Skip to main content
Erschienen in: Journal of Materials Science 7/2018

18.12.2017 | Energy materials

Electrochemical analysis of nanoporous carbons derived from activation of polypyrrole for stable supercapacitors

verfasst von: Belinda Moyo, Damilola Momodu, Oladepo Fasakin, Abdulhakeem Bello, Julien Dangbegnon, Ncholu Manyala

Erschienen in: Journal of Materials Science | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, activated carbon was derived from polypyrrole (PPY) using a K2CO3 activating agent with varying mass ratios of the activating agent to PPY polymer (AA:PP), for the optimization of the hierarchical pore structure necessary for improved electrochemical performance. The textural study of the as-synthesized samples (AC-PPY) displayed an increase in the specific surface area (SSA) and pore volume with increase in the amount of the activating agent up to a threshold for AA:PP of 6:1. The increase in the SSA was due to the presence of hierarchical pores in the material structure for efficient ion penetration. Initial half-cell electrochemical tests performed on the different activated carbon samples with varying SSA revealed superior charge storage capability for the 6:1 sample in both negative and positive operating potentials. The highest current response value was obtained from the signatory EDLC-type cyclic voltammogram, along with the longest discharge time from the chronopotentiometry plot as a result of the lowest ion diffusion length for successful fast ion transport reported from the impedance spectroscopy analysis. A full symmetric device (AC-PPY-6) assembled from the best material using KNO3 neutral electrolyte yielded a specific capacitance of 140 F g−1, 12.4 Wh kg−1 energy density at 0.5 A g−1 gravimetric current. An energy density of 7.12 Wh kg−1 was still maintained at a specific current of 2 A g−1. Interestingly, after the ageing test to ascertain device stability, the device energy density increased back to 12.2 Wh kg−1 as a result of the creation of additional active pores within the nanostructured material for charge storage via voltage holding tests which also led to the enhancement in specific capacitance to 137.5 F g−1 at 2 A g−1. A 99.0% capacitance retention was recorded even after 10000 cycles at a moderate specific current of 2 A g−1. A substantial approach was used to elucidate the degradation phenomena from the device self-discharge profile, which showcased the device retaining up to 70% of its operating potential after 80 h (> 3 days) on open circuit. The results obtained demonstrate the potential of adopting the AC-PPY material in potential device for energy storage purposes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 80(343):1210–1211CrossRef Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 80(343):1210–1211CrossRef
2.
Zurück zum Zitat Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647CrossRef Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647CrossRef
3.
Zurück zum Zitat Chabi S, Peng C, Hu D, Zhu Y (2014) Ideal three-dimensional electrode structures for electrochemical energy storage. Adv Mater 26:2440–2445CrossRef Chabi S, Peng C, Hu D, Zhu Y (2014) Ideal three-dimensional electrode structures for electrochemical energy storage. Adv Mater 26:2440–2445CrossRef
4.
Zurück zum Zitat Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251, 2283CrossRef Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251, 2283CrossRef
5.
Zurück zum Zitat Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRef Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157:11–27CrossRef
6.
Zurück zum Zitat Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRef
7.
Zurück zum Zitat Simon P, Gogotsi Y (2013) Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc Chem Res 46:1094–1103CrossRef Simon P, Gogotsi Y (2013) Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc Chem Res 46:1094–1103CrossRef
8.
Zurück zum Zitat Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24:4473–4498CrossRef Nishihara H, Kyotani T (2012) Templated nanocarbons for energy storage. Adv Mater 24:4473–4498CrossRef
9.
Zurück zum Zitat Yu C, Fan J, Tian B et al (2002) High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv Mater 14:1742–1745CrossRef Yu C, Fan J, Tian B et al (2002) High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Adv Mater 14:1742–1745CrossRef
10.
Zurück zum Zitat Meng W, Chen W, Zhao L, Huang Y, Zhu M, Huang Y, Fu Y, Geng F, Yu J, Chen X, Zhi C (2014) Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8:133–140CrossRef Meng W, Chen W, Zhao L, Huang Y, Zhu M, Huang Y, Fu Y, Geng F, Yu J, Chen X, Zhi C (2014) Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8:133–140CrossRef
11.
Zurück zum Zitat Kyotani T, Ma Z, Tomita A (2003) Template synthesis of novel porous carbons using various types of zeolites. Carbon 41:1451–1459CrossRef Kyotani T, Ma Z, Tomita A (2003) Template synthesis of novel porous carbons using various types of zeolites. Carbon 41:1451–1459CrossRef
12.
Zurück zum Zitat Basavalingu B, Calderon Moreno JM, Byrappa K et al (2001) Decomposition of silicon carbide in the presence of organic compounds under hydrothermal conditions. Carbon 39:1763–1766CrossRef Basavalingu B, Calderon Moreno JM, Byrappa K et al (2001) Decomposition of silicon carbide in the presence of organic compounds under hydrothermal conditions. Carbon 39:1763–1766CrossRef
13.
Zurück zum Zitat Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A et al (2003) Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41:267–275CrossRef Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A et al (2003) Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41:267–275CrossRef
14.
Zurück zum Zitat Raymundo-Pinero E, Azais P, Cacciaguerra T et al (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795CrossRef Raymundo-Pinero E, Azais P, Cacciaguerra T et al (2005) KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon 43:786–795CrossRef
15.
Zurück zum Zitat Wang T, Tan S, Liang C (2009) Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon 47:1880–1883CrossRef Wang T, Tan S, Liang C (2009) Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation. Carbon 47:1880–1883CrossRef
16.
Zurück zum Zitat Liu Q-S, Zheng T, Wang P, Guo L (2010) Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind Crops Prod 31:233–238CrossRef Liu Q-S, Zheng T, Wang P, Guo L (2010) Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Ind Crops Prod 31:233–238CrossRef
17.
Zurück zum Zitat Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710CrossRef Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 22:23710CrossRef
18.
Zurück zum Zitat Wei L, Sevilla M, Fuertes AB et al (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1:356–361CrossRef Wei L, Sevilla M, Fuertes AB et al (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1:356–361CrossRef
19.
Zurück zum Zitat Qie L, Chen W, Xu H et al (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6:2497CrossRef Qie L, Chen W, Xu H et al (2013) Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. Energy Environ Sci 6:2497CrossRef
20.
Zurück zum Zitat Sevilla M, Mokaya R, Fuertes AB (2011) Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. Energy Environ Sci 4:2930–2936CrossRef Sevilla M, Mokaya R, Fuertes AB (2011) Ultrahigh surface area polypyrrole-based carbons with superior performance for hydrogen storage. Energy Environ Sci 4:2930–2936CrossRef
21.
Zurück zum Zitat Bello A, Manyala N, Barzegar F, Khaleed AA, Momodu DY, Dangebegnon JK (2016) Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv 6:1800–1809CrossRef Bello A, Manyala N, Barzegar F, Khaleed AA, Momodu DY, Dangebegnon JK (2016) Renewable pine cone biomass derived carbon materials for supercapacitor application. RSC Adv 6:1800–1809CrossRef
22.
Zurück zum Zitat Momodu D, Madito M, Barzegar F, Bello A, Khaleed AA, Olaniyan O, Dangbegnon J, Manyala N (2016) Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. J Solid State Electrochem 21:859–872CrossRef Momodu D, Madito M, Barzegar F, Bello A, Khaleed AA, Olaniyan O, Dangbegnon J, Manyala N (2016) Activated carbon derived from tree bark biomass with promising material properties for supercapacitors. J Solid State Electrochem 21:859–872CrossRef
23.
Zurück zum Zitat Sevilla M, Fuertes AB (2016) A green approach to high-performance supercapacitor electrodes: the chemical activation of hydrochar with potassium bicarbonate. Chemsuschem 9:1880–1888CrossRef Sevilla M, Fuertes AB (2016) A green approach to high-performance supercapacitor electrodes: the chemical activation of hydrochar with potassium bicarbonate. Chemsuschem 9:1880–1888CrossRef
24.
Zurück zum Zitat Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12CrossRef Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12CrossRef
25.
Zurück zum Zitat Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xie Q, Huang Y, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438CrossRef Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xie Q, Huang Y, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438CrossRef
26.
Zurück zum Zitat Huang Y, Tao J, Meng W, Zhu M, Huang Y, Fu Y, Gao Y, Zhi C (2015) Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11:518–525CrossRef Huang Y, Tao J, Meng W, Zhu M, Huang Y, Fu Y, Gao Y, Zhi C (2015) Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability. Nano Energy 11:518–525CrossRef
27.
Zurück zum Zitat Yang P, Mai W (2014) Flexible solid-state electrochemical supercapacitors. Nano Energy 8:274–290CrossRef Yang P, Mai W (2014) Flexible solid-state electrochemical supercapacitors. Nano Energy 8:274–290CrossRef
28.
Zurück zum Zitat Bello A, Barzegar F, Madito MJ et al (2017) Floating of PPY derived carbon based symmetric supercapacitor in alkaline electrolyte. ECS Trans 6:3–5 Bello A, Barzegar F, Madito MJ et al (2017) Floating of PPY derived carbon based symmetric supercapacitor in alkaline electrolyte. ECS Trans 6:3–5
29.
Zurück zum Zitat Bello A, Barzegar F, Madito MJ, Momodu DY, Khaleed AA, Mashikhwa TM, Dangbegnon JK, Manyala N (2016) Stability studies of polypyrrole-derived carbon based symmetric supercapacitor via potentiostatic floating test. Electrochim Acta 213:107–114CrossRef Bello A, Barzegar F, Madito MJ, Momodu DY, Khaleed AA, Mashikhwa TM, Dangbegnon JK, Manyala N (2016) Stability studies of polypyrrole-derived carbon based symmetric supercapacitor via potentiostatic floating test. Electrochim Acta 213:107–114CrossRef
30.
Zurück zum Zitat Yao L, Yang G, Han P, Tang Z, Yang J (2016) Three-dimensional beehive-like hierarchical porous polyacrylonitrile-based carbons as a high performance supercapacitor electrodes. J Power Sources 315:209–217CrossRef Yao L, Yang G, Han P, Tang Z, Yang J (2016) Three-dimensional beehive-like hierarchical porous polyacrylonitrile-based carbons as a high performance supercapacitor electrodes. J Power Sources 315:209–217CrossRef
31.
Zurück zum Zitat Mao Y, Duan H, Xu B et al (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 5:7950CrossRef Mao Y, Duan H, Xu B et al (2012) Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 5:7950CrossRef
32.
Zurück zum Zitat Sadezky A, Muckenhuber H, Grothe H, Grothe H, Niesnner R, Poschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRef Sadezky A, Muckenhuber H, Grothe H, Grothe H, Niesnner R, Poschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742CrossRef
33.
Zurück zum Zitat Zhang H, Zhang L, Chen J, Su H, Liu F, Yang W (2016) One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors. J Power Sources 315:120–126CrossRef Zhang H, Zhang L, Chen J, Su H, Liu F, Yang W (2016) One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors. J Power Sources 315:120–126CrossRef
34.
Zurück zum Zitat Momodu DYY, Barzegar F, Abdulhakeem B, Dangbegnon J, Masikhwa T, Madito M, Manyala N (2015) Simonkolleite-graphene foam composites and their superior electrochemical performance. Electrochim Acta 151:591–598CrossRef Momodu DYY, Barzegar F, Abdulhakeem B, Dangbegnon J, Masikhwa T, Madito M, Manyala N (2015) Simonkolleite-graphene foam composites and their superior electrochemical performance. Electrochim Acta 151:591–598CrossRef
35.
Zurück zum Zitat Hu S, Zhang S, Pan N, Lo Hsieh Y (2014) High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J Power Sources 270:106–112CrossRef Hu S, Zhang S, Pan N, Lo Hsieh Y (2014) High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J Power Sources 270:106–112CrossRef
36.
Zurück zum Zitat Peng C, Lang J, Xu S, Wang X (2014) Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors. RSC Adv 4:54662–54667CrossRef Peng C, Lang J, Xu S, Wang X (2014) Oxygen-enriched activated carbons from pomelo peel in high energy density supercapacitors. RSC Adv 4:54662–54667CrossRef
37.
Zurück zum Zitat Cherusseri J, Kar KK (2016) Hierarchical carbon nanopetal/polypyrrole nanocomposite electrodes with brush-like architecture for supercapacitors. Phys Chem Chem Phys 18:8587–8597CrossRef Cherusseri J, Kar KK (2016) Hierarchical carbon nanopetal/polypyrrole nanocomposite electrodes with brush-like architecture for supercapacitors. Phys Chem Chem Phys 18:8587–8597CrossRef
38.
Zurück zum Zitat Chang Y, Han G, Chang Y, Xiao Y, Hou W, Zhou W (2017) Flexible and compressible electrochemical capacitors based on polypyrrole/carbon fibers integrated into sponge. J Alloys Compd 708:1206–1215CrossRef Chang Y, Han G, Chang Y, Xiao Y, Hou W, Zhou W (2017) Flexible and compressible electrochemical capacitors based on polypyrrole/carbon fibers integrated into sponge. J Alloys Compd 708:1206–1215CrossRef
39.
Zurück zum Zitat Shivakumara S, Kishore B, Penki TR, Munichandraiah N (2014) Symmetric supercapacitor based on partially exfoliated and reduced graphite oxide in neutral aqueous electrolyte. Solid State Commun 199:26–32CrossRef Shivakumara S, Kishore B, Penki TR, Munichandraiah N (2014) Symmetric supercapacitor based on partially exfoliated and reduced graphite oxide in neutral aqueous electrolyte. Solid State Commun 199:26–32CrossRef
40.
Zurück zum Zitat Bello A, Barzegar F, Momodu D, Dangbegnon J, Taghizadeh F, Manyala N (2015) Symmetric supercapacitors based on porous 3D interconnected carbon framework. Electrochim Acta 151:386–392CrossRef Bello A, Barzegar F, Momodu D, Dangbegnon J, Taghizadeh F, Manyala N (2015) Symmetric supercapacitors based on porous 3D interconnected carbon framework. Electrochim Acta 151:386–392CrossRef
41.
Zurück zum Zitat He X, Li R, Qiu J et al (2012) Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon 50:4911–4921CrossRef He X, Li R, Qiu J et al (2012) Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon 50:4911–4921CrossRef
42.
Zurück zum Zitat Hao P, Zhao Z, Tian J et al (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129CrossRef Hao P, Zhao Z, Tian J et al (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129CrossRef
43.
Zurück zum Zitat Wang Q, Yan J, Xiao Y et al (2013) Interconnected porous and nitrogen-doped carbon network for supercapacitors with high rate capability and energy density. Electrochim Acta 114:165–172CrossRef Wang Q, Yan J, Xiao Y et al (2013) Interconnected porous and nitrogen-doped carbon network for supercapacitors with high rate capability and energy density. Electrochim Acta 114:165–172CrossRef
44.
Zurück zum Zitat Andreas HA (2015) Self-discharge in electrochemical capacitors: a perspective article. J Electrochem Soc 162:A5047–A5053CrossRef Andreas HA (2015) Self-discharge in electrochemical capacitors: a perspective article. J Electrochem Soc 162:A5047–A5053CrossRef
45.
Zurück zum Zitat Oickle AM (2013) A systematic study of self-discharge mechanisms in carbon-based, aqueous electrolyte electrochemical capacitors. Ph.D. dissertation, Chemistry Department, Dalhousie University Oickle AM (2013) A systematic study of self-discharge mechanisms in carbon-based, aqueous electrolyte electrochemical capacitors. Ph.D. dissertation, Chemistry Department, Dalhousie University
46.
Zurück zum Zitat Reddy RN, Reddy RG (2006) Porous structured vanadium oxide electrode material for electrochemical capacitors. J Power Sources 156:700–704CrossRef Reddy RN, Reddy RG (2006) Porous structured vanadium oxide electrode material for electrochemical capacitors. J Power Sources 156:700–704CrossRef
47.
Zurück zum Zitat Lao ZJ, Konstantinov K, Tournaire Y et al (2006) Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors. J Power Sources 162:1451–1454CrossRef Lao ZJ, Konstantinov K, Tournaire Y et al (2006) Synthesis of vanadium pentoxide powders with enhanced surface-area for electrochemical capacitors. J Power Sources 162:1451–1454CrossRef
Metadaten
Titel
Electrochemical analysis of nanoporous carbons derived from activation of polypyrrole for stable supercapacitors
verfasst von
Belinda Moyo
Damilola Momodu
Oladepo Fasakin
Abdulhakeem Bello
Julien Dangbegnon
Ncholu Manyala
Publikationsdatum
18.12.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1911-y

Weitere Artikel der Ausgabe 7/2018

Journal of Materials Science 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.