Skip to main content

2017 | OriginalPaper | Buchkapitel

27. Electrochemical Hydrogen Production

verfasst von : Ting He, Mahaprasad Kar, Neal D. McDaniel, Bruce B. Randolph

Erschienen in: Springer Handbook of Electrochemical Energy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electrochemical–photoelectrochemical production of hydrogen has been widely investigated for decades, largely driven by the potential to reduce environmental impact, satisfy distributed demand, and enhance public perception. As an alternative to steam methane reforming for hydrogen production, these approaches have enjoyed renewed vigor over the last several years. This chapter reviews recent progress in low-temperature electrolysis, high-temperature electrolysis, and photoelectrochemical techniques. Perspectives are given on the electricity consumption, carbon dioxide emission, costs of hydrogen production, and competitive landscape in the future hydrogen market.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[2]
Zurück zum Zitat C. Yang, J.M. Ogden: H 2 Production via Natural Gas Reforming, Task 4.1 Technology Assessments of Vehicle Fuels and Technologies (California Energy Commission, Sacramento 2007) C. Yang, J.M. Ogden: H 2 Production via Natural Gas Reforming, Task 4.1 Technology Assessments of Vehicle Fuels and Technologies (California Energy Commission, Sacramento 2007)
[3]
Zurück zum Zitat J.M. Ogden: Agreement on the Production and Utilization of Hydrogen Task 16, Hydrogen from Carbon-Containing Materials (International Energy Agency, Paris 2001) J.M. Ogden: Agreement on the Production and Utilization of Hydrogen Task 16, Hydrogen from Carbon-Containing Materials (International Energy Agency, Paris 2001)
[4]
Zurück zum Zitat National Research Council: Front Matter. The Hydrogen Economy: Opportunities, Costs, Barriers, and R and D Needs (National Academies Press, Washington 2004) National Research Council: Front Matter. The Hydrogen Economy: Opportunities, Costs, Barriers, and R and D Needs (National Academies Press, Washington 2004)
[5]
Zurück zum Zitat R. De Levie: The electrolysis of water, J. Electroanal. Chem. 476(1), 92–93 (1999)CrossRef R. De Levie: The electrolysis of water, J. Electroanal. Chem. 476(1), 92–93 (1999)CrossRef
[6]
Zurück zum Zitat S. Trasatti: Water electrolysis: who first?, J. Electroanal. Chem. 476(1), 90–91 (1999)CrossRef S. Trasatti: Water electrolysis: who first?, J. Electroanal. Chem. 476(1), 90–91 (1999)CrossRef
[7]
Zurück zum Zitat S. Trasatti: Alessandro Volta’s electric pile: Two hundred years, but it doesn’t seem like it, J. Electroanal. Chem. 460(1), 1–4 (1999)CrossRef S. Trasatti: Alessandro Volta’s electric pile: Two hundred years, but it doesn’t seem like it, J. Electroanal. Chem. 460(1), 1–4 (1999)CrossRef
[8]
Zurück zum Zitat W. Kreuter, H. Hofmann: Electrolysis: The important energy transformer in a world of sustainable energy, Int. J. Hydrogen Energy 23(8), 661–666 (1998)CrossRef W. Kreuter, H. Hofmann: Electrolysis: The important energy transformer in a world of sustainable energy, Int. J. Hydrogen Energy 23(8), 661–666 (1998)CrossRef
[9]
Zurück zum Zitat K.J. Laidler: The chemical history of a current, Can. J. Chem. 75(11), 1552–1565 (1997)CrossRef K.J. Laidler: The chemical history of a current, Can. J. Chem. 75(11), 1552–1565 (1997)CrossRef
[10]
Zurück zum Zitat G. Sandstede: Status of the technology and development in water electrolysis, Dechema Monogr. 125, 329–355 (1992) G. Sandstede: Status of the technology and development in water electrolysis, Dechema Monogr. 125, 329–355 (1992)
[11]
Zurück zum Zitat R.L. Le Roy: Industrial water electrolysis: Present and future, Int. J. Hydrogen Energy 8(6), 401–417 (1983)CrossRef R.L. Le Roy: Industrial water electrolysis: Present and future, Int. J. Hydrogen Energy 8(6), 401–417 (1983)CrossRef
[12]
Zurück zum Zitat J.E. Noeggerath: Electrolytic apparatus, US Patent 1799116 (1931) J.E. Noeggerath: Electrolytic apparatus, US Patent 1799116 (1931)
[13]
Zurück zum Zitat J.E. Noeggerath: Electrode vessel for electrolytic apparatus, US Patent 1896718 (1933) J.E. Noeggerath: Electrode vessel for electrolytic apparatus, US Patent 1896718 (1933)
[14]
Zurück zum Zitat H. Vandenborre: New developments in alkaline water electrolysis, Dechema Monogr. 98, 313–328 (1985) H. Vandenborre: New developments in alkaline water electrolysis, Dechema Monogr. 98, 313–328 (1985)
[15]
Zurück zum Zitat J. Ivy: Summary of electrolytic hydrogen production. In: Milestone Completion Report (National Renewable Energy Laboratory, Golden 2004) J. Ivy: Summary of electrolytic hydrogen production. In: Milestone Completion Report (National Renewable Energy Laboratory, Golden 2004)
[16]
Zurück zum Zitat D. Pletcher, F.C. Walsh: Industrial Electrochemistry (Blackie Academic Professional, London 1990) D. Pletcher, F.C. Walsh: Industrial Electrochemistry (Blackie Academic Professional, London 1990)
[17]
Zurück zum Zitat K.A. Mauritz, R.B. Moore: State of understanding of Nafion, Chem. Rev. 104(10), 4535–4585 (2004)CrossRef K.A. Mauritz, R.B. Moore: State of understanding of Nafion, Chem. Rev. 104(10), 4535–4585 (2004)CrossRef
[18]
Zurück zum Zitat B.V. Tilak, P.W.T. Lu, J.E. Colman, S. Srinivasan: Electrolytic production of hydrogen. In: Comprehensive Treatise of Electrochemistry, Vol. 2, ed. by J.M. Bockris, B. Conway, E. Yeager, R. White (Plenum, NY 1981) pp. 1–104CrossRef B.V. Tilak, P.W.T. Lu, J.E. Colman, S. Srinivasan: Electrolytic production of hydrogen. In: Comprehensive Treatise of Electrochemistry, Vol. 2, ed. by J.M. Bockris, B. Conway, E. Yeager, R. White (Plenum, NY 1981) pp. 1–104CrossRef
[19]
Zurück zum Zitat W. Doenitz, R. Schmidberger, E. Steinheil, R. Streicher: Hydrogen production by high temperature electrolysis of water vapour, Int. J. Hydrogen Energy 5, 55–63 (1980)CrossRef W. Doenitz, R. Schmidberger, E. Steinheil, R. Streicher: Hydrogen production by high temperature electrolysis of water vapour, Int. J. Hydrogen Energy 5, 55–63 (1980)CrossRef
[20]
Zurück zum Zitat A. Isenberg: Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures, Solid State Ion 3–4, 431–437 (1981)CrossRef A. Isenberg: Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures, Solid State Ion 3–4, 431–437 (1981)CrossRef
[21]
Zurück zum Zitat G. Schiller, A. Ansar, M. Lang, O. Patz: High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC), J. Appl. Electrochem. 39, 293–301 (2009)CrossRef G. Schiller, A. Ansar, M. Lang, O. Patz: High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC), J. Appl. Electrochem. 39, 293–301 (2009)CrossRef
[22]
Zurück zum Zitat A.E. Becquerel: Mémoire sur les effets électriques produits sous l’influence des rayons solaires, Comptes Rendus 9, 561–567 (1839) A.E. Becquerel: Mémoire sur les effets électriques produits sous l’influence des rayons solaires, Comptes Rendus 9, 561–567 (1839)
[23]
Zurück zum Zitat W.H. Brattain, C.G.B. Garrett: Physical theory of semiconductor surfaces, Phys. Rev. 99, 376–387 (1955)CrossRef W.H. Brattain, C.G.B. Garrett: Physical theory of semiconductor surfaces, Phys. Rev. 99, 376–387 (1955)CrossRef
[24]
Zurück zum Zitat C.N.R. Rao, J. Gopalakrishnan: New Directions in Solid State Chemistry (Cambridge Univ. Press, Cambridge 1997) pp. 416–419CrossRef C.N.R. Rao, J. Gopalakrishnan: New Directions in Solid State Chemistry (Cambridge Univ. Press, Cambridge 1997) pp. 416–419CrossRef
[25]
Zurück zum Zitat A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–38 (1972)CrossRef A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–38 (1972)CrossRef
[26]
Zurück zum Zitat A. Brisse, J. Schefold, M. Zahid: High temperature water electrolysis in solid oxide cells, Int. J. Hydrogen Energy 33, 5375 (2008)CrossRef A. Brisse, J. Schefold, M. Zahid: High temperature water electrolysis in solid oxide cells, Int. J. Hydrogen Energy 33, 5375 (2008)CrossRef
[27]
Zurück zum Zitat H. Gerischer: Electrochemical photo and solar cells – Principles and some experiments, Electroanal. Chem. Interf. Electrochem. 58, 263–274 (1975)CrossRef H. Gerischer: Electrochemical photo and solar cells – Principles and some experiments, Electroanal. Chem. Interf. Electrochem. 58, 263–274 (1975)CrossRef
[28]
Zurück zum Zitat J.O. Bockris, K. Uosaki: Photoelectrochemical production of hydrogen, ACS Adv. Chem. 163, 33–70 (1977)CrossRef J.O. Bockris, K. Uosaki: Photoelectrochemical production of hydrogen, ACS Adv. Chem. 163, 33–70 (1977)CrossRef
[29]
Zurück zum Zitat O. Khaselev, J.A. Turner: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science 280, 425–426 (1998)CrossRef O. Khaselev, J.A. Turner: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science 280, 425–426 (1998)CrossRef
[30]
Zurück zum Zitat S.U.M. Kahn, M. Al-Shahry, W.B. Ingler Jr.: Efficient photochemical water splitting by a chemically modified n-TiO2, Science 297, 2243–2245 (2002)CrossRef S.U.M. Kahn, M. Al-Shahry, W.B. Ingler Jr.: Efficient photochemical water splitting by a chemically modified n-TiO2, Science 297, 2243–2245 (2002)CrossRef
[31]
Zurück zum Zitat M.S. Casper (Ed.): Hydrogen Manufacture by Electrolysis, Thermal Decomposition and Unusual Techniques (Noyes, Park Ridge 2007) M.S. Casper (Ed.): Hydrogen Manufacture by Electrolysis, Thermal Decomposition and Unusual Techniques (Noyes, Park Ridge 2007)
[32]
Zurück zum Zitat C.L. Mantell: Electrochemical Engineering, 4th edn. (McGraw Hill, New York 1960) C.L. Mantell: Electrochemical Engineering, 4th edn. (McGraw Hill, New York 1960)
[33]
Zurück zum Zitat D.H. Smith: Industrial water electrolysis. In: Industrial Electrochemical Processes, ed. by A.T. Kuhn (Elsevier, Amsterdam 1971), Chap. 4 D.H. Smith: Industrial water electrolysis. In: Industrial Electrochemical Processes, ed. by A.T. Kuhn (Elsevier, Amsterdam 1971), Chap. 4
[34]
Zurück zum Zitat B. Kroposki, K. Harrison, P.K. Sen, J. Levene, F. Novachek: Electrolysis: Information and Opportunities for Electric Power Utilities (National Renewable Energy Laboratory, Golden 2006)CrossRef B. Kroposki, K. Harrison, P.K. Sen, J. Levene, F. Novachek: Electrolysis: Information and Opportunities for Electric Power Utilities (National Renewable Energy Laboratory, Golden 2006)CrossRef
[35]
Zurück zum Zitat R.L. Costa, P.G. Grimes: Electrolysis as a source of hydrogen and oxygen, Chem. Eng. Prog. 63(4), 56–58 (1967) R.L. Costa, P.G. Grimes: Electrolysis as a source of hydrogen and oxygen, Chem. Eng. Prog. 63(4), 56–58 (1967)
[36]
Zurück zum Zitat J. Fischer, H. Hofmann, G. Luft, H. Wendt: Fundamental investigations and electrochemical engineering aspects concerning an advanced concept for alkaline water electrolysis, AIChE J. 26(5), 794–802 (1980)CrossRef J. Fischer, H. Hofmann, G. Luft, H. Wendt: Fundamental investigations and electrochemical engineering aspects concerning an advanced concept for alkaline water electrolysis, AIChE J. 26(5), 794–802 (1980)CrossRef
[37]
Zurück zum Zitat P. Vermeiren, W. Adriansens, J.P. Moreels, R. Leysen: Evaluation of the Zirfon separator for use in alkaline water electrolysis and Ni-H2 batteries, Int. J. Hydrogen Energy 23(5), 321–324 (1998)CrossRef P. Vermeiren, W. Adriansens, J.P. Moreels, R. Leysen: Evaluation of the Zirfon separator for use in alkaline water electrolysis and Ni-H2 batteries, Int. J. Hydrogen Energy 23(5), 321–324 (1998)CrossRef
[38]
Zurück zum Zitat K. Zeng, D. Zhang: Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energ. Combust. Sci. 36(3), 307–326 (2010)CrossRef K. Zeng, D. Zhang: Recent progress in alkaline water electrolysis for hydrogen production and applications, Prog. Energ. Combust. Sci. 36(3), 307–326 (2010)CrossRef
[39]
Zurück zum Zitat M. Raney: Method of preparing catalytic nickel, US Patent Application 1563587 (1925) M. Raney: Method of preparing catalytic nickel, US Patent Application 1563587 (1925)
[40]
Zurück zum Zitat M. Raney: Method of producing finely-divided nickel, US Patent Application 1628190 (1927) M. Raney: Method of producing finely-divided nickel, US Patent Application 1628190 (1927)
[41]
Zurück zum Zitat E. Justi, W. Scheible, A. Winsel: Doppelskelett-Katalysator-Elektrode, German Patent Application DE1019361 (1954) E. Justi, W. Scheible, A. Winsel: Doppelskelett-Katalysator-Elektrode, German Patent Application DE1019361 (1954)
[42]
Zurück zum Zitat I. Abe, T. Fujimaki, M. Matsubara: Hydrogen production by high-temperature high-pressure water electrolysis; results of test plant operation, Int. J. Hydrogen Energy 9(9), 753–758 (1984)CrossRef I. Abe, T. Fujimaki, M. Matsubara: Hydrogen production by high-temperature high-pressure water electrolysis; results of test plant operation, Int. J. Hydrogen Energy 9(9), 753–758 (1984)CrossRef
[43]
Zurück zum Zitat W. Vielstich, E. Knauf: Investigation of nickel whisker networks as electrodes for hydrogen and oxygen evolution comments, J. Electrochem. Soc. 129(6), 1273 (1982)CrossRef W. Vielstich, E. Knauf: Investigation of nickel whisker networks as electrodes for hydrogen and oxygen evolution comments, J. Electrochem. Soc. 129(6), 1273 (1982)CrossRef
[44]
Zurück zum Zitat J. De Carvalho, G. Tremiliesi-Filho, L.A. Avaca, E.R. Gonzalez: Iron-based coatings for hydrogen evolution in alkaline solutions, Adv. Hydrogen Energ. 5, 250–257 (1986) J. De Carvalho, G. Tremiliesi-Filho, L.A. Avaca, E.R. Gonzalez: Iron-based coatings for hydrogen evolution in alkaline solutions, Adv. Hydrogen Energ. 5, 250–257 (1986)
[45]
Zurück zum Zitat I.A. Raj, V.K. Venkatesan: Investigations on the adoptability of electrocatalytic nickel-molybdenum-iron alloy cathode to industrial water electrolysis, Trans. SAEST 22(4), 189–197 (1987) I.A. Raj, V.K. Venkatesan: Investigations on the adoptability of electrocatalytic nickel-molybdenum-iron alloy cathode to industrial water electrolysis, Trans. SAEST 22(4), 189–197 (1987)
[46]
Zurück zum Zitat H. Wendt, G. Imarisio: Nine years of research and development on advanced water electrolysis. A review of the research program of the Commission of the European Communities, J. Appl. Electrochem. 18(1), 1–14 (1988)CrossRef H. Wendt, G. Imarisio: Nine years of research and development on advanced water electrolysis. A review of the research program of the Commission of the European Communities, J. Appl. Electrochem. 18(1), 1–14 (1988)CrossRef
[47]
Zurück zum Zitat K. Kinoshita: Electrochemical Oxygen Technology (Wiley, New York 1992) K. Kinoshita: Electrochemical Oxygen Technology (Wiley, New York 1992)
[48]
Zurück zum Zitat R. Tunold, A.T. Marshall, E. Rasten, M. Tsypkin, L.E. Owe, S. Sunde: Materials for electrocatalysis of oxygen evolution process in PEM water electrolysis cells, ECS Trans. 25(23), 103–117 (2010)CrossRef R. Tunold, A.T. Marshall, E. Rasten, M. Tsypkin, L.E. Owe, S. Sunde: Materials for electrocatalysis of oxygen evolution process in PEM water electrolysis cells, ECS Trans. 25(23), 103–117 (2010)CrossRef
[49]
Zurück zum Zitat S.A. Grigoriev, V.I. Porembsky, V.N. Fateev: Pure hydrogen production by PEM electrolysis for hydrogen energy, Int. J. Hydrogen Energy 31(2), 171–175 (2006)CrossRef S.A. Grigoriev, V.I. Porembsky, V.N. Fateev: Pure hydrogen production by PEM electrolysis for hydrogen energy, Int. J. Hydrogen Energy 31(2), 171–175 (2006)CrossRef
[50]
Zurück zum Zitat A. Marshall, B. Borresen, G. Hagen, M. Tsypkin, R. Tunold: Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers-reduced energy consumption by improved electrocatalysis, Energy 32(4), 431–436 (2006)CrossRef A. Marshall, B. Borresen, G. Hagen, M. Tsypkin, R. Tunold: Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers-reduced energy consumption by improved electrocatalysis, Energy 32(4), 431–436 (2006)CrossRef
[51]
Zurück zum Zitat P.W.T. Lu, S. Srinivasan: Advances in water electrolysis technology with emphasis on use of the solid polymer electrolyte, J. Appl. Electrochem. 9(3), 269–283 (1979)CrossRef P.W.T. Lu, S. Srinivasan: Advances in water electrolysis technology with emphasis on use of the solid polymer electrolyte, J. Appl. Electrochem. 9(3), 269–283 (1979)CrossRef
[52]
Zurück zum Zitat F. Barbir: PEM electrolysis for production of hydrogen from renewable energy sources, Sol. Energ. 78(5), 661–669 (2005)CrossRef F. Barbir: PEM electrolysis for production of hydrogen from renewable energy sources, Sol. Energ. 78(5), 661–669 (2005)CrossRef
[53]
Zurück zum Zitat O. Savadogo: Water electrolysis in acid medium, Hem. Ind. 54(3), 95–101 (2000) O. Savadogo: Water electrolysis in acid medium, Hem. Ind. 54(3), 95–101 (2000)
[54]
Zurück zum Zitat A. Di Blasi, C. D’Urso, V. Baglio, V. Antonucci, A.S. Arico, R. Ornelas, F. Matteucci, G. Orozco, D. Beltran, Y. Meas, L.G. Arriaga: Preparation and evaluation of RuO2-IrO2, IrO2-Pt and IrO2- Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzer, J. Appl. Electrochem. 39(2), 191–196 (2009)CrossRef A. Di Blasi, C. D’Urso, V. Baglio, V. Antonucci, A.S. Arico, R. Ornelas, F. Matteucci, G. Orozco, D. Beltran, Y. Meas, L.G. Arriaga: Preparation and evaluation of RuO2-IrO2, IrO2-Pt and IrO2- Ta2O5 catalysts for the oxygen evolution reaction in an SPE electrolyzer, J. Appl. Electrochem. 39(2), 191–196 (2009)CrossRef
[55]
Zurück zum Zitat A. Marshall, B. Borresen, G. Hagen, S. Sunde, M. Tsypkin, R. Tunold: Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalysts, Russ. J. Electrochem. 42(10), 1134–1140 (2006)CrossRef A. Marshall, B. Borresen, G. Hagen, S. Sunde, M. Tsypkin, R. Tunold: Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalysts, Russ. J. Electrochem. 42(10), 1134–1140 (2006)CrossRef
[56]
Zurück zum Zitat A.T. Marshall, S. Sunde, M. Tsypkin, R. Tunold: Performance of a PEM water electrolysis cell using Ir x Ru y Ta z O2 electrocatalysts for the oxygen evolution electrode, Int. J. Hydrogen Energy 32(13), 2320–2324 (2007)CrossRef A.T. Marshall, S. Sunde, M. Tsypkin, R. Tunold: Performance of a PEM water electrolysis cell using Ir x Ru y Ta z O2 electrocatalysts for the oxygen evolution electrode, Int. J. Hydrogen Energy 32(13), 2320–2324 (2007)CrossRef
[57]
Zurück zum Zitat A. Marshall, B. Borresen, G. Hagen, M. Tsypkin, R. Tunold: Preparation and characterization of nanocrystalline Ir x Sn1-xO2 electrocatalytic powders, Mater. Chem. Phys. 94(2–3), 226–232 (2005)CrossRef A. Marshall, B. Borresen, G. Hagen, M. Tsypkin, R. Tunold: Preparation and characterization of nanocrystalline Ir x Sn1-xO2 electrocatalytic powders, Mater. Chem. Phys. 94(2–3), 226–232 (2005)CrossRef
[58]
Zurück zum Zitat P. Millet, N. Mbemba, S.A. Grigoriev, V.N. Fateev, A. Aukauloo, C. Etiévant: Electrochemical performances of PEM water electrolysis cells and perspectives, Int. J. Hydrogen Energy 36(6), 4134–4142 (2010)CrossRef P. Millet, N. Mbemba, S.A. Grigoriev, V.N. Fateev, A. Aukauloo, C. Etiévant: Electrochemical performances of PEM water electrolysis cells and perspectives, Int. J. Hydrogen Energy 36(6), 4134–4142 (2010)CrossRef
[59]
Zurück zum Zitat S.A. Grigoriev, P. Millet, V.N. Fateev: Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolyzers, J. Power Sources 177(2), 281–285 (2008)CrossRef S.A. Grigoriev, P. Millet, V.N. Fateev: Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolyzers, J. Power Sources 177(2), 281–285 (2008)CrossRef
[60]
Zurück zum Zitat O. Pantani, E. Anxolabehere-Mallart, A. Aukauloo, P. Millet: Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media, Electrochem. Commun. 9(1), 54–58 (2006)CrossRef O. Pantani, E. Anxolabehere-Mallart, A. Aukauloo, P. Millet: Electroactivity of cobalt and nickel glyoximes with regard to the electro-reduction of protons into molecular hydrogen in acidic media, Electrochem. Commun. 9(1), 54–58 (2006)CrossRef
[61]
Zurück zum Zitat P. Millet, R. Ngameni, S.A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, C. Etiévant: PEM water electrolyzers: From electrocatalysis to stack development, Int. J. Hydrogen Energy 35(10), 5043–5052 (2010)CrossRef P. Millet, R. Ngameni, S.A. Grigoriev, N. Mbemba, F. Brisset, A. Ranjbari, C. Etiévant: PEM water electrolyzers: From electrocatalysis to stack development, Int. J. Hydrogen Energy 35(10), 5043–5052 (2010)CrossRef
[62]
Zurück zum Zitat M.A. Yandrasits, S.J. Hamrock: Membranes for PEM fuel cells, ACS Symp. Ser. 1040, 15–29 (2010)CrossRef M.A. Yandrasits, S.J. Hamrock: Membranes for PEM fuel cells, ACS Symp. Ser. 1040, 15–29 (2010)CrossRef
[63]
Zurück zum Zitat A.E. Steck: Membrane Materials in Fuel Cells (Editions de l’Ecole Polytechnique de Montreal, Montreal 1995) A.E. Steck: Membrane Materials in Fuel Cells (Editions de l’Ecole Polytechnique de Montreal, Montreal 1995)
[64]
Zurück zum Zitat L.M. Roen, C.H. Paik, T.D. Jarvi: Electrocatalytic corrosion of carbon support in PEMFC cathodes, Electrochem. Solid-State Lett. 7(1), A19–A22 (2004)CrossRef L.M. Roen, C.H. Paik, T.D. Jarvi: Electrocatalytic corrosion of carbon support in PEMFC cathodes, Electrochem. Solid-State Lett. 7(1), A19–A22 (2004)CrossRef
[65]
Zurück zum Zitat H.-Y. Jung, S.-Y. Huang, P. Ganesan, B.N. Popov: Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation, J. Power Sources 194(2), 972–975 (2009)CrossRef H.-Y. Jung, S.-Y. Huang, P. Ganesan, B.N. Popov: Performance of gold-coated titanium bipolar plates in unitized regenerative fuel cell operation, J. Power Sources 194(2), 972–975 (2009)CrossRef
[66]
Zurück zum Zitat T. Smolinka, S. Rau, C. Hebling: PEM water electrolysis. In: Hydrogen and Fuel Cells, ed. by D. Stolten (Wiley-VCH, Weinheim 2010) T. Smolinka, S. Rau, C. Hebling: PEM water electrolysis. In: Hydrogen and Fuel Cells, ed. by D. Stolten (Wiley-VCH, Weinheim 2010)
[67]
Zurück zum Zitat A.B. LaConti, L. Swette: Special application using PEM-technology. In: Handbook of Fuel Cells, Vol. 4, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, Chichester 2003) A.B. LaConti, L. Swette: Special application using PEM-technology. In: Handbook of Fuel Cells, Vol. 4, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, Chichester 2003)
[68]
Zurück zum Zitat J. Van Herle, A.J. McEvoy, K. Ravindranathan Thampi: Conductivity measurements of various yttria-stabilized zirconia samples, J. Mater. Sci. 29, 3691 (1994)CrossRef J. Van Herle, A.J. McEvoy, K. Ravindranathan Thampi: Conductivity measurements of various yttria-stabilized zirconia samples, J. Mater. Sci. 29, 3691 (1994)CrossRef
[69]
Zurück zum Zitat J. Fergus: Electrolytes for solid oxide fuel cells, J. Power Sources 162, 30 (2006)CrossRef J. Fergus: Electrolytes for solid oxide fuel cells, J. Power Sources 162, 30 (2006)CrossRef
[70]
Zurück zum Zitat B. Dalslet, P. Blennow, P.V. Hendriksen, N. Bonanos, D. Lybye, M. Mogensen: Assessment of doped ceria as electrolyte, J. Solid State Electrochem. 10, 547–561 (2006)CrossRef B. Dalslet, P. Blennow, P.V. Hendriksen, N. Bonanos, D. Lybye, M. Mogensen: Assessment of doped ceria as electrolyte, J. Solid State Electrochem. 10, 547–561 (2006)CrossRef
[71]
Zurück zum Zitat K. Schwarz: Materials design of solid electrolytes, Proc. Nat. Acad. Sci. 103(10), 3497 (2006)CrossRef K. Schwarz: Materials design of solid electrolytes, Proc. Nat. Acad. Sci. 103(10), 3497 (2006)CrossRef
[72]
Zurück zum Zitat D.A. Andersen, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson: Optimization of ionic conductivity in doped ceria, Proc. Nat. Acad. Sci. 103(10), 3518–3521 (2006)CrossRef D.A. Andersen, S.I. Simak, N.V. Skorodumova, I.A. Abrikosov, B. Johansson: Optimization of ionic conductivity in doped ceria, Proc. Nat. Acad. Sci. 103(10), 3518–3521 (2006)CrossRef
[73]
Zurück zum Zitat H, Yahiro, K. Eguchi, H. Arai: Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell, Solid State Ion. 36(1–2), 71–75 (1989) H, Yahiro, K. Eguchi, H. Arai: Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell, Solid State Ion. 36(1–2), 71–75 (1989)
[74]
Zurück zum Zitat D.J. Seo, K.O. Ryo, S.B. Park, K.Y. Kim, R.-H. Song: Synthesis and properties of Ce1−x Gd x O2−x/2 solid solution prepared by flame spray pyrolysis, Mater. Res. Bull. 41, 359–366 (2006)CrossRef D.J. Seo, K.O. Ryo, S.B. Park, K.Y. Kim, R.-H. Song: Synthesis and properties of Ce1−x Gd x O2−x/2 solid solution prepared by flame spray pyrolysis, Mater. Res. Bull. 41, 359–366 (2006)CrossRef
[75]
Zurück zum Zitat T. Sakai, S. Matsushita, H. Matsumoto, S. Okada, S. Hashimoto, T. Ishihara: Intermediate temperature steam electrolysis using strontium zirconate-based protonic conductors, Int. J. Hydrogen Energy 34, 56–63 (2009)CrossRef T. Sakai, S. Matsushita, H. Matsumoto, S. Okada, S. Hashimoto, T. Ishihara: Intermediate temperature steam electrolysis using strontium zirconate-based protonic conductors, Int. J. Hydrogen Energy 34, 56–63 (2009)CrossRef
[76]
Zurück zum Zitat J.S. Herring, J.E. O’Brien, C.M. Stoots, G.L. Hawkes, J.J. Hartvigsen, M. Shahnam: Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology, Int. J. Hydrogen Energy 32, 440–450 (2007)CrossRef J.S. Herring, J.E. O’Brien, C.M. Stoots, G.L. Hawkes, J.J. Hartvigsen, M. Shahnam: Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology, Int. J. Hydrogen Energy 32, 440–450 (2007)CrossRef
[77]
Zurück zum Zitat M. Ni, K.H. Leung, D.Y.C. Leung: Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), Int. J. Hydrogen Energy 33, 2337–2354 (2008)CrossRef M. Ni, K.H. Leung, D.Y.C. Leung: Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), Int. J. Hydrogen Energy 33, 2337–2354 (2008)CrossRef
[78]
Zurück zum Zitat A. Hauch, S.H. Jensen, S. Ramousse, M. Mogensen: Performance and durability of solid oxide electrolysis cells, J. Electrochem. Soc. 153(9), A1741–A1747 (2006)CrossRef A. Hauch, S.H. Jensen, S. Ramousse, M. Mogensen: Performance and durability of solid oxide electrolysis cells, J. Electrochem. Soc. 153(9), A1741–A1747 (2006)CrossRef
[79]
Zurück zum Zitat A. Momma, T. Kato, Y. Kaga, S. Nagata: Polarization behavior of high temperature solid oxide electrolysis cells (SOEC), J. Ceram. Soc. Jpn. 105, 369–373 (1997)CrossRef A. Momma, T. Kato, Y. Kaga, S. Nagata: Polarization behavior of high temperature solid oxide electrolysis cells (SOEC), J. Ceram. Soc. Jpn. 105, 369–373 (1997)CrossRef
[80]
Zurück zum Zitat A. Hauch, S.H. Jense, M. Mogensen: Ni/YSZ electrodes in solid oxide electrolyser cells, Proc. 26th Risø Int. Symp. Mater. Sci.: Solid State Electrochem., ed. by S. Linderoth, A. Smith, N. Bonano, A. Hagen, L. Mikkelson, K. Kammer, D. Lybye, P.V. Hendriksen, F.W. Poulsen, M. Mogensen, W.G. Wang (Risø National Laboratory, Roskilde 2005) p. 203 A. Hauch, S.H. Jense, M. Mogensen: Ni/YSZ electrodes in solid oxide electrolyser cells, Proc. 26th Risø Int. Symp. Mater. Sci.: Solid State Electrochem., ed. by S. Linderoth, A. Smith, N. Bonano, A. Hagen, L. Mikkelson, K. Kammer, D. Lybye, P.V. Hendriksen, F.W. Poulsen, M. Mogensen, W.G. Wang (Risø National Laboratory, Roskilde 2005) p. 203
[81]
Zurück zum Zitat P. Kim-Lohnsoontorn, Y.-M. Kim, N. Laosiripojana: Gadolinium doped ceria-impregnated nickel–yttria stabilised zirconia cathode for solid oxide electrolysis cell, Int. J. Hydrogen Energy 36, 9420–9427 (2011)CrossRef P. Kim-Lohnsoontorn, Y.-M. Kim, N. Laosiripojana: Gadolinium doped ceria-impregnated nickel–yttria stabilised zirconia cathode for solid oxide electrolysis cell, Int. J. Hydrogen Energy 36, 9420–9427 (2011)CrossRef
[82]
Zurück zum Zitat J. Kong, Y. Zhang, C. Deng, J. Xu: Synthesis and electrochemical properties of LSM and LSF perovskites as anode materials for high temperature steam electrolysis, J. Power Sources 186, 485–489 (2009)CrossRef J. Kong, Y. Zhang, C. Deng, J. Xu: Synthesis and electrochemical properties of LSM and LSF perovskites as anode materials for high temperature steam electrolysis, J. Power Sources 186, 485–489 (2009)CrossRef
[83]
Zurück zum Zitat W. Wang, Y. Juang, S. Jung, J. Vohs, J. Gorte: A Comparison of LSM, LSF, and LSCo for solid oxide electrolyzer anodes, J. Electrochem. Soc. 153(11), A2066–A2070 (2006)CrossRef W. Wang, Y. Juang, S. Jung, J. Vohs, J. Gorte: A Comparison of LSM, LSF, and LSCo for solid oxide electrolyzer anodes, J. Electrochem. Soc. 153(11), A2066–A2070 (2006)CrossRef
[84]
Zurück zum Zitat O.A. Marina, L.R. Pederson, M.C. Williams, G.W. Coffey, K.D. Meinhardt, C.D. Nguyen, E.C. Thomsen: Electrode performance in reversible solid oxide fuel cells, J. Electrochem. Soc. 154(5), B452–B459 (2007)CrossRef O.A. Marina, L.R. Pederson, M.C. Williams, G.W. Coffey, K.D. Meinhardt, C.D. Nguyen, E.C. Thomsen: Electrode performance in reversible solid oxide fuel cells, J. Electrochem. Soc. 154(5), B452–B459 (2007)CrossRef
[85]
Zurück zum Zitat M.K. Mahapatra, S. Bhowmick, N. Li, P. Singh: Role of oxygen pressure on the stability of lanthanum strontium manganite–yttria stabilized zirconia composite, J. Eur. Ceram. Soc. 32(10), 2341–2349 (2012)CrossRef M.K. Mahapatra, S. Bhowmick, N. Li, P. Singh: Role of oxygen pressure on the stability of lanthanum strontium manganite–yttria stabilized zirconia composite, J. Eur. Ceram. Soc. 32(10), 2341–2349 (2012)CrossRef
[86]
Zurück zum Zitat S.H. Jensen, P. Larsen, M. Mogensen: Hydrogen and synthetic fuel production from renewable energy sources, Int. J. Hydrogen Energy 32, 3253–3257 (2007)CrossRef S.H. Jensen, P. Larsen, M. Mogensen: Hydrogen and synthetic fuel production from renewable energy sources, Int. J. Hydrogen Energy 32, 3253–3257 (2007)CrossRef
[87]
Zurück zum Zitat S. Ebbesen, M. Mogensen: Exceptional durability of solid oxide cells, Electrochem. Solid-State Lett. 13(9), B106–B108 (2010)CrossRef S. Ebbesen, M. Mogensen: Exceptional durability of solid oxide cells, Electrochem. Solid-State Lett. 13(9), B106–B108 (2010)CrossRef
[88]
Zurück zum Zitat J.E. O’Brien, J.S. Herring, C.M. Stoots, G.L. Hawkes, J.J. Hartvigsen, M. Shahnam: Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology, Proc. AIChE Spring Nat. Meet. ‘05 (2005), Idaho National Laboratory (INL)/CON-05-00078 Rep. J.E. O’Brien, J.S. Herring, C.M. Stoots, G.L. Hawkes, J.J. Hartvigsen, M. Shahnam: Progress in high-temperature electrolysis for hydrogen production using planar SOFC technology, Proc. AIChE Spring Nat. Meet. ‘05 (2005), Idaho National Laboratory (INL)/CON-05-00078 Rep.
[89]
Zurück zum Zitat J. O’Brien, C. Stoots, J. Herring, G. Hawkes, J. Hartvigsen: Thermal and electrochemical performance of a high-temperature steam electrolysis stack, Fuel Cell Seminar, Idaho National Laboratory (INL) (2006), /CON-06-11716 Rep. J. O’Brien, C. Stoots, J. Herring, G. Hawkes, J. Hartvigsen: Thermal and electrochemical performance of a high-temperature steam electrolysis stack, Fuel Cell Seminar, Idaho National Laboratory (INL) (2006), /CON-06-11716 Rep.
[90]
Zurück zum Zitat J.E. O’Brien, J.S. Herring, C.M. Stoots, M.G. McKellar, E.A. Harvego, K.G. Condie, G.K. Housley, J.J. Hartvigsen: Status of the INL high-temperature electrolysis research program – Experimental and modeling, Proc. 4th Information Exchange Meeting on the Nuclear Production of Hydrogen (2009), Idaho National Laboratory (INL)/CON-09-15618 Rep. J.E. O’Brien, J.S. Herring, C.M. Stoots, M.G. McKellar, E.A. Harvego, K.G. Condie, G.K. Housley, J.J. Hartvigsen: Status of the INL high-temperature electrolysis research program – Experimental and modeling, Proc. 4th Information Exchange Meeting on the Nuclear Production of Hydrogen (2009), Idaho National Laboratory (INL)/CON-09-15618 Rep.
[91]
Zurück zum Zitat J.E. O’Brien, C.M. Stoots, J.S. Herring, M.G. McKellar, E.A. Harvego, M.S. Sohal, K.G. Condie: High temperature electrolysis for hydrogen production from nuclear energy – Technology summary, Proc. Idaho National Laboratory (INL) (2010), EXT-09-16140 Rep. J.E. O’Brien, C.M. Stoots, J.S. Herring, M.G. McKellar, E.A. Harvego, M.S. Sohal, K.G. Condie: High temperature electrolysis for hydrogen production from nuclear energy – Technology summary, Proc. Idaho National Laboratory (INL) (2010), EXT-09-16140 Rep.
[92]
Zurück zum Zitat Y. Bo, Z. Wenqiang, X. Jingming, C. Jing: Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET, Int. J. Hydrogen Energy 35, 2829–2835 (2010)CrossRef Y. Bo, Z. Wenqiang, X. Jingming, C. Jing: Status and research of highly efficient hydrogen production through high temperature steam electrolysis at INET, Int. J. Hydrogen Energy 35, 2829–2835 (2010)CrossRef
[93]
Zurück zum Zitat S.-D. Kim, J.-H. Yu, D.-W. Seo, I.-S. Han, S.-K. Woo: Hydrogen production performance of 3-cell flat-tubular solid oxide electrolysis stack, Int. J. Hydrogen Energy 37, 78–83 (2012)CrossRef S.-D. Kim, J.-H. Yu, D.-W. Seo, I.-S. Han, S.-K. Woo: Hydrogen production performance of 3-cell flat-tubular solid oxide electrolysis stack, Int. J. Hydrogen Energy 37, 78–83 (2012)CrossRef
[94]
Zurück zum Zitat S.D. Kim, S.H. Hyun, J. Moon, J.-H. Kim, R.H. Song: Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells, J. Power Sources 139, 67–72 (2005)CrossRef S.D. Kim, S.H. Hyun, J. Moon, J.-H. Kim, R.H. Song: Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells, J. Power Sources 139, 67–72 (2005)CrossRef
[95]
Zurück zum Zitat M.A. Laguna-Bercero, R. Campana, A. Larrea, J.A. Kilner, V.M. Orera: Steam electrolysis using a microtubular solid oxide fuel cell, J. Electrochem. Soc. 157(6), B852–B855 (2010)CrossRef M.A. Laguna-Bercero, R. Campana, A. Larrea, J.A. Kilner, V.M. Orera: Steam electrolysis using a microtubular solid oxide fuel cell, J. Electrochem. Soc. 157(6), B852–B855 (2010)CrossRef
[96]
Zurück zum Zitat J.P. Ouweltjes, L. Berkeveld, B. Rietveld: Recent progress in the development of solid oxide electrolyzers at ECN, Proc. 18th World Hydrogen Energy Conference, Essen ‘10 (2010) J.P. Ouweltjes, L. Berkeveld, B. Rietveld: Recent progress in the development of solid oxide electrolyzers at ECN, Proc. 18th World Hydrogen Energy Conference, Essen ‘10 (2010)
[97]
Zurück zum Zitat A. Glauche, T. Betz, M. Ise: Product development for SOFC and SOE, App. ECS Trans. 35(1), 157–165 (2011)CrossRef A. Glauche, T. Betz, M. Ise: Product development for SOFC and SOE, App. ECS Trans. 35(1), 157–165 (2011)CrossRef
[98]
Zurück zum Zitat A. Hauch, S.J. Jensen, S.D. Ebbesen, M. Mogensen: Durability of solid oxide cells for hydrogen production. In: Energy Solutions for Sustainable Development, ed. by L.S. Petersen, H. Larsen (Risø National Laboratory, Risø 2007) pp. 327–338 A. Hauch, S.J. Jensen, S.D. Ebbesen, M. Mogensen: Durability of solid oxide cells for hydrogen production. In: Energy Solutions for Sustainable Development, ed. by L.S. Petersen, H. Larsen (Risø National Laboratory, Risø 2007) pp. 327–338
[99]
Zurück zum Zitat J. Schefold, A. Brisse, F. Tietz: Nine thousand hours of operation of a solid oxide cell in steam electrolysis mode, J. Electrochem. Soc. 159(2), A137–A144 (2012)CrossRef J. Schefold, A. Brisse, F. Tietz: Nine thousand hours of operation of a solid oxide cell in steam electrolysis mode, J. Electrochem. Soc. 159(2), A137–A144 (2012)CrossRef
[100]
Zurück zum Zitat E. Elangoven, J. Hartvigsen: Progress in the conversion of CO2 to liquid fuel, Proc. 220th ECS Meeting and Electrochemistry Summit, Boston (2011) p. 1509 E. Elangoven, J. Hartvigsen: Progress in the conversion of CO2 to liquid fuel, Proc. 220th ECS Meeting and Electrochemistry Summit, Boston (2011) p. 1509
[101]
Zurück zum Zitat A.V. Virkar: A model for solid oxide fuel cell (SOFC) stack degradation, J. Power Sources 172, 713–724 (2007)CrossRef A.V. Virkar: A model for solid oxide fuel cell (SOFC) stack degradation, J. Power Sources 172, 713–724 (2007)CrossRef
[103]
Zurück zum Zitat S.D. Ebbesen, J. Hogh, K.A. Nielsen, J.U. Nielsen, M. Mogensen: Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis, Int. J. Hydrogen Energy 36, 7363–7373 (2011)CrossRef S.D. Ebbesen, J. Hogh, K.A. Nielsen, J.U. Nielsen, M. Mogensen: Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis, Int. J. Hydrogen Energy 36, 7363–7373 (2011)CrossRef
[104]
Zurück zum Zitat S.D. Ebbesen, C. Graves, A. Hauch, S. Jensen, M. Mogensen: Poisoning of solid oxide electrolysis cells by impurities, J. Electrochem. Soc. 157(10), B1419–B1429 (2010)CrossRef S.D. Ebbesen, C. Graves, A. Hauch, S. Jensen, M. Mogensen: Poisoning of solid oxide electrolysis cells by impurities, J. Electrochem. Soc. 157(10), B1419–B1429 (2010)CrossRef
[105]
Zurück zum Zitat M.S. Sohal, J.E. O’Brien, C.M. Stoots, V.I. Sharma, B. Yildiz, A. Virkar: Degradation issues in solid oxide cells during high temperature electrolysis, J. Fuel Cell Sci. Technol. 9(1), 011017 (2012)CrossRef M.S. Sohal, J.E. O’Brien, C.M. Stoots, V.I. Sharma, B. Yildiz, A. Virkar: Degradation issues in solid oxide cells during high temperature electrolysis, J. Fuel Cell Sci. Technol. 9(1), 011017 (2012)CrossRef
[106]
Zurück zum Zitat K. Chen, S.P. Jiang: Failure mechanism of (La,Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells, Int. J. Hydrogen Energy 36, 10541–10549 (2011)CrossRef K. Chen, S.P. Jiang: Failure mechanism of (La,Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells, Int. J. Hydrogen Energy 36, 10541–10549 (2011)CrossRef
[107]
Zurück zum Zitat A. Hauch, S.D. Ebbesen, S.H. Jensen, M.J. Mogensen: Highly efficient high temperature electrolysis, Mater. Chem. 18, 2331–2340 (2008)CrossRef A. Hauch, S.D. Ebbesen, S.H. Jensen, M.J. Mogensen: Highly efficient high temperature electrolysis, Mater. Chem. 18, 2331–2340 (2008)CrossRef
[108]
Zurück zum Zitat J.R. Bolton, S.J. Strickler, J.S. Connolly: Limiting and realizable efficiencies of solar photolysis of water, Nature 316, 495–500 (1985)CrossRef J.R. Bolton, S.J. Strickler, J.S. Connolly: Limiting and realizable efficiencies of solar photolysis of water, Nature 316, 495–500 (1985)CrossRef
[109]
Zurück zum Zitat A.V. Virkar: Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells, Int. J. Hydrogen Energy 35, 9527–9543 (2010)CrossRef A.V. Virkar: Mechanism of oxygen electrode delamination in solid oxide electrolyzer cells, Int. J. Hydrogen Energy 35, 9527–9543 (2010)CrossRef
[110]
Zurück zum Zitat C.W. De Kreuk, J.L.B. De Groot: Photocorrosion of strontium titanate photoanodes, Solar Energy Mater. 5(4), 437–444 (1981)CrossRef C.W. De Kreuk, J.L.B. De Groot: Photocorrosion of strontium titanate photoanodes, Solar Energy Mater. 5(4), 437–444 (1981)CrossRef
[111]
Zurück zum Zitat M.C. Hanna, A. Nozik: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys. 100(074510), 1–8 (2006)CrossRef M.C. Hanna, A. Nozik: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers, J. Appl. Phys. 100(074510), 1–8 (2006)CrossRef
[112]
Zurück zum Zitat R. Memming, G. Schandt: Electrochemical properties of gallium phosphide in aqueous solutions, Electrochimica Acta. 13, 1299–1310 (1968)CrossRef R. Memming, G. Schandt: Electrochemical properties of gallium phosphide in aqueous solutions, Electrochimica Acta. 13, 1299–1310 (1968)CrossRef
[113]
Zurück zum Zitat H. Yoneyama, H. Sakamoto, H.A. Tamura: Photo-electochemical cell with production of hydrogen and oxygen by a cell reaction, Electrochimica Acta. 20, 341–345 (1975)CrossRef H. Yoneyama, H. Sakamoto, H.A. Tamura: Photo-electochemical cell with production of hydrogen and oxygen by a cell reaction, Electrochimica Acta. 20, 341–345 (1975)CrossRef
[114]
Zurück zum Zitat B.A. Parkinson: Combinatorial identification and optimization of new oxide semiconductors. In: Photoelectrochemical Hydrogen Production, ed. by V. De Krol, R.M. Grätzel (Springer, Berlin 2012) pp. 173–203CrossRef B.A. Parkinson: Combinatorial identification and optimization of new oxide semiconductors. In: Photoelectrochemical Hydrogen Production, ed. by V. De Krol, R.M. Grätzel (Springer, Berlin 2012) pp. 173–203CrossRef
[115]
Zurück zum Zitat Y. Matsumoto: Energy positions of oxide semiconductors and photocatalysis with iron complex oxides, J. Solid State Chem. 126, 227–234 (1996)CrossRef Y. Matsumoto: Energy positions of oxide semiconductors and photocatalysis with iron complex oxides, J. Solid State Chem. 126, 227–234 (1996)CrossRef
[116]
Zurück zum Zitat M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis: Solar water splitting cells, Chem. Rev. 110, 6446–6473 (2010)CrossRef M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis: Solar water splitting cells, Chem. Rev. 110, 6446–6473 (2010)CrossRef
[117]
Zurück zum Zitat O. Khaselev, J.A. Turner: Electrochemical stability of p-GaInP2 in aqueous electrolytes toward photoelectrochemical water splitting, J. Electrochem. Soc. 145(10), 3335–3339 (1998)CrossRef O. Khaselev, J.A. Turner: Electrochemical stability of p-GaInP2 in aqueous electrolytes toward photoelectrochemical water splitting, J. Electrochem. Soc. 145(10), 3335–3339 (1998)CrossRef
[118]
Zurück zum Zitat B. Miller: Charge transfer and corrosion processes at III-V semiconductor/electrolyte interfaces, J. Electroanal. Chem. Interf. Electrochem. 168(1), 91–100 (1984)CrossRef B. Miller: Charge transfer and corrosion processes at III-V semiconductor/electrolyte interfaces, J. Electroanal. Chem. Interf. Electrochem. 168(1), 91–100 (1984)CrossRef
[119]
Zurück zum Zitat T.G. Deutsch, C.A. Koval, J.A. Turner: III-V Nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN, J. Phys. Chem. B 110, 25297–25307 (2006)CrossRef T.G. Deutsch, C.A. Koval, J.A. Turner: III-V Nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN, J. Phys. Chem. B 110, 25297–25307 (2006)CrossRef
[120]
Zurück zum Zitat H. Gerischer: On the stability of semiconductor electrodes against photodecomposition, J. Electroanal. Chem. Interf. Electrochem. 82(1), 133–143 (1977)CrossRef H. Gerischer: On the stability of semiconductor electrodes against photodecomposition, J. Electroanal. Chem. Interf. Electrochem. 82(1), 133–143 (1977)CrossRef
[121]
Zurück zum Zitat D. Meissner, R. Memming, B. Kastening: Fundamental problems of water splitting at cadmium sulfide, Chem. Phys. Lett. 127, 419–422 (1986)CrossRef D. Meissner, R. Memming, B. Kastening: Fundamental problems of water splitting at cadmium sulfide, Chem. Phys. Lett. 127, 419–422 (1986)CrossRef
[122]
Zurück zum Zitat D. Meissner, C. Benndorf, R. Memming: Photocorrosion of cadmium sulfide: Analysis by photoelectron spectroscopy, Appl. Surf. Sci. 27, 423–436 (1987)CrossRef D. Meissner, C. Benndorf, R. Memming: Photocorrosion of cadmium sulfide: Analysis by photoelectron spectroscopy, Appl. Surf. Sci. 27, 423–436 (1987)CrossRef
[123]
Zurück zum Zitat D. Meissner, R. Memming: Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential, J. Phys. Chem. 92, 3476–3483 (1988)CrossRef D. Meissner, R. Memming: Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential, J. Phys. Chem. 92, 3476–3483 (1988)CrossRef
[124]
Zurück zum Zitat R.C. Valderrama, P.J. Sebastián, M. Miranda-Hernandez, J. Pantoja Enriquez, S.A. Gamboa: Studies on the electrochemical stability of CIGS in H2SO4, J. Photochem. Photobiol. A 168(1), 75–80 (2004)CrossRef R.C. Valderrama, P.J. Sebastián, M. Miranda-Hernandez, J. Pantoja Enriquez, S.A. Gamboa: Studies on the electrochemical stability of CIGS in H2SO4, J. Photochem. Photobiol. A 168(1), 75–80 (2004)CrossRef
[125]
Zurück zum Zitat W. Kautek, H. Gerischer: Anisotropic photocorrosion of n-type MoS2 MoSe2, and WSe2 single crystal surfaces: The role of cleavage steps, line and screw dislocations, Surf. Sci. 119(1), 46–60 (1982)CrossRef W. Kautek, H. Gerischer: Anisotropic photocorrosion of n-type MoS2 MoSe2, and WSe2 single crystal surfaces: The role of cleavage steps, line and screw dislocations, Surf. Sci. 119(1), 46–60 (1982)CrossRef
[126]
Zurück zum Zitat D.E. Scaife: Oxide semiconductors in photoelectrochemical conversion of solar energy, Solar Energy 25(1), 41–54 (1980)CrossRef D.E. Scaife: Oxide semiconductors in photoelectrochemical conversion of solar energy, Solar Energy 25(1), 41–54 (1980)CrossRef
[127]
Zurück zum Zitat U. Bossel: The physics of the hydrogen economy, Eur. Fuel Cells News 10(2), 1–16 (2003) U. Bossel: The physics of the hydrogen economy, Eur. Fuel Cells News 10(2), 1–16 (2003)
[128]
Zurück zum Zitat K. Tanabe: A review of ultrahigh efficiency III-V semiconductor compound solar cells: Multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures, Energies 2, 504–530 (2009)CrossRef K. Tanabe: A review of ultrahigh efficiency III-V semiconductor compound solar cells: Multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures, Energies 2, 504–530 (2009)CrossRef
[129]
Zurück zum Zitat S. Licht: Multiple band gap semiconductorelectrolyte solar energy conversion, J. Phys. Chem. B 105, 6281–6294 (2001)CrossRef S. Licht: Multiple band gap semiconductorelectrolyte solar energy conversion, J. Phys. Chem. B 105, 6281–6294 (2001)CrossRef
[130]
Zurück zum Zitat B. Neumann, P. Bogdanoff, H. Tributsch: TiO2-protected photoelectrochemical tandem Cu(In,Ga)Se2 thin film membrane for light-induced water splitting and hydrogen evolution, J. Phys. Chem. C 113, 20980–20989 (2009)CrossRef B. Neumann, P. Bogdanoff, H. Tributsch: TiO2-protected photoelectrochemical tandem Cu(In,Ga)Se2 thin film membrane for light-induced water splitting and hydrogen evolution, J. Phys. Chem. C 113, 20980–20989 (2009)CrossRef
[131]
Zurück zum Zitat W. Shockley, H.J. Queisser: Detailed balance limit of efficiency of p–n junction solar cells, J. Appl. Phys. 32, 510–519 (1961)CrossRef W. Shockley, H.J. Queisser: Detailed balance limit of efficiency of p–n junction solar cells, J. Appl. Phys. 32, 510–519 (1961)CrossRef
[132]
Zurück zum Zitat N.D. McDaniel, S. Bernhard: Solar fuels: thermodynamics, candidates, tactics, and figures of merit, Dalton Trans. 39, 10021–10030 (2010)CrossRef N.D. McDaniel, S. Bernhard: Solar fuels: thermodynamics, candidates, tactics, and figures of merit, Dalton Trans. 39, 10021–10030 (2010)CrossRef
[133]
Zurück zum Zitat J.M. Bolts, M.S. Wrighton: Correlation of photocurrent-voltage curves with flat-band potential for stable photoelectrodes for the photoelectrolysis of water, J. Phys. Chem. 80(24), 2641–2645 (1976)CrossRef J.M. Bolts, M.S. Wrighton: Correlation of photocurrent-voltage curves with flat-band potential for stable photoelectrodes for the photoelectrolysis of water, J. Phys. Chem. 80(24), 2641–2645 (1976)CrossRef
[134]
Zurück zum Zitat J. Maclay, J. Brouwer, G.S. Samuelsen: Experimental results for hybrid energy storage systems coupled to photovoltaic generation in residential applications, Int. J. Hydrogen Energy 36(19), 12130–12140 (2011)CrossRef J. Maclay, J. Brouwer, G.S. Samuelsen: Experimental results for hybrid energy storage systems coupled to photovoltaic generation in residential applications, Int. J. Hydrogen Energy 36(19), 12130–12140 (2011)CrossRef
[135]
Zurück zum Zitat A.J. Nozik: p-n photoelectrolysis cells, Appl. Phys. Lett. 29, 150–153 (1976)CrossRef A.J. Nozik: p-n photoelectrolysis cells, Appl. Phys. Lett. 29, 150–153 (1976)CrossRef
[136]
Zurück zum Zitat J. o’M. Bockris, R.C. Kainthla: The conversion of light and water to hydrogen and electric power, Int. J. Hydrogen Energy 13(6), 375–383 (1988) J. o’M. Bockris, R.C. Kainthla: The conversion of light and water to hydrogen and electric power, Int. J. Hydrogen Energy 13(6), 375–383 (1988)
[137]
Zurück zum Zitat D.C. Bookbinder, N.S. Lewis, M.G. Bradley, A.B. Bocarsly, M.S. Wrighton: Photoelectrochemical reduction of N,N′-dimethyl-4,4′-bipyridinium in aqueous media at p-type silicon: Sustained photogeneration of a species capable of evolving hydrogen, J. Am. Chem. Soc. 101(26), 7721–7723 (1979)CrossRef D.C. Bookbinder, N.S. Lewis, M.G. Bradley, A.B. Bocarsly, M.S. Wrighton: Photoelectrochemical reduction of N,N′-dimethyl-4,4′-bipyridinium in aqueous media at p-type silicon: Sustained photogeneration of a species capable of evolving hydrogen, J. Am. Chem. Soc. 101(26), 7721–7723 (1979)CrossRef
[138]
Zurück zum Zitat E. Aharon-Shalom, A. Heller: Efficient p-InP(Rh-H alloy) and p-InP(Re-H alloy) hydrogen evolving photocathodes, J. Electrochem. Soc. 129, 2865–2866 (1982)CrossRef E. Aharon-Shalom, A. Heller: Efficient p-InP(Rh-H alloy) and p-InP(Re-H alloy) hydrogen evolving photocathodes, J. Electrochem. Soc. 129, 2865–2866 (1982)CrossRef
[139]
Zurück zum Zitat K. Ohashi, J. McCann, J.O.M. Bockris: Stable photoelectrochemical cells for the splitting of water, Nature 266, 610–611 (1977)CrossRef K. Ohashi, J. McCann, J.O.M. Bockris: Stable photoelectrochemical cells for the splitting of water, Nature 266, 610–611 (1977)CrossRef
[140]
Zurück zum Zitat H.S. Gurev, R.E. Hahn, K.D. Masterson: High temperature; stable, spectrally selective solar absorbers for thermochemical hydrogen production, Int. J. Hydrogen Energy 1(3), 259–265 (1977)CrossRef H.S. Gurev, R.E. Hahn, K.D. Masterson: High temperature; stable, spectrally selective solar absorbers for thermochemical hydrogen production, Int. J. Hydrogen Energy 1(3), 259–265 (1977)CrossRef
[141]
Zurück zum Zitat B. Marsen, B. Cole, E.L. Miller: Photoelectrolysis of water using thin copper gallium diselenide electrodes, Sol. Energ. Mater. Sol. Cells 92, 1054–1058 (2008)CrossRef B. Marsen, B. Cole, E.L. Miller: Photoelectrolysis of water using thin copper gallium diselenide electrodes, Sol. Energ. Mater. Sol. Cells 92, 1054–1058 (2008)CrossRef
[142]
Zurück zum Zitat D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, J. Kubota, H. Katagiri, K. Domen: H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light, Appl. Phys. Express 3(10), 101202–101204 (2010)CrossRef D. Yokoyama, T. Minegishi, K. Jimbo, T. Hisatomi, G. Ma, M. Katayama, J. Kubota, H. Katagiri, K. Domen: H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light, Appl. Phys. Express 3(10), 101202–101204 (2010)CrossRef
[143]
Zurück zum Zitat M. Kaneko, G.J. Yao, A. Kira: Efficient water cleavage with visible light by a system mimicking photosystem II, J. Chem. Soc. Chem. Commun. 18, 1338–1339 (1989)CrossRef M. Kaneko, G.J. Yao, A. Kira: Efficient water cleavage with visible light by a system mimicking photosystem II, J. Chem. Soc. Chem. Commun. 18, 1338–1339 (1989)CrossRef
[144]
Zurück zum Zitat J. Hensel, G. Wang, Y. Li, J.Z. Zhang: Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation, Nano Lett. 10, 478–483 (2010)CrossRef J. Hensel, G. Wang, Y. Li, J.Z. Zhang: Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO2 nanostructures for photoelectrochemical solar hydrogen generation, Nano Lett. 10, 478–483 (2010)CrossRef
[145]
Zurück zum Zitat H. Hashiguchi, K. Maeda, R. Abe, A. Ishikawa, J. Kubota, K. Domen: Photoresponse of GaN: ZnO Electrode on FTO under visible light irradiation, Bull. Chem. Soc. Jpn. 82, 401–407 (2009)CrossRef H. Hashiguchi, K. Maeda, R. Abe, A. Ishikawa, J. Kubota, K. Domen: Photoresponse of GaN: ZnO Electrode on FTO under visible light irradiation, Bull. Chem. Soc. Jpn. 82, 401–407 (2009)CrossRef
[146]
Zurück zum Zitat S. Yamane, N. Kato, S. Kojima, A. Imanishi, S. Ogawa, N. Yoshida, S. Nonomura, Y. Nakato: Efficient solar water splitting with a composite n-Si/p-CuI/n-i-p a-Si/n-p GaP/RuO2, semiconductor electrode, J. Phys. Chem. C 113(32), 14575–14581 (2009)CrossRef S. Yamane, N. Kato, S. Kojima, A. Imanishi, S. Ogawa, N. Yoshida, S. Nonomura, Y. Nakato: Efficient solar water splitting with a composite n-Si/p-CuI/n-i-p a-Si/n-p GaP/RuO2, semiconductor electrode, J. Phys. Chem. C 113(32), 14575–14581 (2009)CrossRef
[147]
Zurück zum Zitat S. Shet, K.-S. Ahn, T. Deutsch, H. Wang, N. Ravindra, Y. Yan, J. Turner, M. Al-Jassim: Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting, J. Mater. Res. 25(1), 69–75 (2010)CrossRef S. Shet, K.-S. Ahn, T. Deutsch, H. Wang, N. Ravindra, Y. Yan, J. Turner, M. Al-Jassim: Synthesis and characterization of band gap-reduced ZnO:N and ZnO:(Al,N) films for photoelectrochemical water splitting, J. Mater. Res. 25(1), 69–75 (2010)CrossRef
[148]
Zurück zum Zitat J. Ye, Z. Zou, H. Arakawa, M. Oshikiri, M. Shimoda, A. Matsushita, T. Shishido: Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+,Nb5+,Ta5+), J. Photochem. Photobiol. A 148, 79–83 (2002)CrossRef J. Ye, Z. Zou, H. Arakawa, M. Oshikiri, M. Shimoda, A. Matsushita, T. Shishido: Correlation of crystal and electronic structures with photophysical properties of water splitting photocatalysts InMO4 (M=V5+,Nb5+,Ta5+), J. Photochem. Photobiol. A 148, 79–83 (2002)CrossRef
[149]
Zurück zum Zitat Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414, 625–627 (2001)CrossRef Z.G. Zou, J.H. Ye, K. Sayama, H. Arakawa: Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414, 625–627 (2001)CrossRef
[150]
Zurück zum Zitat G. Hodes, D. Cahen, J. Manassen: Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC), Nature 260, 312–313 (1976)CrossRef G. Hodes, D. Cahen, J. Manassen: Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC), Nature 260, 312–313 (1976)CrossRef
[151]
Zurück zum Zitat Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo: Investigations of electronic structures and photocatalytic activities under visible light irradiation of lead molybdate replaced with chromium (VI), Bull. Chem. Soc. Jpn. 80, 885–893 (2007)CrossRef Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo: Investigations of electronic structures and photocatalytic activities under visible light irradiation of lead molybdate replaced with chromium (VI), Bull. Chem. Soc. Jpn. 80, 885–893 (2007)CrossRef
[152]
Zurück zum Zitat M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, D.S. Ginley: Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential, J. Am. Chem. Soc. 98(10), 2774–2779 (1975)CrossRef M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, D.S. Ginley: Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential, J. Am. Chem. Soc. 98(10), 2774–2779 (1975)CrossRef
[153]
Zurück zum Zitat H.P. Maruska, A.K. Ghosh: Transition-metal dopants for extending the response of titanate photoelectrolysis anodes, Sol. Energ. Mater. 1(3–4), 237–247 (1978) H.P. Maruska, A.K. Ghosh: Transition-metal dopants for extending the response of titanate photoelectrolysis anodes, Sol. Energ. Mater. 1(3–4), 237–247 (1978)
[154]
Zurück zum Zitat L.G.L. De Haart, A.J. De Vries, G. Blasse: On the photoluminescence of semiconducting titanates applied in photoelectrochemical cells, J. Sol. State Chem. 59(3), 291–300 (1985)CrossRef L.G.L. De Haart, A.J. De Vries, G. Blasse: On the photoluminescence of semiconducting titanates applied in photoelectrochemical cells, J. Sol. State Chem. 59(3), 291–300 (1985)CrossRef
[155]
Zurück zum Zitat K. Sivula, F. Le Formal, M. Grätzel: Solar water splitting: progress using hematite (α-Fe(2) O(3)) photoelectrodes, Chem. Sus. Chem. 4(4), 432–449 (2011)CrossRef K. Sivula, F. Le Formal, M. Grätzel: Solar water splitting: progress using hematite (α-Fe(2) O(3)) photoelectrodes, Chem. Sus. Chem. 4(4), 432–449 (2011)CrossRef
[156]
Zurück zum Zitat P.C. Bailey: Absorption and reflectivity measurements on some rare earth iron garnets and alpha-iron oxide, J. Appl. Phys. 31, S39–S40 (1960)CrossRef P.C. Bailey: Absorption and reflectivity measurements on some rare earth iron garnets and alpha-iron oxide, J. Appl. Phys. 31, S39–S40 (1960)CrossRef
[157]
Zurück zum Zitat L.A. Marusak, R. Messier, W.B. White: Optical absorption spectrum of hematite, α Fe2O3 near IR to UV, J. Phys. Chem. Solids 41, 981–984 (1980)CrossRef L.A. Marusak, R. Messier, W.B. White: Optical absorption spectrum of hematite, α Fe2O3 near IR to UV, J. Phys. Chem. Solids 41, 981–984 (1980)CrossRef
[158]
Zurück zum Zitat J.H. Kennedy, K.W. Frese: Photo oxidation of water at α-Fe2O3 electrodes, J. Electrochem. Soc. 125, 709–714 (1978)CrossRef J.H. Kennedy, K.W. Frese: Photo oxidation of water at α-Fe2O3 electrodes, J. Electrochem. Soc. 125, 709–714 (1978)CrossRef
[159]
Zurück zum Zitat A. Kay, I. Cesar, M. Grätzel: New benchmark for water photooxidation by nanostructured α -Fe2O3 films, J. Am. Chem. Soc. 128(49), 15714–15721 (2006)CrossRef A. Kay, I. Cesar, M. Grätzel: New benchmark for water photooxidation by nanostructured α -Fe2O3 films, J. Am. Chem. Soc. 128(49), 15714–15721 (2006)CrossRef
[160]
Zurück zum Zitat K. Sivula, F.L. Formal, M. Grätzel: WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach, Chem. Mater. 21(13), 2862–2867 (2009)CrossRef K. Sivula, F.L. Formal, M. Grätzel: WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach, Chem. Mater. 21(13), 2862–2867 (2009)CrossRef
[161]
Zurück zum Zitat K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Grätzel: Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach, J. Am. Chem. Soc. 132(21), 7436–7444 (2010)CrossRef K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Grätzel: Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach, J. Am. Chem. Soc. 132(21), 7436–7444 (2010)CrossRef
[162]
Zurück zum Zitat S.D. Tilley, M. Cornuz, K. Sivula, M. Grätzel: Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis, Angew. Chem. Intl. Ed. 49(36), 6405–6408 (2010)CrossRef S.D. Tilley, M. Cornuz, K. Sivula, M. Grätzel: Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis, Angew. Chem. Intl. Ed. 49(36), 6405–6408 (2010)CrossRef
[163]
Zurück zum Zitat A. Paracchino, V. Laporte, K. Sivula, M. Gräzel, E. Thimsen: Highly active oxide photocathode for photoelectrochemical water reduction, Nature Mater. 10, 456–461 (2011)CrossRef A. Paracchino, V. Laporte, K. Sivula, M. Gräzel, E. Thimsen: Highly active oxide photocathode for photoelectrochemical water reduction, Nature Mater. 10, 456–461 (2011)CrossRef
[164]
Zurück zum Zitat Y. Matsumoto, M. Omae, K. Sugiyama, E.-I. Sato: New photocathode materials for hydrogen evolution: Calcium iron oxide (CaFe2O4) and strontium iron oxide (Sr7Fe10O22), J. Phys. Chem. 91, 577–581 (1987)CrossRef Y. Matsumoto, M. Omae, K. Sugiyama, E.-I. Sato: New photocathode materials for hydrogen evolution: Calcium iron oxide (CaFe2O4) and strontium iron oxide (Sr7Fe10O22), J. Phys. Chem. 91, 577–581 (1987)CrossRef
[165]
Zurück zum Zitat A.J. Nozik: Nanoscience and nanostructures for photovoltaics and solar fuels, Nano Lett. 10(8), 2735–2741 (2010)CrossRef A.J. Nozik: Nanoscience and nanostructures for photovoltaics and solar fuels, Nano Lett. 10(8), 2735–2741 (2010)CrossRef
[166]
Zurück zum Zitat O.K. Varghese, D. Gong, M. Pailose, C.A. Grimes, E.C. Dickey: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, J. Mater. Res. 18, 156–165 (2003)CrossRef O.K. Varghese, D. Gong, M. Pailose, C.A. Grimes, E.C. Dickey: Crystallization and high-temperature structural stability of titanium oxide nanotube arrays, J. Mater. Res. 18, 156–165 (2003)CrossRef
[167]
Zurück zum Zitat K.S. Raja, M. Misra, K. Paramguru: Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium, Electrochimica. Acta. 51, 154–165 (2005)CrossRef K.S. Raja, M. Misra, K. Paramguru: Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium, Electrochimica. Acta. 51, 154–165 (2005)CrossRef
[168]
Zurück zum Zitat C.-C. Chen, J.-H. Chen, C.-G. Chao, W.C. Say: Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing, J. Mater. Sci. 40, 4053–4059 (2005)CrossRef C.-C. Chen, J.-H. Chen, C.-G. Chao, W.C. Say: Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing, J. Mater. Sci. 40, 4053–4059 (2005)CrossRef
[169]
Zurück zum Zitat J. Zhao, X. Wnag, R. Chen, L. Li: Fabrication of titanium oxide nanotube arrays by anodic oxidation, Sol. State Commun. 134, 705–710 (2005)CrossRef J. Zhao, X. Wnag, R. Chen, L. Li: Fabrication of titanium oxide nanotube arrays by anodic oxidation, Sol. State Commun. 134, 705–710 (2005)CrossRef
[170]
Zurück zum Zitat S. Bauer, S. Kleber, P. Schmuki: TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes, Electrochem. Commun. 8(8), 1321–1325 (2006)CrossRef S. Bauer, S. Kleber, P. Schmuki: TiO2 nanotubes: Tailoring the geometry in H3PO4/HF electrolytes, Electrochem. Commun. 8(8), 1321–1325 (2006)CrossRef
[171]
Zurück zum Zitat P.S. Albu, A. Ghicov, J.M. Macak, P. Schmuki: 250µm long anodic TiO2 nanotubes with hexagonal self-ordering, Phys. Status Solidi 1, R65–R67 (2007) P.S. Albu, A. Ghicov, J.M. Macak, P. Schmuki: 250µm long anodic TiO2 nanotubes with hexagonal self-ordering, Phys. Status Solidi 1, R65–R67 (2007)
[172]
Zurück zum Zitat W.-J. Lee, M. Alhoshan, W.H. Smyrl: Titanium dioxide nanotube arrays fabricated by anodizing processes – Electrochemical properties, J. Electrochem. Soc. 153, B499–B505 (2006)CrossRef W.-J. Lee, M. Alhoshan, W.H. Smyrl: Titanium dioxide nanotube arrays fabricated by anodizing processes – Electrochemical properties, J. Electrochem. Soc. 153, B499–B505 (2006)CrossRef
[173]
Zurück zum Zitat Y.-C. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki: TiO2-WO3 Composite nanotubes by alloy anodization: Growth and enhanced electrochromic properties, J. Am. Chem. Soc. 130, 16154–16155 (2008)CrossRef Y.-C. Nah, A. Ghicov, D. Kim, S. Berger, P. Schmuki: TiO2-WO3 Composite nanotubes by alloy anodization: Growth and enhanced electrochromic properties, J. Am. Chem. Soc. 130, 16154–16155 (2008)CrossRef
[174]
Zurück zum Zitat J.H. Park, S. Kim, A.J. Bard: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, Nano Lett. 6(1), 24–28 (2005)CrossRef J.H. Park, S. Kim, A.J. Bard: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting, Nano Lett. 6(1), 24–28 (2005)CrossRef
[175]
Zurück zum Zitat K.S. Raja, M. Misra, V.K. Mahajan, T. Gandhi, P. Pillai, S.K. Mohapatra: Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light, J. Power Sources 161, 1450–1457 (2006)CrossRef K.S. Raja, M. Misra, V.K. Mahajan, T. Gandhi, P. Pillai, S.K. Mohapatra: Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light, J. Power Sources 161, 1450–1457 (2006)CrossRef
[176]
Zurück zum Zitat S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja: Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: Application of TiO2−x C x nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode, J. Phys. Chem. C 111, 8677–8685 (2007)CrossRef S.K. Mohapatra, M. Misra, V.K. Mahajan, K.S. Raja: Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: Application of TiO2−x C x nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode, J. Phys. Chem. C 111, 8677–8685 (2007)CrossRef
[177]
Zurück zum Zitat R. Abe, M. Higashi, K. Domen: Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation, J. Am. Chem. Soc. 132(34), 11828–11829 (2010)CrossRef R. Abe, M. Higashi, K. Domen: Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation, J. Am. Chem. Soc. 132(34), 11828–11829 (2010)CrossRef
[178]
Zurück zum Zitat S. Linic, P. Christopher, D. Ingram: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nature Mater. 10, 911–921 (2011)CrossRef S. Linic, P. Christopher, D. Ingram: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nature Mater. 10, 911–921 (2011)CrossRef
[179]
Zurück zum Zitat D.B. Ingram, S. Linic: S: Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface, J. Am. Chem. Soc. 133, 5202–5205 (2011)CrossRef D.B. Ingram, S. Linic: S: Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface, J. Am. Chem. Soc. 133, 5202–5205 (2011)CrossRef
[180]
Zurück zum Zitat J.I. Levene, M.K. Mann, R.M. Magrolis, A. Milbrandt: An analysis of hydrogen production from renewable electricity sources, Solar Energ. 81, 773–780 (2007)CrossRef J.I. Levene, M.K. Mann, R.M. Magrolis, A. Milbrandt: An analysis of hydrogen production from renewable electricity sources, Solar Energ. 81, 773–780 (2007)CrossRef
[181]
Zurück zum Zitat P.-H. Floch, S. Gabriel, C. Mansilla, F. Werkoff: On the production of hydrogen via alkaline electrolysis during off-peak periods, Int. J. Hydrogen Energy 32, 4641–4647 (2007)CrossRef P.-H. Floch, S. Gabriel, C. Mansilla, F. Werkoff: On the production of hydrogen via alkaline electrolysis during off-peak periods, Int. J. Hydrogen Energy 32, 4641–4647 (2007)CrossRef
[182]
Zurück zum Zitat IEA: CO 2 Emissions from Fuel Combustion (International Energy Agency, Paris 2011) IEA: CO 2 Emissions from Fuel Combustion (International Energy Agency, Paris 2011)
[183]
Zurück zum Zitat D. Bonhaquist: Emissions, Reductions, and Capture for Large-Scale Hydrogen Production Plants, Praxair White Paper (Praxair, Danbury 2010) D. Bonhaquist: Emissions, Reductions, and Capture for Large-Scale Hydrogen Production Plants, Praxair White Paper (Praxair, Danbury 2010)
[184]
Zurück zum Zitat L.M. Gandia, R. Orosz, A. Ursua, P. Sanchis, P. Diegueuz: Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions, Energy Fuels 21, 1699–1706 (2007)CrossRef L.M. Gandia, R. Orosz, A. Ursua, P. Sanchis, P. Diegueuz: Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions, Energy Fuels 21, 1699–1706 (2007)CrossRef
[185]
Zurück zum Zitat B. Kroposki, J. Levene, K. Harrison, P.K. Sen, F. Novachek: Electrolysis: Information and Opportunities for Electric Power Utilities (National Renewable Energy Laboratory, Golden 2006), NREL Tech. Rep. NREL/TP-581-40605CrossRef B. Kroposki, J. Levene, K. Harrison, P.K. Sen, F. Novachek: Electrolysis: Information and Opportunities for Electric Power Utilities (National Renewable Energy Laboratory, Golden 2006), NREL Tech. Rep. NREL/TP-581-40605CrossRef
[186]
Zurück zum Zitat T. Abbasi, S.A. Abbasi: Renewable hydrogen: Prospects and challenges, Renew. Sust. Energ. Rev. 15, 3034 (2011)CrossRef T. Abbasi, S.A. Abbasi: Renewable hydrogen: Prospects and challenges, Renew. Sust. Energ. Rev. 15, 3034 (2011)CrossRef
[187]
Zurück zum Zitat National Research Council: The Hydrogen Economy. Opportunities, Costs, Barriers, and R and D Needs (National Academies, Washington 2004) National Research Council: The Hydrogen Economy. Opportunities, Costs, Barriers, and R and D Needs (National Academies, Washington 2004)
[188]
Zurück zum Zitat J.E. O’Brien, M.G. McKellar, E.A. Harvego, C.M. Stoots: High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy – Summary of system simulation and economic analyses, Int. J. Hydrogen Energy 35, 4808–4819 (2010)CrossRef J.E. O’Brien, M.G. McKellar, E.A. Harvego, C.M. Stoots: High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy – Summary of system simulation and economic analyses, Int. J. Hydrogen Energy 35, 4808–4819 (2010)CrossRef
[189]
Zurück zum Zitat B.C.R. Ewan, R.W.K. Allen: A figure of merit assessment of the routes to hydrogen, Int. J. Hydrogen Energy 30, 809–819 (2005)CrossRef B.C.R. Ewan, R.W.K. Allen: A figure of merit assessment of the routes to hydrogen, Int. J. Hydrogen Energy 30, 809–819 (2005)CrossRef
[190]
Zurück zum Zitat P.L. Spath, M.K. Mann: Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis (National Renewable Energy Laboratory, Golden 2004), NREL Milestone Rep. MP-560-35404 P.L. Spath, M.K. Mann: Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis (National Renewable Energy Laboratory, Golden 2004), NREL Milestone Rep. MP-560-35404
[191]
Zurück zum Zitat C. Koronos, A. Dompros, G. Roumbas, N. Moussiopoulos: Life cycle assessment of hydrogen fuel production processes, Int. J. Hydrogen Energy 29, 1443–1450 (2010)CrossRef C. Koronos, A. Dompros, G. Roumbas, N. Moussiopoulos: Life cycle assessment of hydrogen fuel production processes, Int. J. Hydrogen Energy 29, 1443–1450 (2010)CrossRef
[192]
Zurück zum Zitat R.G. Lemus, J.M.M. Duart: Updated hydrogen production costs and parities for conventional and renewable technologies, Int. J. Hydrogen Energy 35, 3929–3936 (2010)CrossRef R.G. Lemus, J.M.M. Duart: Updated hydrogen production costs and parities for conventional and renewable technologies, Int. J. Hydrogen Energy 35, 3929–3936 (2010)CrossRef
[193]
Zurück zum Zitat E. Cetinkaya, I. Dincer, G.F. Naterer: Life cycle assessment of various hydrogen production methods, Int. J. Hydrogen Energy 37, 2071–2080 (2012)CrossRef E. Cetinkaya, I. Dincer, G.F. Naterer: Life cycle assessment of various hydrogen production methods, Int. J. Hydrogen Energy 37, 2071–2080 (2012)CrossRef
[194]
Zurück zum Zitat A. Ursua, L.M. Gandia, P. Sanchis: Hydrogen production from water electrolysis: Current status and future trends, Proc. IEEE, Vol. 100 (2012) pp. 410–426 A. Ursua, L.M. Gandia, P. Sanchis: Hydrogen production from water electrolysis: Current status and future trends, Proc. IEEE, Vol. 100 (2012) pp. 410–426
[195]
Zurück zum Zitat K.W. Harrison, G.D. Martin, T.G. Ramsden, W.E. Kramer, F.J. Novachek: The Wind-to-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration (National Renewable Energy Laboratory, Golden 2009), NREL TP/550-44082 Tech. Rep.CrossRef K.W. Harrison, G.D. Martin, T.G. Ramsden, W.E. Kramer, F.J. Novachek: The Wind-to-Hydrogen Project: Operational Experience, Performance Testing, and Systems Integration (National Renewable Energy Laboratory, Golden 2009), NREL TP/550-44082 Tech. Rep.CrossRef
[196]
Zurück zum Zitat M. Rey Porto, T. Carretero, M. Aguado, R. Garde: H2 production in Sotavento wind farm, Proc. 18th World Hydrogen Energy Conf., Vol. 78, ed. by D. Stolten, T. Grube (2010) M. Rey Porto, T. Carretero, M. Aguado, R. Garde: H2 production in Sotavento wind farm, Proc. 18th World Hydrogen Energy Conf., Vol. 78, ed. by D. Stolten, T. Grube (2010)
[197]
Zurück zum Zitat K.W. Harrison, R. Remick, G.D. Martin, A. Hoskin: Hydrogen Production: Fundamentals and Case Study Summaries (National Renewable Energy Laboratory, Golden 2010), NREL CP-550-47302 Tech. Rep. K.W. Harrison, R. Remick, G.D. Martin, A. Hoskin: Hydrogen Production: Fundamentals and Case Study Summaries (National Renewable Energy Laboratory, Golden 2010), NREL CP-550-47302 Tech. Rep.
Metadaten
Titel
Electrochemical Hydrogen Production
verfasst von
Ting He
Mahaprasad Kar
Neal D. McDaniel
Bruce B. Randolph
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_27