biochem Suppl 30-31:297–303CrossRef Bonassar LJ, Vacanti CA (1998) Vacanti, Tissue engineering: the first decade and beyond. J Cell Biochem Suppl 30-31:297–303CrossRef
11.
Zurück zum Zitat Chiellini E, Solaro R (1996) Biodegradable polymeric materials. Adv Mater 8:305–313CrossRef Chiellini E, Solaro R (1996) Biodegradable polymeric materials. Adv Mater 8:305–313CrossRef
12.
Zurück zum Zitat Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:1466–1486CrossRef Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:1466–1486CrossRef
13.
Zurück zum Zitat Fu X, Wang H (2012) Spatial arrangement of polycaprolactone/collagen nanofiber scaffolds regulates the wound healing related behaviors of human adipose stromal cells. Tissue Eng Part A 18:631–642CrossRef Fu X, Wang H (2012) Spatial arrangement of polycaprolactone/collagen nanofiber scaffolds regulates the wound healing related behaviors of human adipose stromal cells. Tissue Eng Part A 18:631–642CrossRef
14.
Zurück zum Zitat Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377CrossRef Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377CrossRef
15.
Zurück zum Zitat Khoo CP, Pozzilli P, Alison MR (2008) Endothelial progenitor cells and their potential therapeutic applications. Regen Med 3:863–876CrossRef Khoo CP, Pozzilli P, Alison MR (2008) Endothelial progenitor cells and their potential therapeutic applications. Regen Med 3:863–876CrossRef
16.
Zurück zum Zitat Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC (2001) CD34- blood-derived human endothelial cell progenitors. Stem Cells 19:304–312CrossRef Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC (2001) CD34- blood-derived human endothelial cell progenitors. Stem Cells 19:304–312CrossRef
17.
Zurück zum Zitat Rammal H, Harmouch C, Lataillade JJ, Laurent-Maquin D, Labrude P, Menu P, Kerdjoudj H (2014) Stem cells: a promising source for vascular regenerative medicine. Stem Cells Dev 23:2931–2949CrossRef Rammal H, Harmouch C, Lataillade JJ, Laurent-Maquin D, Labrude P, Menu P, Kerdjoudj H (2014) Stem cells: a promising source for vascular regenerative medicine. Stem Cells Dev 23:2931–2949CrossRef
18.
Zurück zum Zitat Paprocka M, Krawczenko A, Dus D, Kantor A, Carreau A, Grillon C, Kieda C (2011) CD133 positive progenitor endothelial cell lines from human cord blood. Cytometry A 79:594–602CrossRef Paprocka M, Krawczenko A, Dus D, Kantor A, Carreau A, Grillon C, Kieda C (2011) CD133 positive progenitor endothelial cell lines from human cord blood. Cytometry A 79:594–602CrossRef
19.
Zurück zum Zitat Duan HX, Cheng LM, Wang J, LS H, GX L (2006) Angiogenic potential difference between two types of endothelial progenitor cells from human umbilical cord blood. Cell Biol Int 30:1018–1027CrossRef Duan HX, Cheng LM, Wang J, LS H, GX L (2006) Angiogenic potential difference between two types of endothelial progenitor cells from human umbilical cord blood. Cell Biol Int 30:1018–1027CrossRef
20.
Zurück zum Zitat Shin JW, Lee DW, Kim MJ, Song KS, Kim HS, Kim HO (2005) Isolation of endothelial progenitor cells from cord blood and induction of differentiation by ex vivo expansion. Yonsei Med J 46:260–267CrossRef Shin JW, Lee DW, Kim MJ, Song KS, Kim HS, Kim HO (2005) Isolation of endothelial progenitor cells from cord blood and induction of differentiation by ex vivo expansion. Yonsei Med J 46:260–267CrossRef
21.
Zurück zum Zitat Krenning G, van Luyn MJ, Harmsen MC (2009) Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med 15:180–189CrossRef Krenning G, van Luyn MJ, Harmsen MC (2009) Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med 15:180–189CrossRef
22.
Zurück zum Zitat Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967CrossRef Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967CrossRef
23.
Zurück zum Zitat Janic B, Guo AM, Iskander AS, Varma NR, Scicli AG, Arbab AS (2010) Human cord blood-derived Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PLoS One 5:e9173CrossRef Janic B, Guo AM, Iskander AS, Varma NR, Scicli AG, Arbab AS (2010) Human cord blood-derived Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PLoS One 5:e9173CrossRef
24.
Zurück zum Zitat Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353CrossRef Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353CrossRef
25.
Zurück zum Zitat Padfield GJ, Newby DE, Mills NL (2010) Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. J Am Coll Cardiol 55:1553–1565CrossRef Padfield GJ, Newby DE, Mills NL (2010) Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. J Am Coll Cardiol 55:1553–1565CrossRef
26.
Zurück zum Zitat Deschaseaux F, Selmani Z, Falcoz PE, Mersin N, Meneveau N, Penfornis A, Kleinclauss C, Chocron S, Etievent JP, Tiberghien P, Kantelip JP, Davani S (2007) Two types of circulating endothelial progenitor cells in patients receiving long term therapy by HMG-CoA reductase inhibitors. Eur J Pharmacol 562:111–118CrossRef Deschaseaux F, Selmani Z, Falcoz PE, Mersin N, Meneveau N, Penfornis A, Kleinclauss C, Chocron S, Etievent JP, Tiberghien P, Kantelip JP, Davani S (2007) Two types of circulating endothelial progenitor cells in patients receiving long term therapy by HMG-CoA reductase inhibitors. Eur J Pharmacol 562:111–118CrossRef
27.
Zurück zum Zitat Smadja DM, Cornet A, Emmerich J, Aiach M, Gaussem P (2007) Endothelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell therapy. Cell Biol Toxicol 23:223–239CrossRef Smadja DM, Cornet A, Emmerich J, Aiach M, Gaussem P (2007) Endothelial progenitor cells: characterization, in vitro expansion, and prospects for autologous cell therapy. Cell Biol Toxicol 23:223–239CrossRef
28.
Zurück zum Zitat Marchand M, Anderson EK, Phadnis SM, Longaker MT, Cooke JP, Chen B, Reijo Pera RA (2014) Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor. Stem Cells Transl Med 3:91–97CrossRef Marchand M, Anderson EK, Phadnis SM, Longaker MT, Cooke JP, Chen B, Reijo Pera RA (2014) Concurrent generation of functional smooth muscle and endothelial cells via a vascular progenitor. Stem Cells Transl Med 3:91–97CrossRef
29.
Zurück zum Zitat Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798CrossRef Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798CrossRef
30.
Zurück zum Zitat Sangsanoh P, Waleetorncheepsawat S, Suwantong O, Wutticharoenmongkol P, Weeranantanapan O, Chuenjitbuntaworn B, Cheepsunthorn P, Pavasant P, Supaphol P (2007) In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules 8:1587–1594CrossRef Sangsanoh P, Waleetorncheepsawat S, Suwantong O, Wutticharoenmongkol P, Weeranantanapan O, Chuenjitbuntaworn B, Cheepsunthorn P, Pavasant P, Supaphol P (2007) In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules 8:1587–1594CrossRef
31.
Zurück zum Zitat Xin X, Hussain M, Mao JJ (2007) Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28:316–325CrossRef Xin X, Hussain M, Mao JJ (2007) Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28:316–325CrossRef
32.
Zurück zum Zitat Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, Xia Y (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30:354–362CrossRef Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, Xia Y (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30:354–362CrossRef
33.
Zurück zum Zitat Zhang X, Xu Y, Thomas V, Bellis SL, Vohra YK (2011) Engineering an antiplatelet adhesion layer on an electrospun scaffold using porcine endothelial progenitor cells. J Biomed Mater Res A 97:145–151CrossRef Zhang X, Xu Y, Thomas V, Bellis SL, Vohra YK (2011) Engineering an antiplatelet adhesion layer on an electrospun scaffold using porcine endothelial progenitor cells. J Biomed Mater Res A 97:145–151CrossRef
34.
Zurück zum Zitat Steinbuchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228CrossRef Steinbuchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228CrossRef
35.
Zurück zum Zitat Pouton CW, Akhtar S (1996) Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv Drug Deliv Rev 18:133–162CrossRef Pouton CW, Akhtar S (1996) Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv Drug Deliv Rev 18:133–162CrossRef
36.
Zurück zum Zitat Yu BY, Chen PY, Sun YM, Lee YT, Young TH (2012) Response of human mesenchymal stem cells (hMSCs) to the topographic variation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) films. J Biomat Sci-Polym E 23:1–26CrossRef Yu BY, Chen PY, Sun YM, Lee YT, Young TH (2012) Response of human mesenchymal stem cells (hMSCs) to the topographic variation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) films. J Biomat Sci-Polym E 23:1–26CrossRef
37.
Zurück zum Zitat Yu YB, Chen PY, Sun YM, Lee YT, Young TH (2010) Effects of the surface characteristics of polyhydroxyalkanoates on the metabolic activities and morphology of human mesenchymal stem cells. J Biomat Sci-Polym E 21:17–36CrossRef Yu YB, Chen PY, Sun YM, Lee YT, Young TH (2010) Effects of the surface characteristics of polyhydroxyalkanoates on the metabolic activities and morphology of human mesenchymal stem cells. J Biomat Sci-Polym E 21:17–36CrossRef
38.
Zurück zum Zitat Dong Y, Li P, Chen CB, Wang ZH, Ma P, Chen GQ (2010) The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials 31:8921–8930CrossRef Dong Y, Li P, Chen CB, Wang ZH, Ma P, Chen GQ (2010) The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials 31:8921–8930CrossRef
39.
Zurück zum Zitat Wang YW, Yang F, Wu Q, Cheng YC, PH Y, Chen J, Chen GQ (2005) Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials 26:755–761CrossRef Wang YW, Yang F, Wu Q, Cheng YC, PH Y, Chen J, Chen GQ (2005) Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials 26:755–761CrossRef
40.
Zurück zum Zitat Wang YW, Wu Q, Chen GQ (2004) Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials 25:669–675CrossRef Wang YW, Wu Q, Chen GQ (2004) Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials 25:669–675CrossRef
41.
Zurück zum Zitat Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW (2009) PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials 30:4401–4406CrossRef Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW (2009) PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials 30:4401–4406CrossRef
42.
Zurück zum Zitat BY Y, Chen PY, Sun YM, Lee YT, Young TH (2008) The behaviors of human mesenchymal stem cells on the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) membranes. Desalination 234:204–211CrossRef BY Y, Chen PY, Sun YM, Lee YT, Young TH (2008) The behaviors of human mesenchymal stem cells on the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) membranes. Desalination 234:204–211CrossRef
43.
Zurück zum Zitat Li H, Du R, Chang J (2005) Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass. J Biomater Appl 20:137–155CrossRef Li H, Du R, Chang J (2005) Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass. J Biomater Appl 20:137–155CrossRef
44.
Zurück zum Zitat Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578CrossRef Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578CrossRef
45.
Zurück zum Zitat Wollenweber M, Domaschke H, Hanke T, Boxberger S, Schmack G, Gliesche K, Scharnweber D, Worch H (2006) Mimicked bioartificial matrix containing chondroitin sulphate on a textile scaffold of poly(3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng 12:345–359CrossRef Wollenweber M, Domaschke H, Hanke T, Boxberger S, Schmack G, Gliesche K, Scharnweber D, Worch H (2006) Mimicked bioartificial matrix containing chondroitin sulphate on a textile scaffold of poly(3-hydroxybutyrate) alters the differentiation of adult human mesenchymal stem cells. Tissue Eng 12:345–359CrossRef
46.
Zurück zum Zitat XH Q, Wu Q, Zhang KY, Chen GQ (2006) In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials 27:3540–3548 XH Q, Wu Q, Zhang KY, Chen GQ (2006) In vivo studies of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) based polymers: biodegradation and tissue reactions. Biomaterials 27:3540–3548
47.
Zurück zum Zitat Li J, Yun H, Gong Y, Zhao N, Zhang X (2005) Effects of surface modification of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) on physicochemical properties and on interactions with MC3T3-E1 cells. J Biomed Mater Res A 75:985–998CrossRef Li J, Yun H, Gong Y, Zhao N, Zhang X (2005) Effects of surface modification of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) on physicochemical properties and on interactions with MC3T3-E1 cells. J Biomed Mater Res A 75:985–998CrossRef
48.
Zurück zum Zitat XH Q, Wu Q, Liang J, Qu X, Wang SG, Chen GQ (2005) Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials 26:6991–7001CrossRef XH Q, Wu Q, Liang J, Qu X, Wang SG, Chen GQ (2005) Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials 26:6991–7001CrossRef
49.
Zurück zum Zitat Qian L, Saltzman WM (2004) Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification. Biomaterials 25:1331–1337CrossRef Qian L, Saltzman WM (2004) Improving the expansion and neuronal differentiation of mesenchymal stem cells through culture surface modification. Biomaterials 25:1331–1337CrossRef
50.
Zurück zum Zitat Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, Gillebert TC, Plum J, Vandekerckhove B (2007) Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 27:1572–1579CrossRef Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, Gillebert TC, Plum J, Vandekerckhove B (2007) Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol 27:1572–1579CrossRef
51.
Zurück zum Zitat Joung YK, Hwang IK, Park KD, Lee CW (2010) CD34 monoclonal antibody-immobilized electrospun polyurethane for the endothelialization of vascular grafts. Macromol Res 18:904–912CrossRef Joung YK, Hwang IK, Park KD, Lee CW (2010) CD34 monoclonal antibody-immobilized electrospun polyurethane for the endothelialization of vascular grafts. Macromol Res 18:904–912CrossRef
52.
Zurück zum Zitat Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N (2006) CD34−/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res 98:e20–e25CrossRef Friedrich EB, Walenta K, Scharlau J, Nickenig G, Werner N (2006) CD34−/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circ Res 98:e20–e25CrossRef
53.
Zurück zum Zitat Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958 Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S (2000) Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 95:952–958
54.
Zurück zum Zitat Gaffney J, West D, Arnold F, Sattar A, Kumar S (1985) Differences in the uptake of modified low density lipoproteins by tissue cultured endothelial cells. J Cell Sci 79:317–325 Gaffney J, West D, Arnold F, Sattar A, Kumar S (1985) Differences in the uptake of modified low density lipoproteins by tissue cultured endothelial cells. J Cell Sci 79:317–325
55.
Zurück zum Zitat Caliceti C, Rizzo P, Ferrari R, Fortini F, Aquila G, Leoncini E, Zambonin L, Rizzo B, Calabria D, Simoni P, Mirasoli M, Guardigli M, Hrelia S, Roda A, Cicero AFG (2017) Novel role of the nutraceutical bioactive compound berberine in lectin-like OxLDL receptor 1-mediated endothelial dysfunction in comparison to lovastatin. Nutr Metab Cardiovasc Dis 27:552–563CrossRef Caliceti C, Rizzo P, Ferrari R, Fortini F, Aquila G, Leoncini E, Zambonin L, Rizzo B, Calabria D, Simoni P, Mirasoli M, Guardigli M, Hrelia S, Roda A, Cicero AFG (2017) Novel role of the nutraceutical bioactive compound berberine in lectin-like OxLDL receptor 1-mediated endothelial dysfunction in comparison to lovastatin. Nutr Metab Cardiovasc Dis 27:552–563CrossRef
56.
Zurück zum Zitat Huang W, Li Q, Chen X, Lin Y, Xue J, Cai Z, Zhang W, Wang H, Jin K, Shao B (2017) Soluble lectin-like oxidized low-density lipoprotein receptor-1 as a novel biomarker for large-artery atherosclerotic stroke. Int J Neurosci 4:1–6 Huang W, Li Q, Chen X, Lin Y, Xue J, Cai Z, Zhang W, Wang H, Jin K, Shao B (2017) Soluble lectin-like oxidized low-density lipoprotein receptor-1 as a novel biomarker for large-artery atherosclerotic stroke. Int J Neurosci 4:1–6
57.
Zurück zum Zitat Camci-Unal G, Nichol JW, Bae H, Tekin H, Bischoff J, Khademhosseini A (2013) Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J Tissue Eng Regen Med 7:337–347CrossRef Camci-Unal G, Nichol JW, Bae H, Tekin H, Bischoff J, Khademhosseini A (2013) Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J Tissue Eng Regen Med 7:337–347CrossRef
58.
Zurück zum Zitat Zonari A, Novikoff S, Electo NR, Breyner NM, Gomes DA, Martins A, Neves NM, Reis RL, Goes AM (2012) Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh. PLoS One 7:e3542261CrossRef Zonari A, Novikoff S, Electo NR, Breyner NM, Gomes DA, Martins A, Neves NM, Reis RL, Goes AM (2012) Endothelial differentiation of human stem cells seeded onto electrospun polyhydroxybutyrate/polyhydroxybutyrate-co-hydroxyvalerate fiber mesh. PLoS One 7:e3542261CrossRef
59.
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef
60.
Zurück zum Zitat Nerem RM, Sambanis A (1993) Tissue engineering: from biology to biological substitutes. Tissue Eng 1:3–13CrossRef Nerem RM, Sambanis A (1993) Tissue engineering: from biology to biological substitutes. Tissue Eng 1:3–13CrossRef
61.
Zurück zum Zitat Vermeulen P, Dickens S, Degezelle K, Van den Berge S, Hendrickx B, Vranckx JJ (2009) A plasma-based biomatrix mixed with endothelial progenitor cells and keratinocytes promotes matrix formation, angiogenesis, and reepithelialization in full-thickness wounds. Tissue Eng Part A 15:1533–1542CrossRef Vermeulen P, Dickens S, Degezelle K, Van den Berge S, Hendrickx B, Vranckx JJ (2009) A plasma-based biomatrix mixed with endothelial progenitor cells and keratinocytes promotes matrix formation, angiogenesis, and reepithelialization in full-thickness wounds. Tissue Eng Part A 15:1533–1542CrossRef
62.
Zurück zum Zitat Glowacki J, Mizuno S (2008) Collagen scaffolds for tissue engineering. Biopolymers 89:338–344CrossRef Glowacki J, Mizuno S (2008) Collagen scaffolds for tissue engineering. Biopolymers 89:338–344CrossRef
63.
Zurück zum Zitat Yue XS, Murakami Y, Tamai T, Nagaoka M, Cho CS, Ito Y, Akaike T (2010) A fusion protein N-cadherin-Fc as an artificial extracellular matrix surface for maintenance of stem cell features. Biomaterials 31:5287–5296CrossRef Yue XS, Murakami Y, Tamai T, Nagaoka M, Cho CS, Ito Y, Akaike T (2010) A fusion protein N-cadherin-Fc as an artificial extracellular matrix surface for maintenance of stem cell features. Biomaterials 31:5287–5296CrossRef
64.
Zurück zum Zitat Navarro-Sobrino M, Rosell A, Hernandez-Guillamon M, Penalba A, Ribo M, Alvarez-Sabin J, Montaner J (2010) Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke. Microvasc Res 80:317–323CrossRef Navarro-Sobrino M, Rosell A, Hernandez-Guillamon M, Penalba A, Ribo M, Alvarez-Sabin J, Montaner J (2010) Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke. Microvasc Res 80:317–323CrossRef
65.
Zurück zum Zitat Felice F, Lucchesi D, di Stefano R, Barsotti MC, Storti E, Penno G, Balbarini A, Del Prato S, Pucci L (2010) Oxidative stress in response to high glucose levels in endothelial cells and in endothelial progenitor cells: evidence for differential glutathione peroxidase-1 expression. Microvasc Res 80:332–338CrossRef Felice F, Lucchesi D, di Stefano R, Barsotti MC, Storti E, Penno G, Balbarini A, Del Prato S, Pucci L (2010) Oxidative stress in response to high glucose levels in endothelial cells and in endothelial progenitor cells: evidence for differential glutathione peroxidase-1 expression. Microvasc Res 80:332–338CrossRef
66.
Zurück zum Zitat Yi K, Yu M, Wu L, Tan X (2012) Effects of urotensin II on functional activity of late endothelial progenitor cells. Peptides 33:87–91CrossRef Yi K, Yu M, Wu L, Tan X (2012) Effects of urotensin II on functional activity of late endothelial progenitor cells. Peptides 33:87–91CrossRef
67.
Zurück zum Zitat Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A, Kobayashi A, Yamaguchi T, Abe M, Amagasa T, Morita I (2008) A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res 314:430–440CrossRef Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A, Kobayashi A, Yamaguchi T, Abe M, Amagasa T, Morita I (2008) A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res 314:430–440CrossRef
68.
Zurück zum Zitat Caiado F, Carvalho T, Silva F, Castro C, Clode N, Dye JF, Dias S (2011) The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. Biomaterials 32:7096–7105CrossRef Caiado F, Carvalho T, Silva F, Castro C, Clode N, Dye JF, Dias S (2011) The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. Biomaterials 32:7096–7105CrossRef
Metadaten
Titel
Effects of various monomers and micro-structure of polyhydroxyalkanoates on the behavior of endothelial progenitor cells and endothelial cells for vascular tissue engineering
verfasst von
Chao-Ling Yao
Jian-Haw Chen
Cheng-Hung Lee
Publikationsdatum
01.03.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 3/2018
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-017-1341-1

Weitere Artikel der Ausgabe 3/2018

Journal of Polymer Research 3/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.