Skip to main content
Erschienen in: Strength of Materials 1/2013

01.01.2013

Electro-thermo-mechanical response of thick-walled piezoelectric cylinder reinforced by boron-nitride nanotubes

verfasst von: A. Ghorbanpour Arani, A. Haghshenas, S. Amir, M. R. Mozdianfard, M. Latifi

Erschienen in: Strength of Materials | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Electro-thermo-elastic stress analysis of piezoelectric polymeric thick-walled cylinder reinforced by boron-nitride nanotubes subjected to electro-thermo-mechanical fields is presented. The electrothermo-elastic properties of piezoelectric fiber reinforced composite was studied by a modified XY micromechanical model capable of exhibiting full coupling relation between electric, thermal and elastic fields. Assuming piezoelectric fiber reinforced composite material and its composite constituents to be linear, homogenous, orthotropic, and perfectly bonded with uniform applied field, the basic relation for the axisymmetric deformation of a thick-wall cylinder subjected to uniform internal and external pressures, an axial electrical load, a temperature change between inner and outer radius are derived. Although the cylinder has end caps and is free to change length, displacement, strains, and stresses at location far removed from the end caps have been investigated. The stress results suggest that increasing boron-nitride nanotubes content in longitudinal direction reduces the effective stress. Displacement along radial direction indicates an optimum content of 5% boron-nitride nanotube for this. Furthermore, at normal working conditions, the influence of thermal and mechanical fields are much higher than the electric one on the effective stress; hence, this smart structure is best suited for applications as sensors than actuators.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Yang, An Introduction to the Theory of Piezoelectricity, Springer (2005). J. Yang, An Introduction to the Theory of Piezoelectricity, Springer (2005).
2.
Zurück zum Zitat E. F. Crawley, “Intelligent structures for aerospace: a technology overview and assessment,” AIAA J., 32, No. 8, 1689–1699 (1994).CrossRef E. F. Crawley, “Intelligent structures for aerospace: a technology overview and assessment,” AIAA J., 32, No. 8, 1689–1699 (1994).CrossRef
3.
Zurück zum Zitat M. Arafa and A. Baz, “Dynamics of active piezoelectric damping composites,” Composites Part B, 31, 255–264 (2000).CrossRef M. Arafa and A. Baz, “Dynamics of active piezoelectric damping composites,” Composites Part B, 31, 255–264 (2000).CrossRef
4.
Zurück zum Zitat G. Park, M. H. Kim, and D. J. Inman, “Integration of smart materials into dynamics and control of inflatable space structures,” J. Intell. Mater. Syst. Struct., 12, No. 6, 423–433 (2002).CrossRef G. Park, M. H. Kim, and D. J. Inman, “Integration of smart materials into dynamics and control of inflatable space structures,” J. Intell. Mater. Syst. Struct., 12, No. 6, 423–433 (2002).CrossRef
5.
Zurück zum Zitat H. A. Sodano, J. Lloyd, and D. J. Inman, “An experimental comparison between several active composite actuators for power generation,” Smart Mater. Struct., 15, 1211–1216 (2006).CrossRef H. A. Sodano, J. Lloyd, and D. J. Inman, “An experimental comparison between several active composite actuators for power generation,” Smart Mater. Struct., 15, 1211–1216 (2006).CrossRef
6.
Zurück zum Zitat Y. Shindo, F. Narita, and H. Sosa, “Electroelastic analysis of a piezoelectric ceramic strip with a central crack,” Int. J. Eng. Sci., 38, 1–19 (1998).CrossRef Y. Shindo, F. Narita, and H. Sosa, “Electroelastic analysis of a piezoelectric ceramic strip with a central crack,” Int. J. Eng. Sci., 38, 1–19 (1998).CrossRef
7.
Zurück zum Zitat A. Salehi-Khojin and N. Jalili, “Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings,” Compos. Sci. Technol., 68, 1489–1501 (2008).CrossRef A. Salehi-Khojin and N. Jalili, “Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings,” Compos. Sci. Technol., 68, 1489–1501 (2008).CrossRef
8.
Zurück zum Zitat H. Kawai, “The piezoelectricity of polyvinylidene fluoride,” Jpn. J. Appl. Phys., 8, 975–976 (1969).CrossRef H. Kawai, “The piezoelectricity of polyvinylidene fluoride,” Jpn. J. Appl. Phys., 8, 975–976 (1969).CrossRef
9.
Zurück zum Zitat W. V. Munch and U. Thiemann, “Pyroelectric detector array with PVDF on silicon integrated circuit,” Sens. Actuators A, 25-27, 167–172 (1991). W. V. Munch and U. Thiemann, “Pyroelectric detector array with PVDF on silicon integrated circuit,” Sens. Actuators A, 25-27, 167–172 (1991).
10.
Zurück zum Zitat H. S. Tzou and R. Ye, “Pyroelectric and thermal strain effects in piezoelectric (PVDF and PZT) devices,” Mech. Syst. Sig. Process, 10, No. 4, 459–479 (1996).CrossRef H. S. Tzou and R. Ye, “Pyroelectric and thermal strain effects in piezoelectric (PVDF and PZT) devices,” Mech. Syst. Sig. Process, 10, No. 4, 459–479 (1996).CrossRef
11.
Zurück zum Zitat A. A. Bent and N. W. Hagood, “Piezoelectric fiber composites with interdigitated electrodes,” J. Intell. Mater. Syst. Struct., 8, 903–919 (1997).CrossRef A. A. Bent and N. W. Hagood, “Piezoelectric fiber composites with interdigitated electrodes,” J. Intell. Mater. Syst. Struct., 8, 903–919 (1997).CrossRef
12.
Zurück zum Zitat Y. Lin and H. A. Sodano, “Concept and model of a piezoelectric structural fiber for multifunctional composites,” Compos. Sci. Technol., 68, 1911–1918 (2008).CrossRef Y. Lin and H. A. Sodano, “Concept and model of a piezoelectric structural fiber for multifunctional composites,” Compos. Sci. Technol., 68, 1911–1918 (2008).CrossRef
13.
Zurück zum Zitat C. W. Liu and E. Taciroglu, “A semi-analytic meshfree method for Almansi– Michell problems of piezoelectric cylinders,” Int. J. Solids Struct., 45, No. 9, 2379–2398 (2008).CrossRef C. W. Liu and E. Taciroglu, “A semi-analytic meshfree method for Almansi– Michell problems of piezoelectric cylinders,” Int. J. Solids Struct., 45, No. 9, 2379–2398 (2008).CrossRef
14.
Zurück zum Zitat O. Sayman, “Analysis of multi-layered composite cylinders under hygro-thermal loading,” Composites Part A, 36, 923–933 (2005).CrossRef O. Sayman, “Analysis of multi-layered composite cylinders under hygro-thermal loading,” Composites Part A, 36, 923–933 (2005).CrossRef
15.
Zurück zum Zitat X. Wang and Z. Zhong, “A circular tube or bar of cylindrically anisotropic magnetoelectroelastic material under pressuring loading,” Int. J. Eng. Sci., 41, 2143–2159 (2003).CrossRef X. Wang and Z. Zhong, “A circular tube or bar of cylindrically anisotropic magnetoelectroelastic material under pressuring loading,” Int. J. Eng. Sci., 41, 2143–2159 (2003).CrossRef
16.
Zurück zum Zitat X. Wang and Z. Zhong, “A finitely long circular cylindrical shell of piezoelectric/piezomagnetic composite under pressuring and temperature change,” Int. J. Eng. Sci., 41, 2429–2445 (2003).CrossRef X. Wang and Z. Zhong, “A finitely long circular cylindrical shell of piezoelectric/piezomagnetic composite under pressuring and temperature change,” Int. J. Eng. Sci., 41, 2429–2445 (2003).CrossRef
17.
Zurück zum Zitat Z. H. Tong, S. H. Lo, C. P. Jiang, and Y. K. Cheung, “An exact solution for the three-phase thermoelectro-magneto-elastic cylinder model and its application to piezoelectric-magnetic fiber composites,” Int. J. Solids Struct., 45, 5205–5219 (2008).CrossRef Z. H. Tong, S. H. Lo, C. P. Jiang, and Y. K. Cheung, “An exact solution for the three-phase thermoelectro-magneto-elastic cylinder model and its application to piezoelectric-magnetic fiber composites,” Int. J. Solids Struct., 45, 5205–5219 (2008).CrossRef
18.
Zurück zum Zitat S. J. V. Frankland, V. M. Harik, G. M. Odegard, et al., “The stress-strain behavior of polymer–nanotube composites from molecular dynamics simulation,” Compos. Sci. Technol., 63, 1655–1661 (2003).CrossRef S. J. V. Frankland, V. M. Harik, G. M. Odegard, et al., “The stress-strain behavior of polymer–nanotube composites from molecular dynamics simulation,” Compos. Sci. Technol., 63, 1655–1661 (2003).CrossRef
19.
Zurück zum Zitat H. J. Ding, H. M. Wang, and W. Q. Chen, “Analytical solution of a special non-homogeneous pyroelectric hollow cylinder for piezothermoelastic axisymmetric plane strain dynamic problems,” Appl. Math. Comput., 151, 423–441 (2004).CrossRef H. J. Ding, H. M. Wang, and W. Q. Chen, “Analytical solution of a special non-homogeneous pyroelectric hollow cylinder for piezothermoelastic axisymmetric plane strain dynamic problems,” Appl. Math. Comput., 151, 423–441 (2004).CrossRef
20.
Zurück zum Zitat H. L. Dai and X. Wang, “Thermo-electro-elastic transient responses in piezoelectric hollow structures,” Int. J. Solids Struct., 42, No. 3, 1151–1171 (2005).CrossRef H. L. Dai and X. Wang, “Thermo-electro-elastic transient responses in piezoelectric hollow structures,” Int. J. Solids Struct., 42, No. 3, 1151–1171 (2005).CrossRef
21.
Zurück zum Zitat P. Tan and L. Tong, “Modeling for the electro-magneto-thermo-elastic properties of piezoelectric-magnetic fiber reinforced composites,” Composites Part A, 33, 631–645 (2002).CrossRef P. Tan and L. Tong, “Modeling for the electro-magneto-thermo-elastic properties of piezoelectric-magnetic fiber reinforced composites,” Composites Part A, 33, 631–645 (2002).CrossRef
22.
Zurück zum Zitat A. P. Boresi, R. J. Schmidt, and O. M. Sidebottom, Advanced Mechanics of Materials, 5th edition, John Wiley & Sons (1993). A. P. Boresi, R. J. Schmidt, and O. M. Sidebottom, Advanced Mechanics of Materials, 5th edition, John Wiley & Sons (1993).
23.
Zurück zum Zitat Z. Q. Cheng, C. W. Lim, and S. Kitipornchai, “Three-dimensional asymptotic approach to inhomogeneous and laminated piezoelectric plates,” Int. J. Solids Struct., 37, 3153–3175 (2000).CrossRef Z. Q. Cheng, C. W. Lim, and S. Kitipornchai, “Three-dimensional asymptotic approach to inhomogeneous and laminated piezoelectric plates,” Int. J. Solids Struct., 37, 3153–3175 (2000).CrossRef
Metadaten
Titel
Electro-thermo-mechanical response of thick-walled piezoelectric cylinder reinforced by boron-nitride nanotubes
verfasst von
A. Ghorbanpour Arani
A. Haghshenas
S. Amir
M. R. Mozdianfard
M. Latifi
Publikationsdatum
01.01.2013
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2013
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-013-9437-2

Weitere Artikel der Ausgabe 1/2013

Strength of Materials 1/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.