Skip to main content
Erschienen in: Journal of Materials Science 12/2019

19.03.2019 | Chemical routes to materials

Electrocatalytic activity of new Mn3O4@oxidized graphene flakes nanocomposites toward oxygen reduction reaction

verfasst von: Mariana P. Araújo, Marta Nunes, Inês M. Rocha, M. F. R. Pereira, Cristina Freire

Erschienen in: Journal of Materials Science | Ausgabe 12/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The demand for cost-efficient and non-precious metal-based electrocatalysts toward oxygen reduction reaction (ORR) is crucial in the field of electrochemical energy conversion/storage technologies. Herein, we report a facile one-step co-precipitation route for the in situ synthesis of Mn3O4 nanoparticles onto graphene flakes with different types of selective oxidations (denominated as GF_HNO3, GF_KMnO4 and GF_O3) and the evaluation of the nanocomposites ORR electrocatalytic performance. The synthesized Mn3O4 nanoparticles presented a spinel structure and a crystallite size between 30 and 38 nm. All the nanocomposites showed ORR electrocatalytic activity in alkaline medium, with Mn3O4@GF_O3 nanocomposite presenting the least negative onset potential of Eonset = −0.14 V versus Ag/AgCl; higher diffusion-limiting current densities were achieved by Mn3O4@GF_O3 and Mn3O4@GF_HNO3 nanocomposites (jL; −0.6 V, 1600 rpm  = −2.8 mA cm−2). Mechanistically, Mn3O4@GF_O3 nanocomposite stood out with a nO2 value very close to 4, suggesting the dominance of the one-step 4-electron transfer mechanism. All the nanocomposites showed a robust electrocatalytic performance over 20000 s, with current retention values in the range of 87.0–90.3%, and excellent tolerance to methanol, surpassing one of the great limitations of Pt/C electrocatalyst. Globally, the best ORR electrocatalytic performance of the Mn3O4@GF_O3 nanocomposite is explained by (1) an adequate concentration of Mn3O4 nanoparticles onto GF_O3 flakes, (2) the highest relative content of Mn species as Mn2+ ions and (3) predominance of quinone and epoxyl groups on GF_O3 support, which appears to have a key role on the overall electrocatalytic activity of the Mn3O4@GF_ox nanocomposites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nie Y, Li L, Wei ZD (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201CrossRef Nie Y, Li L, Wei ZD (2015) Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem Soc Rev 44:2168–2201CrossRef
2.
Zurück zum Zitat Stacy J, Regmi YN, Leonard B, Fan MH (2017) The recent progress and future of oxygen reduction reaction catalysis: a review. Renew Sust Energ Rev 69:401–414CrossRef Stacy J, Regmi YN, Leonard B, Fan MH (2017) The recent progress and future of oxygen reduction reaction catalysis: a review. Renew Sust Energ Rev 69:401–414CrossRef
3.
Zurück zum Zitat Xia W, Mahmood A, Liang ZB, Zou RQ, Guo SJ (2016) Earth-abundant nanomaterials for oxygen reduction. Angew Chem Int Ed 55:2650–2676CrossRef Xia W, Mahmood A, Liang ZB, Zou RQ, Guo SJ (2016) Earth-abundant nanomaterials for oxygen reduction. Angew Chem Int Ed 55:2650–2676CrossRef
4.
Zurück zum Zitat Shao MH, Chang QW, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657CrossRef Shao MH, Chang QW, Dodelet JP, Chenitz R (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657CrossRef
5.
Zurück zum Zitat Cao R, Lee JS, Liu ML, Cho J (2012) Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater 2:816–829CrossRef Cao R, Lee JS, Liu ML, Cho J (2012) Recent progress in non-precious catalysts for metal-air batteries. Adv Energy Mater 2:816–829CrossRef
6.
Zurück zum Zitat Jiao Y, Zheng Y, Jaroniec MT, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086CrossRef Jiao Y, Zheng Y, Jaroniec MT, Qiao SZ (2015) Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev 44:2060–2086CrossRef
7.
Zurück zum Zitat Tong XL, Xia XH, Guo CX, Zhang YQ, Tu JP, Fan HJ, Guo XY (2015) Efficient oxygen reduction reaction using mesoporous Ni-doped Co3O4 nanowire array electrocatalysts. J Mater Chem A 3:18372–18379CrossRef Tong XL, Xia XH, Guo CX, Zhang YQ, Tu JP, Fan HJ, Guo XY (2015) Efficient oxygen reduction reaction using mesoporous Ni-doped Co3O4 nanowire array electrocatalysts. J Mater Chem A 3:18372–18379CrossRef
8.
Zurück zum Zitat Tang QW, Jiang LH, Liu J, Wang SL, Sun GQ (2014) Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal 4:457–463CrossRef Tang QW, Jiang LH, Liu J, Wang SL, Sun GQ (2014) Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media. ACS Catal 4:457–463CrossRef
9.
Zurück zum Zitat Dai LJ, Liu M, Song Y, Liu JJ, Wang F (2016) Mn3O4-decorated Co3O4 nanoparticles supported on graphene oxide: dual electrocatalyst system for oxygen reduction reaction in alkaline medium. Nano Energy 27:185–195CrossRef Dai LJ, Liu M, Song Y, Liu JJ, Wang F (2016) Mn3O4-decorated Co3O4 nanoparticles supported on graphene oxide: dual electrocatalyst system for oxygen reduction reaction in alkaline medium. Nano Energy 27:185–195CrossRef
10.
Zurück zum Zitat Lima FHB, Calegaro ML, Ticianelli EA (2006) Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J Electroanal Chem 590:152–160CrossRef Lima FHB, Calegaro ML, Ticianelli EA (2006) Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J Electroanal Chem 590:152–160CrossRef
11.
Zurück zum Zitat Gorlin Y, Chung CJ, Nordlund D, Clemens BM, Jaramillo TF (2012) Mn3O4 supported on glassy carbon: an active non-precious metal catalyst for the oxygen reduction reaction. ACS Catal 2:2687–2694CrossRef Gorlin Y, Chung CJ, Nordlund D, Clemens BM, Jaramillo TF (2012) Mn3O4 supported on glassy carbon: an active non-precious metal catalyst for the oxygen reduction reaction. ACS Catal 2:2687–2694CrossRef
12.
Zurück zum Zitat Duan JJ, Chen S, Dai S, Qiao SZ (2014) Shape control of mn3o4 nanoparticles on nitrogen- doped graphene for enhanced oxygen reduction activity. Adv Funct Mater 24:2072–2078CrossRef Duan JJ, Chen S, Dai S, Qiao SZ (2014) Shape control of mn3o4 nanoparticles on nitrogen- doped graphene for enhanced oxygen reduction activity. Adv Funct Mater 24:2072–2078CrossRef
13.
Zurück zum Zitat Bikkarolla SK, Yu FJ, Zhou WZ, Joseph P, Cumpson P, Papakonstantinou P (2014) A three-dimensional Mn3O4 network supported on a nitrogenated graphene electrocatalyst for efficient oxygen reduction reaction in alkaline media. J Mater Chem A 2:14493–14501CrossRef Bikkarolla SK, Yu FJ, Zhou WZ, Joseph P, Cumpson P, Papakonstantinou P (2014) A three-dimensional Mn3O4 network supported on a nitrogenated graphene electrocatalyst for efficient oxygen reduction reaction in alkaline media. J Mater Chem A 2:14493–14501CrossRef
14.
Zurück zum Zitat Bag S, Roy K, Gopinath CS, Raj CR (2014) Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn3O4 hybrid functional material for the electrocatalytic reduction of oxygen. ACS Appl Mater Interfaces 6:2692–2699CrossRef Bag S, Roy K, Gopinath CS, Raj CR (2014) Facile single-step synthesis of nitrogen-doped reduced graphene oxide-Mn3O4 hybrid functional material for the electrocatalytic reduction of oxygen. ACS Appl Mater Interfaces 6:2692–2699CrossRef
15.
Zurück zum Zitat Chai H, Xu JY, Han JL, Su Y, Sun ZP, Jia DZ, Zhou WY (2017) Facile synthesis of Mn3O4–rGO hybrid materials for the high-performance electrocatalytic reduction of oxygen. J Colloid Interface Sci 488:251–257CrossRef Chai H, Xu JY, Han JL, Su Y, Sun ZP, Jia DZ, Zhou WY (2017) Facile synthesis of Mn3O4–rGO hybrid materials for the high-performance electrocatalytic reduction of oxygen. J Colloid Interface Sci 488:251–257CrossRef
16.
Zurück zum Zitat Gao F, Qu JY, Zhao ZB, Zhou Q, Li BB, Qiu JS (2014) A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon 80:640–650CrossRef Gao F, Qu JY, Zhao ZB, Zhou Q, Li BB, Qiu JS (2014) A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon 80:640–650CrossRef
17.
Zurück zum Zitat Ma F, Yuan AB, Xu JQ (2014) Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries. ACS Appl Mater Interfaces 6:18129–18138CrossRef Ma F, Yuan AB, Xu JQ (2014) Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries. ACS Appl Mater Interfaces 6:18129–18138CrossRef
18.
Zurück zum Zitat Araujo MP, Soares O, Fernandes AJS, Pereira MFR, Freire C (2017) Tuning the surface chemistry of graphene flakes: new strategies for selective oxidation. RSC Adv 7:14290–14301CrossRef Araujo MP, Soares O, Fernandes AJS, Pereira MFR, Freire C (2017) Tuning the surface chemistry of graphene flakes: new strategies for selective oxidation. RSC Adv 7:14290–14301CrossRef
19.
Zurück zum Zitat Brodie BC (1860) Sur le poids atomique du graphite. Ann Chim Phys 59:466–472 Brodie BC (1860) Sur le poids atomique du graphite. Ann Chim Phys 59:466–472
20.
Zurück zum Zitat Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef
21.
Zurück zum Zitat Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef
22.
Zurück zum Zitat Xu Z, Yue M, Chen L, Zhou B, Shan M, Niu J, Li B, Qian X (2014) A facile preparation of edge etching, porous and highly reactive graphene nanosheets via ozone treatment at a moderate temperature. Chem Eng J 240:187–194CrossRef Xu Z, Yue M, Chen L, Zhou B, Shan M, Niu J, Li B, Qian X (2014) A facile preparation of edge etching, porous and highly reactive graphene nanosheets via ozone treatment at a moderate temperature. Chem Eng J 240:187–194CrossRef
23.
Zurück zum Zitat Gao W, Wu G, Janicke MT, Cullen DA, Mukundan R, Baldwin JK, Brosha EL, Galande C, Ajayan PM, More KL, Dattelbaum AM, Zelenay P (2014) Ozonated graphene oxide film as a proton-exchange membrane. Angew Chem Int Ed 53:3588–3593CrossRef Gao W, Wu G, Janicke MT, Cullen DA, Mukundan R, Baldwin JK, Brosha EL, Galande C, Ajayan PM, More KL, Dattelbaum AM, Zelenay P (2014) Ozonated graphene oxide film as a proton-exchange membrane. Angew Chem Int Ed 53:3588–3593CrossRef
24.
Zurück zum Zitat Raj BGS, Asiri AM, Wu JJ, Anandan S (2015) Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J Alloy Compd 636:234–240CrossRef Raj BGS, Asiri AM, Wu JJ, Anandan S (2015) Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J Alloy Compd 636:234–240CrossRef
25.
Zurück zum Zitat Gao SY, Fan H, Zhang SX (2014) Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity. J Mater Chem A 2:18263–18270CrossRef Gao SY, Fan H, Zhang SX (2014) Nitrogen-enriched carbon from bamboo fungus with superior oxygen reduction reaction activity. J Mater Chem A 2:18263–18270CrossRef
26.
Zurück zum Zitat Kumar K, Canaff C, Rousseau J, Arrii-Clacens S, Napporn TW, Habrioux A, Kokoh KB (2016) Effect of the oxide-carbon heterointerface on the activity of Co3O4/NRGO nanocomposites toward ORR and OER. J Phys Chem C 120:7949–7958CrossRef Kumar K, Canaff C, Rousseau J, Arrii-Clacens S, Napporn TW, Habrioux A, Kokoh KB (2016) Effect of the oxide-carbon heterointerface on the activity of Co3O4/NRGO nanocomposites toward ORR and OER. J Phys Chem C 120:7949–7958CrossRef
27.
Zurück zum Zitat Huang DK, Zhang BY, Zhang YB, Zhan F, Xu XB, Shen Y, Wang MK (2013) Electrochemically reduced graphene oxide multilayer films as metal-free electrocatalysts for oxygen reduction. J Mater Chem A 1:1415–1420CrossRef Huang DK, Zhang BY, Zhang YB, Zhan F, Xu XB, Shen Y, Wang MK (2013) Electrochemically reduced graphene oxide multilayer films as metal-free electrocatalysts for oxygen reduction. J Mater Chem A 1:1415–1420CrossRef
28.
Zurück zum Zitat Nunes M, Rocha IM, Fernandes DM, Mestre AS, Moura CN, Carvalho AP, Pereira MFR, Freire C (2015) Sucrose-derived activated carbons: electron transfer properties and application as oxygen reduction electrocatalysts. RSC Adv 5:102919–102931CrossRef Nunes M, Rocha IM, Fernandes DM, Mestre AS, Moura CN, Carvalho AP, Pereira MFR, Freire C (2015) Sucrose-derived activated carbons: electron transfer properties and application as oxygen reduction electrocatalysts. RSC Adv 5:102919–102931CrossRef
29.
Zurück zum Zitat Zhang H, Jin MS, Xia YN (2012) Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev 41:8035–8049CrossRef Zhang H, Jin MS, Xia YN (2012) Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev 41:8035–8049CrossRef
30.
Zurück zum Zitat Jiang ZQ, Jiang ZJ, Maiyalagan T, Manthiram A (2016) Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. J Mater Chem A 4:5877–5889CrossRef Jiang ZQ, Jiang ZJ, Maiyalagan T, Manthiram A (2016) Cobalt oxide-coated N- and B-doped graphene hollow spheres as bifunctional electrocatalysts for oxygen reduction and oxygen evolution reactions. J Mater Chem A 4:5877–5889CrossRef
31.
Zurück zum Zitat Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:13801CrossRef Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5:13801CrossRef
32.
Zurück zum Zitat Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145CrossRef Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145CrossRef
33.
Zurück zum Zitat Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786CrossRef Liang YY, Li YG, Wang HL, Zhou JG, Wang J, Regier T, Dai HJ (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780–786CrossRef
34.
Zurück zum Zitat Swesi AT, Masud J, Nath M (2016) Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ Sci 9:1771–1782CrossRef Swesi AT, Masud J, Nath M (2016) Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ Sci 9:1771–1782CrossRef
35.
Zurück zum Zitat Tian ZY, Kouotou PM, Bahlawane N, Ngamou PHT (2013) Synthesis of the catalytically active Mn3O4 spinel and its thermal properties. J Phys Chem C 117:6218–6224CrossRef Tian ZY, Kouotou PM, Bahlawane N, Ngamou PHT (2013) Synthesis of the catalytically active Mn3O4 spinel and its thermal properties. J Phys Chem C 117:6218–6224CrossRef
36.
Zurück zum Zitat Zhao Y, Li CG, Li FF, Shi Z, Feng SH (2011) One-step synthesis of highly water-dispersible Mn3O4 nanocrystals. Dalton Trans 40:583–588CrossRef Zhao Y, Li CG, Li FF, Shi Z, Feng SH (2011) One-step synthesis of highly water-dispersible Mn3O4 nanocrystals. Dalton Trans 40:583–588CrossRef
37.
Zurück zum Zitat Gui Z, Fan R, Chen XH, Wu YC (2001) A simple direct preparation of nanocrystalline gamma-Mn2O3 at ambient temperature. Inorg Chem Commun 4:294–296CrossRef Gui Z, Fan R, Chen XH, Wu YC (2001) A simple direct preparation of nanocrystalline gamma-Mn2O3 at ambient temperature. Inorg Chem Commun 4:294–296CrossRef
38.
Zurück zum Zitat He WL, Zhang YC, Zhang XX, Wang H, Yan H (2003) Low temperature preparation of nanocrystalline Mn2O3 via ethanol-thermal reduction of MnO2. J Cryst Growth 252:285–288CrossRef He WL, Zhang YC, Zhang XX, Wang H, Yan H (2003) Low temperature preparation of nanocrystalline Mn2O3 via ethanol-thermal reduction of MnO2. J Cryst Growth 252:285–288CrossRef
39.
Zurück zum Zitat Kim SC, Shim WG (2010) Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B Environ 98:180–185CrossRef Kim SC, Shim WG (2010) Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl Catal B Environ 98:180–185CrossRef
40.
Zurück zum Zitat Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotechnol 6:534CrossRef Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat Nanotechnol 6:534CrossRef
41.
Zurück zum Zitat Su Y, Chai H, Sun ZP, Liu T, Jia DZ, Zhou WY (2016) High-performance manganese nanoparticles on reduced graphene oxide for oxygen reduction reaction. Catal Lett 146:1019–1026CrossRef Su Y, Chai H, Sun ZP, Liu T, Jia DZ, Zhou WY (2016) High-performance manganese nanoparticles on reduced graphene oxide for oxygen reduction reaction. Catal Lett 146:1019–1026CrossRef
42.
Zurück zum Zitat Ahmed KAM, Zeng QM, Wu KB, Huang KX (2010) Mn3O4 nanoplates and nanoparticles: synthesis, characterization, electrochemical and catalytic properties. J Solid State Chem 183:744–751CrossRef Ahmed KAM, Zeng QM, Wu KB, Huang KX (2010) Mn3O4 nanoplates and nanoparticles: synthesis, characterization, electrochemical and catalytic properties. J Solid State Chem 183:744–751CrossRef
43.
Zurück zum Zitat Ghosh S, Acharyya SS, Sharma SK, Bal R (2016) Fabrication of Ag/Mn3O4 nano-architectures for the one-step selective oxidation of 3-picoline to niacin: a key to vitamin B-3 production. Catal Sci Technol 6:4644–4654CrossRef Ghosh S, Acharyya SS, Sharma SK, Bal R (2016) Fabrication of Ag/Mn3O4 nano-architectures for the one-step selective oxidation of 3-picoline to niacin: a key to vitamin B-3 production. Catal Sci Technol 6:4644–4654CrossRef
44.
Zurück zum Zitat Koza JA, Schroen IP, Willmering MM, Switzer JA (2014) Electrochemical synthesis and nonvolatile resistance switching of Mn3O4 thin films. Chem Mat 26:4425–4432CrossRef Koza JA, Schroen IP, Willmering MM, Switzer JA (2014) Electrochemical synthesis and nonvolatile resistance switching of Mn3O4 thin films. Chem Mat 26:4425–4432CrossRef
45.
Zurück zum Zitat Ramirez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S (2014) Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C 118:14073–14081CrossRef Ramirez A, Hillebrand P, Stellmach D, May MM, Bogdanoff P, Fiechter S (2014) Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C 118:14073–14081CrossRef
46.
Zurück zum Zitat Liew KH, Rocha M, Pereira C, Pires AL, Pereira AM, Yarmo MA, Juan JC, Yusop RM, Peixoto AF, Freire C (2017) Highly active ruthenium supported on magnetically recyclable chitosan-based nanocatalyst for nitroarenes reduction. ChemCatChem 9:3930–3941CrossRef Liew KH, Rocha M, Pereira C, Pires AL, Pereira AM, Yarmo MA, Juan JC, Yusop RM, Peixoto AF, Freire C (2017) Highly active ruthenium supported on magnetically recyclable chitosan-based nanocatalyst for nitroarenes reduction. ChemCatChem 9:3930–3941CrossRef
47.
Zurück zum Zitat Wu KH, Zeng QC, Zhang BS, Leng X, Su DS, Gentle IR, Wang DW (2015) Structural origin of the activity in Mn3O4-graphene oxide hybrid electrocatalysts for the oxygen reduction reaction. Chemsuschem 8:3331–3339CrossRef Wu KH, Zeng QC, Zhang BS, Leng X, Su DS, Gentle IR, Wang DW (2015) Structural origin of the activity in Mn3O4-graphene oxide hybrid electrocatalysts for the oxygen reduction reaction. Chemsuschem 8:3331–3339CrossRef
48.
Zurück zum Zitat Malavasi L, Galinetto P, Mozzati MC, Azzoni CB, Flor G (2002) Raman spectroscopy of AMn2O4 (A = Mn, Mg and Zn) spinels. Phys Chem Chem Phys 4:3876–3880CrossRef Malavasi L, Galinetto P, Mozzati MC, Azzoni CB, Flor G (2002) Raman spectroscopy of AMn2O4 (A = Mn, Mg and Zn) spinels. Phys Chem Chem Phys 4:3876–3880CrossRef
49.
Zurück zum Zitat Anilkumar KM, Manoj M, Jinisha B, Pradeep VS, Jayalekshmi S (2017) Mn3O4/reduced graphene oxide nanocomposite electrodes with tailored morphology for high power supercapacitor applications. Electrochim Acta 236:424–433CrossRef Anilkumar KM, Manoj M, Jinisha B, Pradeep VS, Jayalekshmi S (2017) Mn3O4/reduced graphene oxide nanocomposite electrodes with tailored morphology for high power supercapacitor applications. Electrochim Acta 236:424–433CrossRef
50.
Zurück zum Zitat Chen JY, Wu XF, Gong Y, Wang PF, Li WH, Tan QQ, Chen YF (2017) Synthesis of Mn3O4/N-doped graphene hybrid and its improved electrochemical performance for lithium-ion batteries. Ceram Int 43:4655–4662CrossRef Chen JY, Wu XF, Gong Y, Wang PF, Li WH, Tan QQ, Chen YF (2017) Synthesis of Mn3O4/N-doped graphene hybrid and its improved electrochemical performance for lithium-ion batteries. Ceram Int 43:4655–4662CrossRef
51.
Zurück zum Zitat Yang LF, Cheng S, Ji X, Jiang Y, Zhou J, Liu ML (2015) Investigations into the origin of pseudocapacitive behavior of Mn3O4 electrodes using in operando Raman spectroscopy. J Mater Chem A 3:7338–7344CrossRef Yang LF, Cheng S, Ji X, Jiang Y, Zhou J, Liu ML (2015) Investigations into the origin of pseudocapacitive behavior of Mn3O4 electrodes using in operando Raman spectroscopy. J Mater Chem A 3:7338–7344CrossRef
52.
Zurück zum Zitat Lee JS, Lee T, Song HK, Cho J, Kim BS (2011) Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn-air batteries. Energy Environ Sci 4:4148–4154CrossRef Lee JS, Lee T, Song HK, Cho J, Kim BS (2011) Ionic liquid modified graphene nanosheets anchoring manganese oxide nanoparticles as efficient electrocatalysts for Zn-air batteries. Energy Environ Sci 4:4148–4154CrossRef
53.
Zurück zum Zitat Duan JJ, Zheng Y, Chen S, Tang YH, Jaroniec M, Qiao SZ (2013) Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chem Commun 49:7705–7707CrossRef Duan JJ, Zheng Y, Chen S, Tang YH, Jaroniec M, Qiao SZ (2013) Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chem Commun 49:7705–7707CrossRef
54.
Zurück zum Zitat Yan WN, Yang ZR, Bian WY, Yang RZ (2015) FeCo2O4/hollow graphene spheres hybrid with enhanced electrocatalytic activities for oxygen reduction and oxygen evolution reaction. Carbon 92:74–83CrossRef Yan WN, Yang ZR, Bian WY, Yang RZ (2015) FeCo2O4/hollow graphene spheres hybrid with enhanced electrocatalytic activities for oxygen reduction and oxygen evolution reaction. Carbon 92:74–83CrossRef
55.
Zurück zum Zitat Rocha IM, Soares O, Figueiredo JL, Freire C, Pereira MFR (2017) Bifunctionality of the pyrone functional group in oxidized carbon nanotubes towards oxygen reduction reaction. Catal Sci Technol 7:1868–1879CrossRef Rocha IM, Soares O, Figueiredo JL, Freire C, Pereira MFR (2017) Bifunctionality of the pyrone functional group in oxidized carbon nanotubes towards oxygen reduction reaction. Catal Sci Technol 7:1868–1879CrossRef
56.
Zurück zum Zitat Jeon IY, Choi HJ, Choi M, Seo JM, Jung SM, Kim MJ, Zhang S, Zhang LP, Xia ZH, Dai LM, Park N, Baek JB (2013) Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci Rep 3:1810CrossRef Jeon IY, Choi HJ, Choi M, Seo JM, Jung SM, Kim MJ, Zhang S, Zhang LP, Xia ZH, Dai LM, Park N, Baek JB (2013) Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci Rep 3:1810CrossRef
Metadaten
Titel
Electrocatalytic activity of new Mn3O4@oxidized graphene flakes nanocomposites toward oxygen reduction reaction
verfasst von
Mariana P. Araújo
Marta Nunes
Inês M. Rocha
M. F. R. Pereira
Cristina Freire
Publikationsdatum
19.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03508-6

Weitere Artikel der Ausgabe 12/2019

Journal of Materials Science 12/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.