Skip to main content
Erschienen in: Physics of Metals and Metallography 7/2021

01.07.2021 | ELECTRICAL AND MAGNETIC PROPERTIES

Electric Polarization in a Nanosized, Two-Layer, Ferromagnetic Film with Combined Uniaxial and Cubic Anisotropy in the Layers

verfasst von: N. V. Shul’ga, R. A. Doroshenko

Erschienen in: Physics of Metals and Metallography | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The average electric polarization arising in a two-layer, nanosized, ferromagnetic film with a combined uniaxial and cubic anisotropy and a vortical distribution of magnetization is studied numerically. Allowance for the cubic anisotropy leads to a multifold increase in the average electric polarization in samples with a positive constant of cubic anisotropy and a significant decrease in samples with a negative constant of cubic anisotropy. Analysis of the hysteresis of the average electric polarization in a magnetic field perpendicular to the film revealed striking differences in the field dependences in films with different cubic anisotropy. If the cubic anisotropy is positive, then the maxima of the average polarization curves shift to the region of low magnetic fields upon an increase in the anisotropy constant. The intensity of the maxima becomes larger, and the hysteresis practically disappears. For films with a negative constant of cubic anisotropy, the maxima of the average polarization curves shift to the region of high fields upon an increase in this constant and the intensity of the maxima becomes significantly smaller.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. V. Prokaznikova and V. A. Paporkov, “Study of the magneto-optical properties of structures on curved surfaces for creating memory elements on magnetic vortices,” Russian Microelectron. 49, No. 5, 358–371 (2020).CrossRef A. V. Prokaznikova and V. A. Paporkov, “Study of the magneto-optical properties of structures on curved surfaces for creating memory elements on magnetic vortices,” Russian Microelectron. 49, No. 5, 358–371 (2020).CrossRef
2.
Zurück zum Zitat A. P. Pyatakov, A. S. Sergeev, E. P. Nikolaeva, T. B. Kosykh, A. V. Nikolaev, K. A. Zvezdin, and A. K. Zvezdin, “Micromagnetism and topological defects in magnetoelectric media,” Phys.-Usp. 58, 981–992 (2015).CrossRef A. P. Pyatakov, A. S. Sergeev, E. P. Nikolaeva, T. B. Kosykh, A. V. Nikolaev, K. A. Zvezdin, and A. K. Zvezdin, “Micromagnetism and topological defects in magnetoelectric media,” Phys.-Usp. 58, 981–992 (2015).CrossRef
3.
Zurück zum Zitat F. Matsukura, Y. Tokura, and H. Ohno, “Control of magnetism by electric fields,” Nat. Nanotechnol. 10, No. 3, 209–220 (2015).CrossRef F. Matsukura, Y. Tokura, and H. Ohno, “Control of magnetism by electric fields,” Nat. Nanotechnol. 10, No. 3, 209–220 (2015).CrossRef
4.
Zurück zum Zitat P. I. Karpov and S. I. Mukhin, “Polarizability of electrically induced magnetic vortex plasma,” Phys. Rev. B 95, 195136-1–195136-16 (2017).CrossRef P. I. Karpov and S. I. Mukhin, “Polarizability of electrically induced magnetic vortex plasma,” Phys. Rev. B 95, 195136-1–195136-16 (2017).CrossRef
5.
Zurück zum Zitat V. G. Bar’yakhtar, V. A. L’vov, and D. A. Yablonskii, “Theory of the inhomogeneous magnetoelectric effect,” Pis’ma ZhETF 37, No. 12, 565–567 (1983). V. G. Bar’yakhtar, V. A. L’vov, and D. A. Yablonskii, “Theory of the inhomogeneous magnetoelectric effect,” Pis’ma ZhETF 37, No. 12, 565–567 (1983).
6.
Zurück zum Zitat L. Vila, M. Darques, A. Encinas, U. Ebels, J. M. George, G. Faini, A. Thiaville, and L. Piraux, “Magnetic vortices in nanowires with transverse easy axis,” Phys. Rev. B 79, 172410-1–172410-4 (2009).CrossRef L. Vila, M. Darques, A. Encinas, U. Ebels, J. M. George, G. Faini, A. Thiaville, and L. Piraux, “Magnetic vortices in nanowires with transverse easy axis,” Phys. Rev. B 79, 172410-1–172410-4 (2009).CrossRef
7.
Zurück zum Zitat M. Goiriena-Goikoetxea, K. Y. Guslienko, M. Roucod, I. Oruee, E. Berganzaf, M. Jaafarf, A. Asenjof, M. L. Fernández-Gubieda, L. Fernández Barquíng, and A. García-Arribasa, “Magnetization reversal in circular vortex dots of small radius,” Nanoscale 9, 11269–11278 (2017).CrossRef M. Goiriena-Goikoetxea, K. Y. Guslienko, M. Roucod, I. Oruee, E. Berganzaf, M. Jaafarf, A. Asenjof, M. L. Fernández-Gubieda, L. Fernández Barquíng, and A. García-Arribasa, “Magnetization reversal in circular vortex dots of small radius,” Nanoscale 9, 11269–11278 (2017).CrossRef
8.
Zurück zum Zitat K. L. Metlov, “Equilibrium large vortex state in ferromagnetic disks,” J. Appl. Phys. 113, 223905-1–223905-5 (2013).CrossRef K. L. Metlov, “Equilibrium large vortex state in ferromagnetic disks,” J. Appl. Phys. 113, 223905-1–223905-5 (2013).CrossRef
9.
Zurück zum Zitat K. L. Metlov, “Simple analytical description for the cross-tie domain wall structure,” Appl. Phys. Lett. 79, 2609–2611 (2001).CrossRef K. L. Metlov, “Simple analytical description for the cross-tie domain wall structure,” Appl. Phys. Lett. 79, 2609–2611 (2001).CrossRef
10.
Zurück zum Zitat G. A. Meshkov, A. P. Pyatakov, A. D. Belanovsky, K. A. Zvezdin, and A. S. Logginov, “Writing vortex memory bits using electric field,” J. Magn. Soc. Jpn. 36, 46–48 (2012).CrossRef G. A. Meshkov, A. P. Pyatakov, A. D. Belanovsky, K. A. Zvezdin, and A. S. Logginov, “Writing vortex memory bits using electric field,” J. Magn. Soc. Jpn. 36, 46–48 (2012).CrossRef
11.
Zurück zum Zitat N. V. Shul’ga and R. A. Doroshenko, “Nonuniform magnetoelectric effect in a nano-sized ferromagnetic film with surface anisotropy,” Phys. Met. Metallogr. 120, No. 7, 639–645 (2019).CrossRef N. V. Shul’ga and R. A. Doroshenko, “Nonuniform magnetoelectric effect in a nano-sized ferromagnetic film with surface anisotropy,” Phys. Met. Metallogr. 120, No. 7, 639–645 (2019).CrossRef
12.
Zurück zum Zitat N. V. Shul’ga and R. A. Doroshenko, “Electric polarization in two-layer bounded ferromagnetic film,” J. Magn. Magn. Mater. 471, 304–309 (2019).CrossRef N. V. Shul’ga and R. A. Doroshenko, “Electric polarization in two-layer bounded ferromagnetic film,” J. Magn. Magn. Mater. 471, 304–309 (2019).CrossRef
13.
Zurück zum Zitat N. V. Shul’ga and R. A. Doroshenko, “Hysteresis of the electric polarization in a two-layer ferromagnetic film with a vortical distribution of magnetization,” Phys. Met. Metallogr. 121, No. 6, 526–531 (2020).CrossRef N. V. Shul’ga and R. A. Doroshenko, “Hysteresis of the electric polarization in a two-layer ferromagnetic film with a vortical distribution of magnetization,” Phys. Met. Metallogr. 121, No. 6, 526–531 (2020).CrossRef
14.
Zurück zum Zitat M. J. Donahue and D. G. Porter, OOMMF User’s Guide. Version 1.0 NISTIR 6376 (Gaithersburg, National institute of standards and technology, 1999). M. J. Donahue and D. G. Porter, OOMMF User’s Guide. Version 1.0 NISTIR 6376 (Gaithersburg, National institute of standards and technology, 1999).
15.
Zurück zum Zitat M. Mostovoy, “Ferroelectricity in spiral magnets,” Phys. Rev. Lett. 96, No. 6, 067601-1–067601-4 (2006).CrossRef M. Mostovoy, “Ferroelectricity in spiral magnets,” Phys. Rev. Lett. 96, No. 6, 067601-1–067601-4 (2006).CrossRef
Metadaten
Titel
Electric Polarization in a Nanosized, Two-Layer, Ferromagnetic Film with Combined Uniaxial and Cubic Anisotropy in the Layers
verfasst von
N. V. Shul’ga
R. A. Doroshenko
Publikationsdatum
01.07.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 7/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21060107

Weitere Artikel der Ausgabe 7/2021

Physics of Metals and Metallography 7/2021 Zur Ausgabe

STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Model of Primary Recrystallization in Pure Copper