Skip to main content
Erschienen in: Surface Engineering and Applied Electrochemistry 2/2023

01.04.2023

Electrochemical Energy Storage Capacity of Surface Engineered Renewable Carbon Derived from Industrial Tea Waste by HNO3 and K2CO3

verfasst von: Gökçen Akgül, Kürşad Oğuz Oskay, Merve Buldu-Akturk, Ayşenur Karamustafa, Sözer Sözer, Tuğba Bolat Maden, Emre Erdem

Erschienen in: Surface Engineering and Applied Electrochemistry | Ausgabe 2/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Direct electrical energy storage by supercapacitors is the leading energy storage technology. The performance of supercapacitors depends mainly upon the electrode material constituents. Carbon is the preferred energy storage material for its some main properties such as a large surface area, electrical conductivity, porosity, thermal stability, etc. Sustainable, green, renewable, low-cost and environmentally friendly carbon energy storage materials can be obtained from biomass. A larger surface area and tunable micro-porosity, which are the most important advantages, could be achieved by chemical activation of K2CO3 and HNO3. In this work, the effect of K2CO3 and HNO3 on the porosity and the electrochemical energy storage capacity of carbon derived from biomass made from the industrial tea waste were evaluated. A carbon material with a high performance of energy storage exhibiting 460 F g–1, with a surface area of 1261 m2 g–1, could be developed by activation of K2CO3 in the 1 : 1 optimum ratio (w/w). The HNO3 treatment also increased the capacitance but to a very low degree.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Dubey, R. and Guruviah, V., Review of carbon-based electrode materials for supercapacitor energy storage, Ionics, 2019, vol. 25, p. 1419.CrossRef Dubey, R. and Guruviah, V., Review of carbon-based electrode materials for supercapacitor energy storage, Ionics, 2019, vol. 25, p. 1419.CrossRef
5.
Zurück zum Zitat Ratajczak, P., Suss, M.E., Kaasik, F., and Béguin, F., Carbon electrodes for capacitive technologies, Energy Storage Mater., 2019, vol. 16, p. 126.CrossRef Ratajczak, P., Suss, M.E., Kaasik, F., and Béguin, F., Carbon electrodes for capacitive technologies, Energy Storage Mater., 2019, vol. 16, p. 126.CrossRef
6.
Zurück zum Zitat Jose, J., Thomas, V., Vinod, V., Abraham, R., et al., Nanocellulose based functional materials for supercapacitor applications, J. Sci. Adv. Mater. Devices, 2019, vol. 4, p. 333.CrossRef Jose, J., Thomas, V., Vinod, V., Abraham, R., et al., Nanocellulose based functional materials for supercapacitor applications, J. Sci. Adv. Mater. Devices, 2019, vol. 4, p. 333.CrossRef
7.
Zurück zum Zitat Yang, H., Ye, S., Zhou, J., and Liang, T., Biomass-derived porous carbon materials for supercapacitor, Front Chem., 2019, vol. 7, p. 1.CrossRef Yang, H., Ye, S., Zhou, J., and Liang, T., Biomass-derived porous carbon materials for supercapacitor, Front Chem., 2019, vol. 7, p. 1.CrossRef
8.
Zurück zum Zitat Liu, Y., Chen, J., Cui B., Yin, C., et al., Design and preparation of biomass-derived carbon materials for supercapacitors: A review, J. Carbon Res., 2018, vol. 4, p. 53.CrossRef Liu, Y., Chen, J., Cui B., Yin, C., et al., Design and preparation of biomass-derived carbon materials for supercapacitors: A review, J. Carbon Res., 2018, vol. 4, p. 53.CrossRef
10.
Zurück zum Zitat Zhang, S., Wu, C., Wu, W., Zhou, C., et al., High performance flexible supercapacitors based on porous wood carbon slices derived from Chinese fir wood scraps, J. Power Sources, 2019, vol. 424, p. 1.CrossRef Zhang, S., Wu, C., Wu, W., Zhou, C., et al., High performance flexible supercapacitors based on porous wood carbon slices derived from Chinese fir wood scraps, J. Power Sources, 2019, vol. 424, p. 1.CrossRef
11.
Zurück zum Zitat Liang, T., Chen, C., Li, X., and Zhang, J., Popcorn-derived porous carbon for energy storage and CO2 capture, Langmuir, 2016, vol. 32, p. 8042.CrossRef Liang, T., Chen, C., Li, X., and Zhang, J., Popcorn-derived porous carbon for energy storage and CO2 capture, Langmuir, 2016, vol. 32, p. 8042.CrossRef
12.
Zurück zum Zitat Liu, Y., An, Z., Wu, M., Yuan, A., et al., Peony pollen derived nitrogen-doped activated carbon for supercapacitor application, Chinese Chem. Lett., 2020, vol. 31, p. 1644.CrossRef Liu, Y., An, Z., Wu, M., Yuan, A., et al., Peony pollen derived nitrogen-doped activated carbon for supercapacitor application, Chinese Chem. Lett., 2020, vol. 31, p. 1644.CrossRef
14.
Zurück zum Zitat Mehare, M.D., Deshmukh, A.D., and Dhoble, S.J., Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application, J. Mater. Sci., 2020, vol. 55, p. 4213.CrossRef Mehare, M.D., Deshmukh, A.D., and Dhoble, S.J., Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application, J. Mater. Sci., 2020, vol. 55, p. 4213.CrossRef
15.
Zurück zum Zitat Genc, R., Alas, M.O., Harputlu, E., Repp, S., et al., High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots, Sci. Rep., 2017, vol. 7, p. 1.CrossRef Genc, R., Alas, M.O., Harputlu, E., Repp, S., et al., High-capacitance hybrid supercapacitor based on multi-colored fluorescent carbon-dots, Sci. Rep., 2017, vol. 7, p. 1.CrossRef
18.
Zurück zum Zitat Cheng, B., Zeng, R.J., and Jiang, H., Recent developments of post-modification of biochar for electrochemical energy storage, Bioresour. Technol., 2017, vol. 246, p. 224.CrossRef Cheng, B., Zeng, R.J., and Jiang, H., Recent developments of post-modification of biochar for electrochemical energy storage, Bioresour. Technol., 2017, vol. 246, p. 224.CrossRef
19.
Zurück zum Zitat Singhal, K., Mehtab, S., Upreti, B.B., and Zaidi, M.G.H., Recent advances in biochar modification for energy storage in supercapacitors: A review, Adv. Matt. Lett., 2021, vol. 12, p. 21021599.CrossRef Singhal, K., Mehtab, S., Upreti, B.B., and Zaidi, M.G.H., Recent advances in biochar modification for energy storage in supercapacitors: A review, Adv. Matt. Lett., 2021, vol. 12, p. 21021599.CrossRef
20.
Zurück zum Zitat Fu, Y., Zhang, N., Shen, Y., Ge, X., et al., Micro-mesoporous carbons from original and pelletized rice husk via one-step catalytic pyrolysis, Bioresour. Technol., 2018, vol. 269, p. 67.CrossRef Fu, Y., Zhang, N., Shen, Y., Ge, X., et al., Micro-mesoporous carbons from original and pelletized rice husk via one-step catalytic pyrolysis, Bioresour. Technol., 2018, vol. 269, p. 67.CrossRef
21.
Zurück zum Zitat Díez, N., Ferrero, G.A., Fuertes, A.B., and Sevilla, M., Sustainable salt template assisted chemical activation for the production of porous carbons with enhanced power handling ability in supercapacitors, Batter. Supercaps, 2019, vol. 2, p. 1. Díez, N., Ferrero, G.A., Fuertes, A.B., and Sevilla, M., Sustainable salt template assisted chemical activation for the production of porous carbons with enhanced power handling ability in supercapacitors, Batter. Supercaps, 2019, vol. 2, p. 1.
22.
Zurück zum Zitat Li, L., Jia, C., Zhu, X., and Zhang, S., Utilization of cigarette butt waste as functional carbon precursor for supercapacitors and adsorbents, J. Cleaner Prod., 2020, vol. 256, p. 120326.CrossRef Li, L., Jia, C., Zhu, X., and Zhang, S., Utilization of cigarette butt waste as functional carbon precursor for supercapacitors and adsorbents, J. Cleaner Prod., 2020, vol. 256, p. 120326.CrossRef
23.
Zurück zum Zitat Qiu, Z., Wang, Y., Bi, X., Zhou, T., et al., Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors, J. Power Sources, 2018, vol. 376, p. 82.CrossRef Qiu, Z., Wang, Y., Bi, X., Zhou, T., et al., Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors, J. Power Sources, 2018, vol. 376, p. 82.CrossRef
24.
Zurück zum Zitat Tang, W., Zhang, Y., Zhong, Y., Shen, T., et al., Natural biomass-derived carbons for electrochemical energy storage, Mater. Res. Bull., 2017, vol. 88, p. 234.CrossRef Tang, W., Zhang, Y., Zhong, Y., Shen, T., et al., Natural biomass-derived carbons for electrochemical energy storage, Mater. Res. Bull., 2017, vol. 88, p. 234.CrossRef
25.
Zurück zum Zitat Pourhosseini, S.E.M., Norouzi, O., and Naderi, H.R., Study of micro/macro ordered porous carbon with olive-shaped structure derived from Cladophora glomerata macroalgae as efficient working electrodes of supercapacitors, Biomass and Bioenergy, 2017, vol. 107, p. 287.CrossRef Pourhosseini, S.E.M., Norouzi, O., and Naderi, H.R., Study of micro/macro ordered porous carbon with olive-shaped structure derived from Cladophora glomerata macroalgae as efficient working electrodes of supercapacitors, Biomass and Bioenergy, 2017, vol. 107, p. 287.CrossRef
26.
Zurück zum Zitat Kouchachvili, L. and Entchev, E., Ag/Biochar composite for supercapacitor electrodes, Mater. Today Energy, 2017, vol. 6, p. 136.CrossRef Kouchachvili, L. and Entchev, E., Ag/Biochar composite for supercapacitor electrodes, Mater. Today Energy, 2017, vol. 6, p. 136.CrossRef
27.
Zurück zum Zitat Genovese, M., Jiang, J., Lian, K., and Holm, N., High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob, J. Mater. Chem. A, 2015, vol. 3, p. 2903.CrossRef Genovese, M., Jiang, J., Lian, K., and Holm, N., High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob, J. Mater. Chem. A, 2015, vol. 3, p. 2903.CrossRef
28.
Zurück zum Zitat Jin, H., Wang, X., Gu, Z., and Polin, J., Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation, J. Power Sources, 2013, vol. 236, p. 285.CrossRef Jin, H., Wang, X., Gu, Z., and Polin, J., Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation, J. Power Sources, 2013, vol. 236, p. 285.CrossRef
30.
Zurück zum Zitat Hagemann, N., Spokas, K., Schmidt, H.P., Kägi, R., et al., Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs, Water, 2018, vol. 10, no. 182, p. 1.CrossRef Hagemann, N., Spokas, K., Schmidt, H.P., Kägi, R., et al., Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs, Water, 2018, vol. 10, no. 182, p. 1.CrossRef
31.
Zurück zum Zitat Standardized Product Definition and Product Testing Guidelines for Biochar, IBI-STD-2.1, 2015, pp. 1–61. Standardized Product Definition and Product Testing Guidelines for Biochar, IBI-STD-2.1, 2015, pp. 1–61.
32.
Zurück zum Zitat Mu, J., Li, Q., Kong, X., Wu, X., et al., Characterization of hierarchical porous carbons made from bean curd via K2CO3 activation as a supercapacitor electrode, ChemElectroChem, 2019, vol. 6, p. 4022.CrossRef Mu, J., Li, Q., Kong, X., Wu, X., et al., Characterization of hierarchical porous carbons made from bean curd via K2CO3 activation as a supercapacitor electrode, ChemElectroChem, 2019, vol. 6, p. 4022.CrossRef
33.
Zurück zum Zitat Akgül, G., Iglesias, D., Ocon, P., and Moreno Jiménez, E., Valorization of tea-waste biochar for energy storage, Bioenergy Res., 2019, vol. 12, p. 1012.CrossRef Akgül, G., Iglesias, D., Ocon, P., and Moreno Jiménez, E., Valorization of tea-waste biochar for energy storage, Bioenergy Res., 2019, vol. 12, p. 1012.CrossRef
34.
Zurück zum Zitat Chang, K., World Tea Production and Trade. Current and Future Development, Rome: Food and Agriculture Organization of the United Nations, Rome, 2015. https://www.fao.org/3/i4480e/i4480e.pdf. Chang, K., World Tea Production and Trade. Current and Future Development, Rome: Food and Agriculture Organization of the United Nations, Rome, 2015. https://www.fao.org/3/i4480e/i4480e.pdf.
35.
Zurück zum Zitat Akgül, G. and Bıçakçı, S.N., Optical and electrical properties of refined carbon derived from industrial tea waste, Mater. Res. Express, 2020, vol. 7, p. 045604.CrossRef Akgül, G. and Bıçakçı, S.N., Optical and electrical properties of refined carbon derived from industrial tea waste, Mater. Res. Express, 2020, vol. 7, p. 045604.CrossRef
36.
Zurück zum Zitat Kong, L.B., Que, W., Liu, L., Boey, F.Y.C., et al., Nanomaterials for Supercapacitors, Kong, L.B., Ed., CRC Press, 2018, ch. 3, p. 28. Kong, L.B., Que, W., Liu, L., Boey, F.Y.C., et al., Nanomaterials for Supercapacitors, Kong, L.B., Ed., CRC Press, 2018, ch. 3, p. 28.
37.
Zurück zum Zitat Akgül, G., Bolat Maden, T., Diaz, E., and Moreno-Jiménez, E., Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO4 3– and Cd2+ from aqueous solutions, J. Water Reuse Desalin., 2019, vol. 9, p. 57.CrossRef Akgül, G., Bolat Maden, T., Diaz, E., and Moreno-Jiménez, E., Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO4 3– and Cd2+ from aqueous solutions, J. Water Reuse Desalin., 2019, vol. 9, p. 57.CrossRef
38.
Zurück zum Zitat Wu, Y., Zhao, H., Wu, Z., Yue, L., et al., Rational design of carbon materials as anodes for potassium-ion batteries, Energy Storage Mater., 2021, vol. 34, p. 483.CrossRef Wu, Y., Zhao, H., Wu, Z., Yue, L., et al., Rational design of carbon materials as anodes for potassium-ion batteries, Energy Storage Mater., 2021, vol. 34, p. 483.CrossRef
39.
Zurück zum Zitat Peng, C., Yan, X., Wang, R., Lang, J., et al., Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes, Electrochim. Acta, 2013, vol. 87, p. 401.CrossRef Peng, C., Yan, X., Wang, R., Lang, J., et al., Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes, Electrochim. Acta, 2013, vol. 87, p. 401.CrossRef
40.
Zurück zum Zitat Xia, L., Yu, L., Hu, D., and Chen, G.Z., Electrolytes for electrochemical energy storage, Mater. Chem. Front., 2017, vol. 1, p. 584.CrossRef Xia, L., Yu, L., Hu, D., and Chen, G.Z., Electrolytes for electrochemical energy storage, Mater. Chem. Front., 2017, vol. 1, p. 584.CrossRef
41.
Zurück zum Zitat Gabhi, R.S., Kirk, D.W., and Jia, C.Q., Preliminary investigation of electrical conductivity of monolithic biochar, Carbon, 2017, vol. 116, p. 435.CrossRef Gabhi, R.S., Kirk, D.W., and Jia, C.Q., Preliminary investigation of electrical conductivity of monolithic biochar, Carbon, 2017, vol. 116, p. 435.CrossRef
42.
Zurück zum Zitat Bhoyate, S., Ranaweera, C.K., Zhang, C., Morey, T., et al., Eco-friendly and high performance supercapacitors for elevated temperature applications using recycled tea leaves, Global Challenges, 2017, vol. 1, p. 1700063.CrossRef Bhoyate, S., Ranaweera, C.K., Zhang, C., Morey, T., et al., Eco-friendly and high performance supercapacitors for elevated temperature applications using recycled tea leaves, Global Challenges, 2017, vol. 1, p. 1700063.CrossRef
43.
Zurück zum Zitat Khan, A., Senthil, R.A., Pan, J., Osman, S., et al., A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application, Electrochim. Acta, 2020, vol. 335, p. 135588.CrossRef Khan, A., Senthil, R.A., Pan, J., Osman, S., et al., A new biomass derived rod-like porous carbon from tea-waste as inexpensive and sustainable energy material for advanced supercapacitor application, Electrochim. Acta, 2020, vol. 335, p. 135588.CrossRef
44.
Zurück zum Zitat Inal, I.G., Holmes, S.M., Banford, A., and Aktas, Z., The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea, Appl. Surf. Sci., 2015, vol. 357, p. 696.CrossRef Inal, I.G., Holmes, S.M., Banford, A., and Aktas, Z., The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea, Appl. Surf. Sci., 2015, vol. 357, p. 696.CrossRef
45.
Zurück zum Zitat Ratnaji, T. and Kennedy, L.J., Hierarchical porous carbon derived from tea waste for energy storage applications: Waste to worth, Diamond and Related Materials, 2020, vol. 110, p. 108100.CrossRef Ratnaji, T. and Kennedy, L.J., Hierarchical porous carbon derived from tea waste for energy storage applications: Waste to worth, Diamond and Related Materials, 2020, vol. 110, p. 108100.CrossRef
46.
Zurück zum Zitat Gandla, D., Chen, H., and Tan, D.Q., Mesoporous structure favorable for high voltage and high energy supercapacitor based on green tea waste-derived activated carbon, Mater. Res. Express, 2020, vol. 7, p. 085606.CrossRef Gandla, D., Chen, H., and Tan, D.Q., Mesoporous structure favorable for high voltage and high energy supercapacitor based on green tea waste-derived activated carbon, Mater. Res. Express, 2020, vol. 7, p. 085606.CrossRef
47.
Zurück zum Zitat Zhang, P., Wang, W., Kou, Z., Wang, B., et al., Low-cost and advanced symmetry supercapacitors based on three-dimensional tea waste of porous carbon nanosheets, Mater. Tech., 2021, vol. 36, p. 1.CrossRef Zhang, P., Wang, W., Kou, Z., Wang, B., et al., Low-cost and advanced symmetry supercapacitors based on three-dimensional tea waste of porous carbon nanosheets, Mater. Tech., 2021, vol. 36, p. 1.CrossRef
48.
Zurück zum Zitat Ma, G., Li, J., Sun, K., Peng, H., et al., Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode, J. Solid State Electrochem., 2016, vol. 21, p. 525.CrossRef Ma, G., Li, J., Sun, K., Peng, H., et al., Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode, J. Solid State Electrochem., 2016, vol. 21, p. 525.CrossRef
Metadaten
Titel
Electrochemical Energy Storage Capacity of Surface Engineered Renewable Carbon Derived from Industrial Tea Waste by HNO3 and K2CO3
verfasst von
Gökçen Akgül
Kürşad Oğuz Oskay
Merve Buldu-Akturk
Ayşenur Karamustafa
Sözer Sözer
Tuğba Bolat Maden
Emre Erdem
Publikationsdatum
01.04.2023
Verlag
Pleiades Publishing
Erschienen in
Surface Engineering and Applied Electrochemistry / Ausgabe 2/2023
Print ISSN: 1068-3755
Elektronische ISSN: 1934-8002
DOI
https://doi.org/10.3103/S1068375523020084

Weitere Artikel der Ausgabe 2/2023

Surface Engineering and Applied Electrochemistry 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.