Skip to main content
Erschienen in: Journal of Scientific Computing 3/2021

01.06.2021

Efficient, Positive, and Energy Stable Schemes for Multi-D Poisson–Nernst–Planck Systems

verfasst von: Hailiang Liu, Wumaier Maimaitiyiming

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we design, analyze, and numerically validate positive and energy-dissipating schemes for solving the time-dependent multi-dimensional system of Poisson–Nernst–Planck equations, which has found much use in the modeling of biological membrane channels and semiconductor devices. The semi-implicit time discretization based on a reformulation of the system gives a well-posed elliptic system, which is shown to preserve solution positivity for arbitrary time steps. The first order (in time) fully-discrete scheme is shown to preserve solution positivity and mass conservation unconditionally, and energy dissipation with only a mild O(1) time step restriction. The scheme is also shown to preserve the steady-states. For the fully second order (in both time and space) scheme with large time steps, solution positivity is restored by a local scaling limiter, which is shown to maintain the spatial accuracy. These schemes are easy to implement. Several three-dimensional numerical examples verify our theoretical findings and demonstrate the accuracy, efficiency, and robustness of the proposed schemes, as well as the fast approach to steady-states.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bazant, M.Z., Thornton, K., Ajdari, A.: Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E. 70, 021506 (2004)CrossRef Bazant, M.Z., Thornton, K., Ajdari, A.: Diffuse-charge dynamics in electrochemical systems. Phys. Rev. E. 70, 021506 (2004)CrossRef
2.
Zurück zum Zitat Buet, C., Dellacheris, S.: On the Chang and Cooper scheme applied to a linear Fokker–Planck equation. Commun. Math. Sci. 8, 1079–1090 (2010)MathSciNetMATHCrossRef Buet, C., Dellacheris, S.: On the Chang and Cooper scheme applied to a linear Fokker–Planck equation. Commun. Math. Sci. 8, 1079–1090 (2010)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Burger, M., Schlake, B., Wolfram, M.-T.: Nonlinear Poisson–Nernst-Planck equations for ion flux through confined geometries. Nonlinearity 25, 961–990 (2012)MathSciNetMATHCrossRef Burger, M., Schlake, B., Wolfram, M.-T.: Nonlinear Poisson–Nernst-Planck equations for ion flux through confined geometries. Nonlinearity 25, 961–990 (2012)MathSciNetMATHCrossRef
4.
5.
Zurück zum Zitat Chen, D., Eisenberg, R.: Poisson–Nernst–Planck (PNP) theory of open ionic channels. Biophys. J. 64, A22 (1993) Chen, D., Eisenberg, R.: Poisson–Nernst–Planck (PNP) theory of open ionic channels. Biophys. J. 64, A22 (1993)
6.
Zurück zum Zitat Ding, J., Wang, Z., Zhou, S.: Positivity preserving finite difference methods for Poisson–Nernst–Planck equations with steric interactions: application to slit-shaped nanopore conductance. J. Comput. Phys. 397, 108864 (2019)MathSciNetMATHCrossRef Ding, J., Wang, Z., Zhou, S.: Positivity preserving finite difference methods for Poisson–Nernst–Planck equations with steric interactions: application to slit-shaped nanopore conductance. J. Comput. Phys. 397, 108864 (2019)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Eisenberg, B.: Ionic channels in biological membranes—electrostatic analysis of a natural nanotube. Contemp. Phys. 39(6), 447–466 (1998)CrossRef Eisenberg, B.: Ionic channels in biological membranes—electrostatic analysis of a natural nanotube. Contemp. Phys. 39(6), 447–466 (1998)CrossRef
8.
Zurück zum Zitat Flavell, A., Machen, M., Eisenberg, R., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson–Nernst–Planck equations. J. Comput. Electron. 15, 1–15 (2013) Flavell, A., Machen, M., Eisenberg, R., Kabre, J., Liu, C., Li, X.: A conservative finite difference scheme for Poisson–Nernst–Planck equations. J. Comput. Electron. 15, 1–15 (2013)
9.
Zurück zum Zitat Flavell, A., Kabre, J., Li, X.: An energy-preserving discretization for the Poisson–Nernst–Planck equations. J. Comput. Electron. 16, 431–441 (2017)CrossRef Flavell, A., Kabre, J., Li, X.: An energy-preserving discretization for the Poisson–Nernst–Planck equations. J. Comput. Electron. 16, 431–441 (2017)CrossRef
10.
Zurück zum Zitat Gao, H., He, D.: Linearized conservative finite element methods for the Nernst–Planck–Poisson equations. J. Sci. Comput. 72, 1269–1289 (2017)MathSciNetMATHCrossRef Gao, H., He, D.: Linearized conservative finite element methods for the Nernst–Planck–Poisson equations. J. Sci. Comput. 72, 1269–1289 (2017)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Gardner, C., Nonner, W., Eisenberg, R.S.: Electrodiffusion model simulation of ionic channels: 1d simulation. J. Comput. Electron. 3, 25–31 (2004)CrossRef Gardner, C., Nonner, W., Eisenberg, R.S.: Electrodiffusion model simulation of ionic channels: 1d simulation. J. Comput. Electron. 3, 25–31 (2004)CrossRef
12.
Zurück zum Zitat Gillespie, D., Nonner, W., Eisenberg, R.S.: Density functional theory of charged hard-sphere fluids. Phys. Rev. E. 68, 0313503 (2003)CrossRef Gillespie, D., Nonner, W., Eisenberg, R.S.: Density functional theory of charged hard-sphere fluids. Phys. Rev. E. 68, 0313503 (2003)CrossRef
13.
Zurück zum Zitat Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Grundlagen der mathematischen Wissenschaften, Vol. 224, Springer, Berlin (1997) Gilbarg, D., Trudinger, N. S.: Elliptic Partial Differential Equations of Second Order. Grundlagen der mathematischen Wissenschaften, Vol. 224, Springer, Berlin (1997)
14.
Zurück zum Zitat He, D., Pan, K.: An energy preserving finite difference scheme for the Poisson–Nernst–Planck system. Appl. Math. Comput. 287, 214–223 (2016)MathSciNetMATH He, D., Pan, K.: An energy preserving finite difference scheme for the Poisson–Nernst–Planck system. Appl. Math. Comput. 287, 214–223 (2016)MathSciNetMATH
15.
Zurück zum Zitat He, D., Pan, K., Yue, X.: A positivity preserving and free energy dissipative difference scheme for the Poisson–Nernst–Planck system. J. Sci. Comput. 81, 436–458 (2019)MathSciNetMATHCrossRef He, D., Pan, K., Yue, X.: A positivity preserving and free energy dissipative difference scheme for the Poisson–Nernst–Planck system. J. Sci. Comput. 81, 436–458 (2019)MathSciNetMATHCrossRef
16.
Zurück zum Zitat Hu, J.W., Huang, X.D.: A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations. Preprint (2019) Hu, J.W., Huang, X.D.: A fully discrete positivity-preserving and energy-dissipative finite difference scheme for Poisson–Nernst–Planck equations. Preprint (2019)
17.
Zurück zum Zitat Hyon, Y., Eisenberg, B., Liu, C.: A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9(2), 459–475 (2011)MathSciNetMATHCrossRef Hyon, Y., Eisenberg, B., Liu, C.: A mathematical model for the hard sphere repulsion in ionic solutions. Commun. Math. Sci. 9(2), 459–475 (2011)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Jerome, J.W.: Consistency of semiconductor modeling: an existence/stability analysis for the sationary Van Roosbroeck system. SIAM J. Appl. Math. 45(4), 565–590 (1985)MathSciNetMATHCrossRef Jerome, J.W.: Consistency of semiconductor modeling: an existence/stability analysis for the sationary Van Roosbroeck system. SIAM J. Appl. Math. 45(4), 565–590 (1985)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Ji, S., Liu, W.: Poisson–Nernst–Planck systems for ion flow with density functional theory for hard-sphere potential: I–V relations and critical potentials. Part I: analysis. J. Dyn. Differ. Equ. 24, 955–983 (2012)MathSciNetMATHCrossRef Ji, S., Liu, W.: Poisson–Nernst–Planck systems for ion flow with density functional theory for hard-sphere potential: I–V relations and critical potentials. Part I: analysis. J. Dyn. Differ. Equ. 24, 955–983 (2012)MathSciNetMATHCrossRef
20.
21.
Zurück zum Zitat Liu, W.: Geometric singular perturbation approach to steady state Poisson–Nernst–Planck systems. SIAM J. Appl. Math. 65(3), 754–766 (2005)MathSciNetMATHCrossRef Liu, W.: Geometric singular perturbation approach to steady state Poisson–Nernst–Planck systems. SIAM J. Appl. Math. 65(3), 754–766 (2005)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Liu, H., Maimaitiyiming, W.: Energy stable and unconditional positive schemes for a reduced Poisson–Nernst–Planck system. Commun. Comput. Phys. 7(5), 1505–1529 (2020) Liu, H., Maimaitiyiming, W.: Energy stable and unconditional positive schemes for a reduced Poisson–Nernst–Planck system. Commun. Comput. Phys. 7(5), 1505–1529 (2020)
23.
Zurück zum Zitat Liu, H., Maimaitiyiming, W.: Positive and free energy satisfying schemes for diffusion with interaction potentials. J. Comput. Phys. 419, 109483 (2020)MathSciNetCrossRef Liu, H., Maimaitiyiming, W.: Positive and free energy satisfying schemes for diffusion with interaction potentials. J. Comput. Phys. 419, 109483 (2020)MathSciNetCrossRef
24.
Zurück zum Zitat Liu, H., Yu, H.: An entropy satisfying conservative method for the Fokker–Planck equation of the finitely extensible nonlinear elastic dumbbell model. SIAM J. Numer. Anal. 50(3), 1207–1239 (2012)MathSciNetMATHCrossRef Liu, H., Yu, H.: An entropy satisfying conservative method for the Fokker–Planck equation of the finitely extensible nonlinear elastic dumbbell model. SIAM J. Numer. Anal. 50(3), 1207–1239 (2012)MathSciNetMATHCrossRef
25.
Zurück zum Zitat Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268, 363–376 (2014)MathSciNetMATHCrossRef Liu, H., Wang, Z.: A free energy satisfying finite difference method for Poisson–Nernst–Planck equations. J. Comput. Phys. 268, 363–376 (2014)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Liu, H., Wang, Z.: A free energy satisfying discontinues Galerkin method for one-dimensional Poisson–Nernst–Planck systems. J. Comput. Phys. 328, 413–437 (2017)MathSciNetMATHCrossRef Liu, H., Wang, Z.: A free energy satisfying discontinues Galerkin method for one-dimensional Poisson–Nernst–Planck systems. J. Comput. Phys. 328, 413–437 (2017)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Liu, X., Qiao, Y., Lu, B.: Analysis of the mean field free energy functional of electrolyte solution with non-homogenous boundary conditions and the generalized PB/PNP equations with inhomogeneous dielectric permittivity. SIAM J. Appl. Math. 78(2), 1131–1154 (2018)MathSciNetMATHCrossRef Liu, X., Qiao, Y., Lu, B.: Analysis of the mean field free energy functional of electrolyte solution with non-homogenous boundary conditions and the generalized PB/PNP equations with inhomogeneous dielectric permittivity. SIAM J. Appl. Math. 78(2), 1131–1154 (2018)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Lu, B., Holst, M.J., McCammon, J.A., Zhou, Y.: Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: finite element solutions. J. Comput. Phys. 229, 6979–6994 (2010)MathSciNetMATHCrossRef Lu, B., Holst, M.J., McCammon, J.A., Zhou, Y.: Poisson–Nernst–Planck equations for simulating biomolecular diffusion–reaction processes I: finite element solutions. J. Comput. Phys. 229, 6979–6994 (2010)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Berlin (1990)MATHCrossRef Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, Berlin (1990)MATHCrossRef
30.
Zurück zum Zitat Meng, D., Zheng, B., Lin, G., Sushko, M.L.: Numerical solution of 3D Poisson–Nernst–Planck equations coupled with classical density functional theory for modeling ion and electron transport in a confined environment. Commun. Comput. Phys. 16, 1298–1322 (2014)MathSciNetMATHCrossRef Meng, D., Zheng, B., Lin, G., Sushko, M.L.: Numerical solution of 3D Poisson–Nernst–Planck equations coupled with classical density functional theory for modeling ion and electron transport in a confined environment. Commun. Comput. Phys. 16, 1298–1322 (2014)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Metti, M.S., Xu, J., Liu, C.: Energetically stable discretizations for charge transport and electrokinetic models. J. Comput. Phys. 306, 1–18 (2016)MathSciNetMATHCrossRef Metti, M.S., Xu, J., Liu, C.: Energetically stable discretizations for charge transport and electrokinetic models. J. Comput. Phys. 306, 1–18 (2016)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Newman, J.: Electrochemical Systems. Prentice Hall, New York (1991) Newman, J.: Electrochemical Systems. Prentice Hall, New York (1991)
33.
Zurück zum Zitat Park, J.-H., Jerome, J.: Qualitative properties of steady-state Poisson–Nernst–Planck systems: mathematical study. SIAM J. Appl. Math. 57(3), 609–630 (1997)MathSciNetMATHCrossRef Park, J.-H., Jerome, J.: Qualitative properties of steady-state Poisson–Nernst–Planck systems: mathematical study. SIAM J. Appl. Math. 57(3), 609–630 (1997)MathSciNetMATHCrossRef
34.
Zurück zum Zitat Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, New York (1967)MATH Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice-Hall, New York (1967)MATH
35.
Zurück zum Zitat Qian, Y., Wang, Z., Zhou, S.: A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker–Planck equation. J. Comput. Phys. 386, 22–36 (2019)MathSciNetMATHCrossRef Qian, Y., Wang, Z., Zhou, S.: A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker–Planck equation. J. Comput. Phys. 386, 22–36 (2019)MathSciNetMATHCrossRef
37.
Zurück zum Zitat Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, New York (1984)CrossRef Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, New York (1984)CrossRef
38.
Zurück zum Zitat Siddiqua, F., Wang, Z., Zhou, S.: A modified Poisson–Nernst-Planck model with excluded volume effect: theory and numerical implementation. Commun. Math. Sci. 16(1), 251–271 (2018)MathSciNetMATHCrossRef Siddiqua, F., Wang, Z., Zhou, S.: A modified Poisson–Nernst-Planck model with excluded volume effect: theory and numerical implementation. Commun. Math. Sci. 16(1), 251–271 (2018)MathSciNetMATHCrossRef
39.
Zurück zum Zitat Sokalski, T., Lewenstam, A.: Application of Nernst–Planck and Poisson equations for interpretation of liquid-junction and membrane potentials in realtime and space domains. Electrochem. Commun. 3(3), 107–112 (2001)CrossRef Sokalski, T., Lewenstam, A.: Application of Nernst–Planck and Poisson equations for interpretation of liquid-junction and membrane potentials in realtime and space domains. Electrochem. Commun. 3(3), 107–112 (2001)CrossRef
40.
Zurück zum Zitat Sokalski, T., Lingenfelter, P., Lewenstam, A.: Numerical solution of the coupled Nernst-Planck and Poisson equations for liquid junction and ion selective membrane potentials. J. Phys. Chem. B 107(11), 2443–2452 (2003)CrossRef Sokalski, T., Lingenfelter, P., Lewenstam, A.: Numerical solution of the coupled Nernst-Planck and Poisson equations for liquid junction and ion selective membrane potentials. J. Phys. Chem. B 107(11), 2443–2452 (2003)CrossRef
41.
Zurück zum Zitat Sushko, M.L., Rosso, K.M., Zhang, J.-G.J., Liu, J.: Multiscale simulations of Li ion conductivity in solid electrolyte. Chem. Phys. Lett. 2, 2352–2356 (2011)CrossRef Sushko, M.L., Rosso, K.M., Zhang, J.-G.J., Liu, J.: Multiscale simulations of Li ion conductivity in solid electrolyte. Chem. Phys. Lett. 2, 2352–2356 (2011)CrossRef
42.
Zurück zum Zitat Teorell, T.: Transport processes and electrical phenomena in ionic membranes. Prog. Biophys. 3, 305 (1953) Teorell, T.: Transport processes and electrical phenomena in ionic membranes. Prog. Biophys. 3, 305 (1953)
43.
44.
Zurück zum Zitat Yin, P., Huang, Y., Liu, H.: An iterative discontinuous Galerkin method for solving the nonlinear Poisson–Boltzmann equation. Commun. Comput. Phys. 16, 491–515 (2014)MathSciNetMATHCrossRef Yin, P., Huang, Y., Liu, H.: An iterative discontinuous Galerkin method for solving the nonlinear Poisson–Boltzmann equation. Commun. Comput. Phys. 16, 491–515 (2014)MathSciNetMATHCrossRef
45.
Zurück zum Zitat Yin, P., Huang, Y., Liu, H.: Error estimates for the iterative discontinuous Galerkin method to the nonlinear Poisson–Boltzmann equation. Commun. Comput. Phys. 23, 168–197 (2018)MathSciNetCrossRef Yin, P., Huang, Y., Liu, H.: Error estimates for the iterative discontinuous Galerkin method to the nonlinear Poisson–Boltzmann equation. Commun. Comput. Phys. 23, 168–197 (2018)MathSciNetCrossRef
46.
Zurück zum Zitat Zheng, Q., Chen, D., Wei, G.-W.: Second-order Poisson–Nernst–Planck solver for ion transport. J. Comput. Phys. 230, 5239–5262 (2011)MathSciNetMATHCrossRef Zheng, Q., Chen, D., Wei, G.-W.: Second-order Poisson–Nernst–Planck solver for ion transport. J. Comput. Phys. 230, 5239–5262 (2011)MathSciNetMATHCrossRef
47.
Zurück zum Zitat Zheng, Q., Wei, G.W.: Poisson–Boltzmann–Nernst–Planck model. J. Chem. Phys. 134, 194101 (2011)CrossRef Zheng, Q., Wei, G.W.: Poisson–Boltzmann–Nernst–Planck model. J. Chem. Phys. 134, 194101 (2011)CrossRef
48.
Zurück zum Zitat Zhou, J., Jiang, Y., Doi, M.: Cross interaction drives stratification in drying film of binary colloidal mixtures. Phys. Rev. Lett. 10, 108002 (2017)CrossRef Zhou, J., Jiang, Y., Doi, M.: Cross interaction drives stratification in drying film of binary colloidal mixtures. Phys. Rev. Lett. 10, 108002 (2017)CrossRef
Metadaten
Titel
Efficient, Positive, and Energy Stable Schemes for Multi-D Poisson–Nernst–Planck Systems
verfasst von
Hailiang Liu
Wumaier Maimaitiyiming
Publikationsdatum
01.06.2021
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2021
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-021-01503-1

Weitere Artikel der Ausgabe 3/2021

Journal of Scientific Computing 3/2021 Zur Ausgabe

Premium Partner