Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 1-2/2020

19.11.2019 | ORIGINAL ARTICLE

Electrically assisted superplastic forming/diffusion bonding of the Ti2AlNb alloy sheet

verfasst von: Xiao Li, Guofeng Wang, Jingxuan Zhang, Yongkang Liu

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electrically assisted superplastic forming and diffusion bonding (EASPF/DB) is based on the electrically assisted technique in which the electric current is directly and simply introduced into metallic sheets during hot processing. Through the rapidly increasing heat by the Joule effect after several minutes, the advantages of the EASPF/DB process are further strengthened, and the limitations of commercial exploitation (e.g., long processing period) are partly overcome. In this study, an experimental setup of EASPF/DB was assembled for the experimental validation of this concept. The Ti2AlNb alloy sheet, which is regarded as a superior substitute for the nickel-based alloy, was diffusion-bonded and formed, and a double-layer structure was fabricated by means of the EASPF/DB process. The temperature distribution measured by an infrared imaging camera was apparently influenced by detour effects of the electric current. To examine the forming and bonding effects, the height and thickness were measured in different positions. The microstructures of the bonding interface were observed, and no microcavity and crack were found, which indicated the feasibility of the variant of the SPF/DB process. Meanwhile, the large-size grains of B2 phase compose the microstructure of forming zone with some fine needle–like precipitates. Finally, the hardness test showed higher values of Vickers hardness than that of the as-received sheet and the compression test showed three stages of the double-layer structure during continuous loading. The important values and significance for use of this variant are presented by markedly reducing the heating and cooling time and the targeted heating manner for metallic sheets.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Banerjee D, Gogia AK, Nandi TK, Joshi VA (1988) A new ordered orthorhombic phase in a Ti3AlNb alloy. Acta Metall 36:871–882CrossRef Banerjee D, Gogia AK, Nandi TK, Joshi VA (1988) A new ordered orthorhombic phase in a Ti3AlNb alloy. Acta Metall 36:871–882CrossRef
2.
Zurück zum Zitat Banerjee D (1997) The intermetallic Ti2AlNb. Prog Mater Sci 42:135–158CrossRef Banerjee D (1997) The intermetallic Ti2AlNb. Prog Mater Sci 42:135–158CrossRef
3.
Zurück zum Zitat Lin P, He Z, Yuan S, Shen J (2012) Tensile deformation behavior of Ti–22Al–25Nb alloy at elevated temperatures. Mater Sci Eng A 556:617–624CrossRef Lin P, He Z, Yuan S, Shen J (2012) Tensile deformation behavior of Ti–22Al–25Nb alloy at elevated temperatures. Mater Sci Eng A 556:617–624CrossRef
4.
Zurück zum Zitat Xue C, Zeng W, Wang W, Liang X, Zhang J (2013) The enhanced tensile property by introducing bimodal size distribution of lamellar O for O+B2 Ti2AlNb based alloy. Mater Sci Eng A 587:54–60CrossRef Xue C, Zeng W, Wang W, Liang X, Zhang J (2013) The enhanced tensile property by introducing bimodal size distribution of lamellar O for O+B2 Ti2AlNb based alloy. Mater Sci Eng A 587:54–60CrossRef
5.
Zurück zum Zitat Zheng Y, Zeng W, Li D, Liang X, Zhang J, Ma X (2017) Effect of orthorhombic case on the creep rupture of Ti-22Al-25Nb (at%) orthorhombic alloy. Mater Sci Eng A 696:529–535CrossRef Zheng Y, Zeng W, Li D, Liang X, Zhang J, Ma X (2017) Effect of orthorhombic case on the creep rupture of Ti-22Al-25Nb (at%) orthorhombic alloy. Mater Sci Eng A 696:529–535CrossRef
6.
Zurück zum Zitat Wang W, Zeng W, Xue C, Liang X, Zhang J (2014) Microstructural evolution, creep, and tensile behavior of a Ti–22Al–25Nb (at%) orthorhombic alloy. Mater Sci Eng A 603:176–184CrossRef Wang W, Zeng W, Xue C, Liang X, Zhang J (2014) Microstructural evolution, creep, and tensile behavior of a Ti–22Al–25Nb (at%) orthorhombic alloy. Mater Sci Eng A 603:176–184CrossRef
7.
Zurück zum Zitat Jiao X, Liu G, Wang D, Wu Y (2017) Creep behavior and effects of heat treatment on creep resistance of Ti-22Al-24Nb-0.5Mo alloy. Mater Sci Eng A 680:182–189CrossRef Jiao X, Liu G, Wang D, Wu Y (2017) Creep behavior and effects of heat treatment on creep resistance of Ti-22Al-24Nb-0.5Mo alloy. Mater Sci Eng A 680:182–189CrossRef
8.
Zurück zum Zitat Wu Y, Liu G, Liu Z, Wang B (2016) Formability and microstructure of Ti22Al24.5Nb0.5Mo rolled sheet within hot gas bulging tests at constant equivalent strain rate. Mater Design 108:298–307CrossRef Wu Y, Liu G, Liu Z, Wang B (2016) Formability and microstructure of Ti22Al24.5Nb0.5Mo rolled sheet within hot gas bulging tests at constant equivalent strain rate. Mater Design 108:298–307CrossRef
9.
Zurück zum Zitat Du Z, Jiang S, Zhang K, Lu Z, Li B, Zhang D (2016) The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure. Mater Design 104:242–250CrossRef Du Z, Jiang S, Zhang K, Lu Z, Li B, Zhang D (2016) The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure. Mater Design 104:242–250CrossRef
10.
Zurück zum Zitat Wu Y, Liu G, Jin S, Liu Z (2017) Microstructure and mechanical properties of Ti2AlNb cup-shaped part prepared by hot gas forming: determining forming temperature, strain rate, and heat treatment. Int J Adv Manuf Technol 92:4583–4594CrossRef Wu Y, Liu G, Jin S, Liu Z (2017) Microstructure and mechanical properties of Ti2AlNb cup-shaped part prepared by hot gas forming: determining forming temperature, strain rate, and heat treatment. Int J Adv Manuf Technol 92:4583–4594CrossRef
11.
Zurück zum Zitat Huda Z, Edi P (2013) Materials selection in design of structures and engines of supersonic aircrafts: a review. Mater Design 46:552–560CrossRef Huda Z, Edi P (2013) Materials selection in design of structures and engines of supersonic aircrafts: a review. Mater Design 46:552–560CrossRef
12.
Zurück zum Zitat Wang C, Zhao T, Wang G, Gao J, Fang H (2015) Superplastic forming and diffusion bonding of Ti–22Al–24Nb alloy. J Mater Process Technol 222:122–127CrossRef Wang C, Zhao T, Wang G, Gao J, Fang H (2015) Superplastic forming and diffusion bonding of Ti–22Al–24Nb alloy. J Mater Process Technol 222:122–127CrossRef
13.
Zurück zum Zitat Kumpfert J, Leyens C, Peters M (2005) Titanium and titanium alloys: fundamentals and applications. DE: John Wiley & Sons, Ltd Chapter 3 Kumpfert J, Leyens C, Peters M (2005) Titanium and titanium alloys: fundamentals and applications. DE: John Wiley & Sons, Ltd Chapter 3
14.
Zurück zum Zitat Hefti LD (2010) Fine-grain titanium 6AI-4V for superplastic forming and diffusion bonding of aerospace products. JOM 62:42–45CrossRef Hefti LD (2010) Fine-grain titanium 6AI-4V for superplastic forming and diffusion bonding of aerospace products. JOM 62:42–45CrossRef
15.
Zurück zum Zitat Mori K, Maki S, Tanaka Y (2005) Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating. CIRP-Annual 54:209–212CrossRef Mori K, Maki S, Tanaka Y (2005) Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating. CIRP-Annual 54:209–212CrossRef
16.
Zurück zum Zitat Maeno T, Mori K, Ogihara T, Fujita T (2018) Blanking immediately after heating and ultrasonic cleaning for compact hot-stamping systems using rapid resistance heating. Int J Adv Manuf Technol 97:3827–3837CrossRef Maeno T, Mori K, Ogihara T, Fujita T (2018) Blanking immediately after heating and ultrasonic cleaning for compact hot-stamping systems using rapid resistance heating. Int J Adv Manuf Technol 97:3827–3837CrossRef
17.
Zurück zum Zitat Yanagimoto J, Izumi R (2009) Continuous electric resistance heating—hot forming system for high-alloy metals with poor workability. J Mater Process Technol 209:3060–3068CrossRef Yanagimoto J, Izumi R (2009) Continuous electric resistance heating—hot forming system for high-alloy metals with poor workability. J Mater Process Technol 209:3060–3068CrossRef
18.
Zurück zum Zitat Xu Z, Tang G, Tian S, Ding F, Tian H (2007) Research of electroplastic rolling of AZ31 Mg alloy strip. J Mater Process Technol 182:128–133CrossRef Xu Z, Tang G, Tian S, Ding F, Tian H (2007) Research of electroplastic rolling of AZ31 Mg alloy strip. J Mater Process Technol 182:128–133CrossRef
19.
Zurück zum Zitat Zhu R, Tang G (2017) The improved plasticity of NiTi alloy via electropulsing in rolling. Mater Sci Tech-Lond 33:546–551CrossRef Zhu R, Tang G (2017) The improved plasticity of NiTi alloy via electropulsing in rolling. Mater Sci Tech-Lond 33:546–551CrossRef
20.
Zurück zum Zitat Kuang J, Li X, Zhang R, Ye Y, Luo AA, Tang G (2016) Enhanced rollability of Mg3Al1Zn alloy by pulsed electric current: a comparative study. Mater Design 100:204–216CrossRef Kuang J, Li X, Zhang R, Ye Y, Luo AA, Tang G (2016) Enhanced rollability of Mg3Al1Zn alloy by pulsed electric current: a comparative study. Mater Design 100:204–216CrossRef
21.
Zurück zum Zitat Terhorst M, Ozhoga-Maslovskaja O, Trauth D, Shirobokov A, Mattfeld P (2017) Electro-thermo-mechanical contact model for bulk metal forming under application of electrical resistance heating. Int J Adv Manuf Technol 89:3601–3618CrossRef Terhorst M, Ozhoga-Maslovskaja O, Trauth D, Shirobokov A, Mattfeld P (2017) Electro-thermo-mechanical contact model for bulk metal forming under application of electrical resistance heating. Int J Adv Manuf Technol 89:3601–3618CrossRef
22.
Zurück zum Zitat Li C, Jiang S, Zhang K (2012) Pulse current-assisted hot-forming of light metal alloy. Int J Adv Manuf Technol 63:931–938CrossRef Li C, Jiang S, Zhang K (2012) Pulse current-assisted hot-forming of light metal alloy. Int J Adv Manuf Technol 63:931–938CrossRef
23.
Zurück zum Zitat Li C, Zhang K, Jiang S, Zhang Z (2012) Pulse current auxiliary bulging and deformation mechanism of AZ31 magnesium alloy. Mater Design 34:170–178CrossRef Li C, Zhang K, Jiang S, Zhang Z (2012) Pulse current auxiliary bulging and deformation mechanism of AZ31 magnesium alloy. Mater Design 34:170–178CrossRef
24.
Zurück zum Zitat Liu J, Zhang K (2015) Resistance heating superplastic forming and influence of current on deformation mechanism of TA15 titanium alloy. Int J Adv Manuf Technol 76:1673–1680CrossRef Liu J, Zhang K (2015) Resistance heating superplastic forming and influence of current on deformation mechanism of TA15 titanium alloy. Int J Adv Manuf Technol 76:1673–1680CrossRef
25.
Zurück zum Zitat Bao W, Chu X, Lin S, Gao J (2015) Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming. Mater Design 87:632–639CrossRef Bao W, Chu X, Lin S, Gao J (2015) Experimental investigation on formability and microstructure of AZ31B alloy in electropulse-assisted incremental forming. Mater Design 87:632–639CrossRef
26.
Zurück zum Zitat Xu D, Lu B, Cao T, Zhang H, Chen J, Long H, Cao J (2016) Enhancement of process capabilities in electrically-assisted double sided incremental forming. Mater Design 92:268–280CrossRef Xu D, Lu B, Cao T, Zhang H, Chen J, Long H, Cao J (2016) Enhancement of process capabilities in electrically-assisted double sided incremental forming. Mater Design 92:268–280CrossRef
27.
Zurück zum Zitat Santos TG, Miranda RM, Vilaça P (2014) Friction stir welding assisted by electrical Joule effect. J Mater Process Technol 214:2127–2133CrossRef Santos TG, Miranda RM, Vilaça P (2014) Friction stir welding assisted by electrical Joule effect. J Mater Process Technol 214:2127–2133CrossRef
28.
Zurück zum Zitat Liu X, Lan S, Ni J (2015) Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J Mater Process Technol 219:112–123CrossRef Liu X, Lan S, Ni J (2015) Electrically assisted friction stir welding for joining Al 6061 to TRIP 780 steel. J Mater Process Technol 219:112–123CrossRef
29.
Zurück zum Zitat Moradi M, Ng M, Lee T, Cao J, Pivard YN (2017) Interface characterization of Al-Cu laminates fabricated by electrically assisted rolling bonding. J Micro Nano-Manuf 5:0310013CrossRef Moradi M, Ng M, Lee T, Cao J, Pivard YN (2017) Interface characterization of Al-Cu laminates fabricated by electrically assisted rolling bonding. J Micro Nano-Manuf 5:0310013CrossRef
30.
Zurück zum Zitat Ruszkiewicz BJ, Grimm T, Ragai I, Mears L, Roth JT (2017) A review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect. J Manuf Sci E-T ASME 139:110801CrossRef Ruszkiewicz BJ, Grimm T, Ragai I, Mears L, Roth JT (2017) A review of electrically-assisted manufacturing with emphasis on modeling and understanding of the electroplastic effect. J Manuf Sci E-T ASME 139:110801CrossRef
31.
Zurück zum Zitat Wang X, Xu J, Shan D, Guo B, Cao J (2016) Modeling of thermal and mechanical behavior of a magnesium alloy AZ31 during electrically-assisted micro-tension. Int J Plast 85:230–257CrossRef Wang X, Xu J, Shan D, Guo B, Cao J (2016) Modeling of thermal and mechanical behavior of a magnesium alloy AZ31 during electrically-assisted micro-tension. Int J Plast 85:230–257CrossRef
32.
Zurück zum Zitat Li X, Wang G, Gu Y, Yang J (2019) Electrically assisted diffusion bonding of Ti2AlNb alloy sheet using CP-Ti foil interlayer: microstructural characterization and mechanical tests. Mater Sci Eng A 744:733–745CrossRef Li X, Wang G, Gu Y, Yang J (2019) Electrically assisted diffusion bonding of Ti2AlNb alloy sheet using CP-Ti foil interlayer: microstructural characterization and mechanical tests. Mater Sci Eng A 744:733–745CrossRef
33.
Zurück zum Zitat Wang G, Li X, Liu S, Gu Y (2018) Improved superplasticity and microstructural evolution of Ti2AlNb alloy sheet during electrically assisted superplastic gas bulging. Int J Adv Manuf Technol 99:773–787CrossRef Wang G, Li X, Liu S, Gu Y (2018) Improved superplasticity and microstructural evolution of Ti2AlNb alloy sheet during electrically assisted superplastic gas bulging. Int J Adv Manuf Technol 99:773–787CrossRef
34.
Zurück zum Zitat Jovane F (1968) An approximate analysis of the superplastic forming of a thin circular diaphragm: theory and experiments. Int J Mech Sci 10:403–427CrossRef Jovane F (1968) An approximate analysis of the superplastic forming of a thin circular diaphragm: theory and experiments. Int J Mech Sci 10:403–427CrossRef
35.
Zurück zum Zitat Zheng Y, Zeng W, Zhao Q, Li D, Ma X, Liang X, Zhang J (2018) Deformation and microstructure evolution above the B2 transus of Ti-22Al-25Nb (at%) orthorhombic alloy. Mater Sci Eng A 710:164–171CrossRef Zheng Y, Zeng W, Zhao Q, Li D, Ma X, Liang X, Zhang J (2018) Deformation and microstructure evolution above the B2 transus of Ti-22Al-25Nb (at%) orthorhombic alloy. Mater Sci Eng A 710:164–171CrossRef
36.
Zurück zum Zitat Liu TJ (2014) Joule heating behaviors around through crack emanating from circular hole under electric load. Eng Fract Mech 123:2–20CrossRef Liu TJ (2014) Joule heating behaviors around through crack emanating from circular hole under electric load. Eng Fract Mech 123:2–20CrossRef
37.
Zurück zum Zitat Xu Q, Tang G, Jiang Y (2011) Thermal and electromigration effects of electropulsing on dynamic recrystallization in Mg–3Al–1Zn alloy. Mater Sci Eng A 528:4431–4436CrossRef Xu Q, Tang G, Jiang Y (2011) Thermal and electromigration effects of electropulsing on dynamic recrystallization in Mg–3Al–1Zn alloy. Mater Sci Eng A 528:4431–4436CrossRef
38.
Zurück zum Zitat Jiang Y, Tang G, Shek C, Liu W (2011) Microstructure and texture evolution of the cold-rolled AZ91 magnesium alloy strip under electropulsing treatment. J Alloys Compd 509:4308–4313CrossRef Jiang Y, Tang G, Shek C, Liu W (2011) Microstructure and texture evolution of the cold-rolled AZ91 magnesium alloy strip under electropulsing treatment. J Alloys Compd 509:4308–4313CrossRef
39.
Zurück zum Zitat Shao B, Shan D, Guo B, Zong Y (2019) Plastic deformation mechanism and interaction of B2, α2, and O phases in Ti-22Al-25Nb alloy at room temperature. Int J Plast 113:18–34CrossRef Shao B, Shan D, Guo B, Zong Y (2019) Plastic deformation mechanism and interaction of B2, α2, and O phases in Ti-22Al-25Nb alloy at room temperature. Int J Plast 113:18–34CrossRef
Metadaten
Titel
Electrically assisted superplastic forming/diffusion bonding of the Ti2AlNb alloy sheet
verfasst von
Xiao Li
Guofeng Wang
Jingxuan Zhang
Yongkang Liu
Publikationsdatum
19.11.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 1-2/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04458-8

Weitere Artikel der Ausgabe 1-2/2020

The International Journal of Advanced Manufacturing Technology 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.