Skip to main content
Erschienen in: Journal of Electronic Materials 2/2023

14.12.2022 | Original Research Article

Electrical Characterization in Ultra-Wide Band Gap III-Nitride Heterostructure IMPATT/HEMATT Diodes: A Room-Temperature Sub-Millimeter Wave Power Source

verfasst von: Sulagna Chatterjee, Moumita Mukherjee

Erschienen in: Journal of Electronic Materials | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fabrication and subsequent on-chip direct current characterization are reported for a vertical-mesa avalanche transit time (ATT) diode. The active region of such diodes consists of a GaN/AlGaN heterostructure. The study has shown that the device has the potential to develop \(1\times {10}^{11}\mathrm{ W}/{\mathrm{m}}^{2}\) RF power at 0.1 THz. An indigenously developed strain-corrected mixed quantum tunneling drift-diffusion (Sc-MQTDD) device simulator has been used for the pre-fabrication design of an ultra-wide band gap (UWBG) III-V semiconductor-based device, and, through performance comparison, the validity of the model has been successfully established. The simulator incorporates relevant aspects of device physics, including strain-induced conduction band modification, subsequent piezoelectric polarization, variation of effective mass, and quantum mechanical tunneling for heterostructures to solve the Schrodinger equation, subject to appropriate modified boundary conditions. Furthermore, a set of studies were carried out to investigate the effects of the mesa orientation/growth plane on the power frequency behavior of III–V devices. Finally, a laterally oriented AlGaN/GaN/AlGaN heterostructure high electron mobility ATT (HEMATT) diode with a two-dimensional electron gas (2-DEG) active region is proposed. The device performance has been estimated using the in-house quantum simulator. To the best of the authors’ knowledge, this aspect of the study is reported for the first time in this paper. Electrical characteristics of the designed HEMATT oscillator yielded a very low parasitic resistance \(\sim 7.3\times {10}^{-10}\Omega {\mathrm{m}}^{-2}\) compared to its vertical-device counterpart. This is due to the significant mobility enhancement in the 2-DEG active region. Consequently, high output power ~\({{P}_{D}^{S}}_{\mathrm{HEMATT}}=1.5\times {10}^{11}\mathrm{ W}/{\mathrm{m}}^{2}\) has been obtained at a high operating frequency ~ 0.4THz.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
8.
Zurück zum Zitat W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, High-performance AlGaN metal–semiconductor–metal solar-blind ultraviolet photodetectors by localized surface plasmon enhancement. Appl. Phys. Lett. 106, 021112 (2015). https://doi.org/10.1063/1.4905929.CrossRef W. Zhang, J. Xu, W. Ye, Y. Li, Z. Qi, J. Dai, Z. Wu, C. Chen, J. Yin, J. Li, H. Jiang, and Y. Fang, High-performance AlGaN metal–semiconductor–metal solar-blind ultraviolet photodetectors by localized surface plasmon enhancement. Appl. Phys. Lett. 106, 021112 (2015). https://​doi.​org/​10.​1063/​1.​4905929.CrossRef
11.
Zurück zum Zitat N. Prakash, M. Singh, G. Kumar, A. Barvat, K. Anand, P. Pal, S.P. Singh, and S.P. Khanna, Ultrasensitive self-powered large area planar GaN UV-photodetector using reduced graphene oxide electrodes. Appl. Phys. Lett. 109, 242102 (2016). https://doi.org/10.1063/1.4971982.CrossRef N. Prakash, M. Singh, G. Kumar, A. Barvat, K. Anand, P. Pal, S.P. Singh, and S.P. Khanna, Ultrasensitive self-powered large area planar GaN UV-photodetector using reduced graphene oxide electrodes. Appl. Phys. Lett. 109, 242102 (2016). https://​doi.​org/​10.​1063/​1.​4971982.CrossRef
25.
26.
Zurück zum Zitat M. Mukherjee and S.K. Roy, Optically modulated III–V nitride-based top-mounted and flip-chip IMPATT oscillators at terahertz regime: studies on the shift of avalanche transit time phase delay due to photogenerated carriers. IEEE Trans. Electron Devices 56, 1411 (2009). https://doi.org/10.1109/TED.2009.2021441.CrossRef M. Mukherjee and S.K. Roy, Optically modulated III–V nitride-based top-mounted and flip-chip IMPATT oscillators at terahertz regime: studies on the shift of avalanche transit time phase delay due to photogenerated carriers. IEEE Trans. Electron Devices 56, 1411 (2009). https://​doi.​org/​10.​1109/​TED.​2009.​2021441.CrossRef
34.
Zurück zum Zitat M.J. Kearney, N.R. Couch, R.S. Smith, and J.S. Stephens, Velocity modulation in GaAs/AlxGa1−xAs impact avalanche transit-time diodes. J. Appl Phys. 71, 4612 (1992).CrossRef M.J. Kearney, N.R. Couch, R.S. Smith, and J.S. Stephens, Velocity modulation in GaAs/AlxGa1−xAs impact avalanche transit-time diodes. J. Appl Phys. 71, 4612 (1992).CrossRef
35.
Zurück zum Zitat M.J. Bailey, Hetrojunction IMPATT diodes. IEEE Trans. Electron Devices 39, 1829 (1992).CrossRef M.J. Bailey, Hetrojunction IMPATT diodes. IEEE Trans. Electron Devices 39, 1829 (1992).CrossRef
36.
38.
Zurück zum Zitat O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222 (1999). https://doi.org/10.1063/1.369664.CrossRef O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85, 3222 (1999). https://​doi.​org/​10.​1063/​1.​369664.CrossRef
39.
Zurück zum Zitat C.R. Elsass, I.P. Smorchkova, B. Heying, E. Haus, P. Fini, K. Maranowski, J.P. Ibbetson, S. Keller, P.M. Petroff, S.P. DenBaars, U.K. Mishra, and J.S. Speck, High mobility two-dimensional electron gas in AlGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 74, 3528 (1999). https://doi.org/10.1063/1.124150.CrossRef C.R. Elsass, I.P. Smorchkova, B. Heying, E. Haus, P. Fini, K. Maranowski, J.P. Ibbetson, S. Keller, P.M. Petroff, S.P. DenBaars, U.K. Mishra, and J.S. Speck, High mobility two-dimensional electron gas in AlGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Lett. 74, 3528 (1999). https://​doi.​org/​10.​1063/​1.​124150.CrossRef
40.
Zurück zum Zitat M.J. Murphy, K. Chu, H. Wu, W. Yeo, W.J. Schaff, O. Ambacher, L.F. Eastman, T.J. Eustis, J. Silcox, R. Dimitrov, and M. Stutzmann, High-frequency AlGaN/GaN polarization-induced high electron mobility transistors grown by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 75, 3653 (1999). https://doi.org/10.1063/1.125418.CrossRef M.J. Murphy, K. Chu, H. Wu, W. Yeo, W.J. Schaff, O. Ambacher, L.F. Eastman, T.J. Eustis, J. Silcox, R. Dimitrov, and M. Stutzmann, High-frequency AlGaN/GaN polarization-induced high electron mobility transistors grown by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 75, 3653 (1999). https://​doi.​org/​10.​1063/​1.​125418.CrossRef
41.
Zurück zum Zitat I.P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S.P. DenBaars, J.S. Speck, and U.K. Mishra, AlN/GaN and (Al, Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 90, 5196 (2001). https://doi.org/10.1063/1.1412273.CrossRef I.P. Smorchkova, L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S.P. DenBaars, J.S. Speck, and U.K. Mishra, AlN/GaN and (Al, Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 90, 5196 (2001). https://​doi.​org/​10.​1063/​1.​1412273.CrossRef
42.
Zurück zum Zitat S. Yamaguchi, M. Kosaki, Y. Watanabe, Y. Yukawa, S. Nitta, H. Amano, and I. Akasaki, Metalorganic vapor phase epitaxy growth of crack-free AlN on GaN and its application to high-mobility AlN/GaN superlattices. Appl. Phys. Lett. 79, 3062 (2001). https://doi.org/10.1063/1.1416169.CrossRef S. Yamaguchi, M. Kosaki, Y. Watanabe, Y. Yukawa, S. Nitta, H. Amano, and I. Akasaki, Metalorganic vapor phase epitaxy growth of crack-free AlN on GaN and its application to high-mobility AlN/GaN superlattices. Appl. Phys. Lett. 79, 3062 (2001). https://​doi.​org/​10.​1063/​1.​1416169.CrossRef
43.
Zurück zum Zitat S. Yamaguchi, Y. Iwamura, Y. Watanabe, M. Kosaki, Y. Yukawa, S. Nitta, S. Kamiyama, H. Amano, and I. Akasaki, Electrical properties of strained AlN/GaN superlattices on GaN grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 80, 802 (2002). https://doi.org/10.1063/1.1446204.CrossRef S. Yamaguchi, Y. Iwamura, Y. Watanabe, M. Kosaki, Y. Yukawa, S. Nitta, S. Kamiyama, H. Amano, and I. Akasaki, Electrical properties of strained AlN/GaN superlattices on GaN grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 80, 802 (2002). https://​doi.​org/​10.​1063/​1.​1446204.CrossRef
44.
45.
46.
Zurück zum Zitat S. Keller, Y.-F. Wu, G. Parish, N. Ziang, J.J. Xu, B.P. Keller, S.P. Den Baars, and U.K. Mishra, Gallium nitride based high power heterojunction field effect transistors: process development and present status at UCSB. IEEE Trans. Electron Devices 48, 552 (2001). https://doi.org/10.1109/16.906450.CrossRef S. Keller, Y.-F. Wu, G. Parish, N. Ziang, J.J. Xu, B.P. Keller, S.P. Den Baars, and U.K. Mishra, Gallium nitride based high power heterojunction field effect transistors: process development and present status at UCSB. IEEE Trans. Electron Devices 48, 552 (2001). https://​doi.​org/​10.​1109/​16.​906450.CrossRef
47.
Zurück zum Zitat M. Kuball, S. Rajasingam, A. Sarua, M.J. Uren, T. Martin, B.T. Hughes, K.P. Hilton, and R.S. Balmer, Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy. Appl. Phys. Lett. 82, 124 (2003). https://doi.org/10.1063/1.1534935.CrossRef M. Kuball, S. Rajasingam, A. Sarua, M.J. Uren, T. Martin, B.T. Hughes, K.P. Hilton, and R.S. Balmer, Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy. Appl. Phys. Lett. 82, 124 (2003). https://​doi.​org/​10.​1063/​1.​1534935.CrossRef
48.
49.
Zurück zum Zitat T. Batten, J.W. Pomeroy, M.J. Uren, T. Martin, and M. Kuball, Simultaneous measurement of temperature and thermal stress in AlGaN/GaN high electron mobility transistors using Raman scattering spectroscopy. J. Appl. Phys. 106, 094509 (2009). https://doi.org/10.1063/1.3254197.CrossRef T. Batten, J.W. Pomeroy, M.J. Uren, T. Martin, and M. Kuball, Simultaneous measurement of temperature and thermal stress in AlGaN/GaN high electron mobility transistors using Raman scattering spectroscopy. J. Appl. Phys. 106, 094509 (2009). https://​doi.​org/​10.​1063/​1.​3254197.CrossRef
51.
Zurück zum Zitat C.Y. Chang, E.A. Douglas, J. Kim, L. Lu, C.-F. Lo, B.-H. Chu, D.J. Cheney, B.P. Gila, F. Ren, G.D. Via, D.A. Cullen, L. Zhou, D.J. Smith, S. Jang, and S.J. Pearton, Electric-field-driven degradation in off-state step-stressed AlGaN/GaN high-electron mobility transistors. IEEE Trans. Device Mater. Reliab. 11, 187 (2011). https://doi.org/10.1109/TDMR.2010.2103314.CrossRef C.Y. Chang, E.A. Douglas, J. Kim, L. Lu, C.-F. Lo, B.-H. Chu, D.J. Cheney, B.P. Gila, F. Ren, G.D. Via, D.A. Cullen, L. Zhou, D.J. Smith, S. Jang, and S.J. Pearton, Electric-field-driven degradation in off-state step-stressed AlGaN/GaN high-electron mobility transistors. IEEE Trans. Device Mater. Reliab. 11, 187 (2011). https://​doi.​org/​10.​1109/​TDMR.​2010.​2103314.CrossRef
57.
58.
Zurück zum Zitat L.B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation, and Surface Evolution (Cambridge: Cambridge University Press, 2004), p. 94.CrossRef L.B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation, and Surface Evolution (Cambridge: Cambridge University Press, 2004), p. 94.CrossRef
60.
Zurück zum Zitat A. Evtukh, H. Hartnagel, O. Yilmazoglu, H. Mimura, and D. Pavlidis, Vacuum Nanoelectronic Devices: Novel Electron Sources and Applications (New York: Wiley, 2015).CrossRef A. Evtukh, H. Hartnagel, O. Yilmazoglu, H. Mimura, and D. Pavlidis, Vacuum Nanoelectronic Devices: Novel Electron Sources and Applications (New York: Wiley, 2015).CrossRef
Metadaten
Titel
Electrical Characterization in Ultra-Wide Band Gap III-Nitride Heterostructure IMPATT/HEMATT Diodes: A Room-Temperature Sub-Millimeter Wave Power Source
verfasst von
Sulagna Chatterjee
Moumita Mukherjee
Publikationsdatum
14.12.2022
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 2/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-022-10090-2

Weitere Artikel der Ausgabe 2/2023

Journal of Electronic Materials 2/2023 Zur Ausgabe

Topical Collection: Electronic Packaging and Interconnections 2022

The Failure of Sn-Bi-Based Solder Joints Due to Current Stressing

Neuer Inhalt