Skip to main content
Erschienen in: Surface Engineering and Applied Electrochemistry 5/2022

01.10.2022

Electrochemical Performances of Tin Phosphite Electrode for Lithium Ion Batteries

verfasst von: Siham Idrissi, Zineb Edfouf, Abdelfettah Lallaoui, Mohammed Abd-Lefdil, Fouzia Cherkaoui El Moursli

Erschienen in: Surface Engineering and Applied Electrochemistry | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Finding alternative materials components of lithium ion batteries (LIBs) with high performances is a key factor to improve this technology. The objective of the present study was to investigate the electrochemical performances of tin phosphite (SnHPO3) as anode material for LIBs. SnHPO3 has been synthesized through a simple hydrothermal method and characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy techniques. The characterization results proved that SnHPO3 has been successfully synthesized with no impurities. The electrochemical behavior of SnHPO3 as anode is discussed using cyclic voltammetry and galvanostatic cycling. Interesting performances have been obtained by using carboxymethyl cellulose (CMC) as binder. SnHPO3 has shown a good reversible capacity thanks to its open-framework with large size channels that buffer volume expansion of tin nanoparticles and to the CMC binder effect.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Qayyum, A.A., Khan, Z.S., Ashraf, S., and Ahmed, N., Amorphous codoped SnS/CNTs nanocomposite with improved capacity retention as an advanced sodium-ion battery anode, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 14521.CrossRef Qayyum, A.A., Khan, Z.S., Ashraf, S., and Ahmed, N., Amorphous codoped SnS/CNTs nanocomposite with improved capacity retention as an advanced sodium-ion battery anode, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 14521.CrossRef
2.
Zurück zum Zitat Guler, M.O., Guzeler, M., Nalci, D., Singil, M., et al., Freestanding nano crystalline Tin@carbon anode electrodes for high capacity Li-ion batteries, Appl. Surf. Sci., 2018, vol. 446, p. 122.CrossRef Guler, M.O., Guzeler, M., Nalci, D., Singil, M., et al., Freestanding nano crystalline Tin@carbon anode electrodes for high capacity Li-ion batteries, Appl. Surf. Sci., 2018, vol. 446, p. 122.CrossRef
3.
Zurück zum Zitat Zhang, P., Zhu, S., He, Z., Wang, K., et al., Photochemical synthesis of SnO2/TiO2 composite nanotube arrays with enhanced lithium storage performance, J. Alloys Compd., 2016, vol. 674, p. 1.CrossRef Zhang, P., Zhu, S., He, Z., Wang, K., et al., Photochemical synthesis of SnO2/TiO2 composite nanotube arrays with enhanced lithium storage performance, J. Alloys Compd., 2016, vol. 674, p. 1.CrossRef
4.
Zurück zum Zitat Narsimulu, D., Nageswara, N.N.B., and Satyanarayana, R.N., Rational design of SnO2 nanoflakes as a stable and high rate anode for lithium-ion batteries, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 8556.CrossRef Narsimulu, D., Nageswara, N.N.B., and Satyanarayana, R.N., Rational design of SnO2 nanoflakes as a stable and high rate anode for lithium-ion batteries, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 8556.CrossRef
5.
Zurück zum Zitat Xia, Y., Han, S., Zhu, Y., Liang, Y., et al., Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries, Energy Storage Mater., 2019, vol. 18, p. 125.CrossRef Xia, Y., Han, S., Zhu, Y., Liang, Y., et al., Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries, Energy Storage Mater., 2019, vol. 18, p. 125.CrossRef
6.
Zurück zum Zitat Liang, X., Wang, J., Zhang, S., Wang, L., et al., Fabrication of uniform Si-incorporated SnO2 nanoparticles on graphene sheets as advanced anode for Li-ion batteries, Appl. Surf. Sci., 2019, vol. 476, p. 28.CrossRef Liang, X., Wang, J., Zhang, S., Wang, L., et al., Fabrication of uniform Si-incorporated SnO2 nanoparticles on graphene sheets as advanced anode for Li-ion batteries, Appl. Surf. Sci., 2019, vol. 476, p. 28.CrossRef
7.
Zurück zum Zitat Wei, L., Chen, C., Hou, Z., and Wei, H., Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries, Sci. Rep., 2016, vol. 6, p. 1. Wei, L., Chen, C., Hou, Z., and Wei, H., Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries, Sci. Rep., 2016, vol. 6, p. 1.
8.
Zurück zum Zitat Pavitra, V., Udayabhanu, Harini, R., Viswanatha, R., et al., Sonochemical synthesis of SnO2–CuO nanocomposite: Diverse applications on Li-ion battery, electrochemical sensing and photocatalytic activity, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 8737.CrossRef Pavitra, V., Udayabhanu, Harini, R., Viswanatha, R., et al., Sonochemical synthesis of SnO2–CuO nanocomposite: Diverse applications on Li-ion battery, electrochemical sensing and photocatalytic activity, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 8737.CrossRef
9.
Zurück zum Zitat Yamauchi, H., Park, G., Nagakane, T., Honma, T., et al., Performance of lithium-ion battery with tin-phosphate glass anode and its characteristics, J. Electrochem. Soc., 2013, vol. 160, p. A1725.CrossRef Yamauchi, H., Park, G., Nagakane, T., Honma, T., et al., Performance of lithium-ion battery with tin-phosphate glass anode and its characteristics, J. Electrochem. Soc., 2013, vol. 160, p. A1725.CrossRef
10.
Zurück zum Zitat Lee, Y.K., Mahadik, D.B., Kim, T., Han, W., et al., Effect of differentiated textural properties of tin oxide aerogels on anode performance in lithium-ion batteries, J. Alloys Compd., 2018, vol. 732, p. 511.CrossRef Lee, Y.K., Mahadik, D.B., Kim, T., Han, W., et al., Effect of differentiated textural properties of tin oxide aerogels on anode performance in lithium-ion batteries, J. Alloys Compd., 2018, vol. 732, p. 511.CrossRef
11.
Zurück zum Zitat Chen, H., Lu, Y., Zhu, H., Guo, Y., et al., Crystalline SnO2@amorphous TiO2 core-shell nanostructures for high-performance lithium ion batteries, Electrochim. Acta., 2019, vol. 310, p. 203.CrossRef Chen, H., Lu, Y., Zhu, H., Guo, Y., et al., Crystalline SnO2@amorphous TiO2 core-shell nanostructures for high-performance lithium ion batteries, Electrochim. Acta., 2019, vol. 310, p. 203.CrossRef
12.
Zurück zum Zitat Bi, H., Li, X., Chen, J., Zhang, L., et al., Ultrahigh nitrogen-doped carbon/superfine-Sn particles for lithium ion battery anode, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 22224.CrossRef Bi, H., Li, X., Chen, J., Zhang, L., et al., Ultrahigh nitrogen-doped carbon/superfine-Sn particles for lithium ion battery anode, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 22224.CrossRef
13.
Zurück zum Zitat Kim, M.K., Kim, A.Y., Woo, J.Y., Lim, J.C., et al., Employment of SnO2:F@Ni3Sn2/Ni nanoclusters composites as an anode material for lithium-ion batteries, J. Alloys Compd., 2016, vol. 680, p. 744.CrossRef Kim, M.K., Kim, A.Y., Woo, J.Y., Lim, J.C., et al., Employment of SnO2:F@Ni3Sn2/Ni nanoclusters composites as an anode material for lithium-ion batteries, J. Alloys Compd., 2016, vol. 680, p. 744.CrossRef
14.
Zurück zum Zitat Edfouf, Z., Aragón, M.J., León, B., Vicente, C.P., et al., Tin phosphate electrode materials prepared by the hydrolysis of tin halides for application in lithium ion battery, J. Phys. Chem. C., 2009, vol. 113, p. 5316.CrossRef Edfouf, Z., Aragón, M.J., León, B., Vicente, C.P., et al., Tin phosphate electrode materials prepared by the hydrolysis of tin halides for application in lithium ion battery, J. Phys. Chem. C., 2009, vol. 113, p. 5316.CrossRef
16.
Zurück zum Zitat Li, L., Yuan, Z., Fan, R., Luo, T., et al., Low-temperature synthesis of pyrolytic-PVDF-coated SnO2@hard carbon nanocomposite anodes for Li-ion batteries, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 6449.CrossRef Li, L., Yuan, Z., Fan, R., Luo, T., et al., Low-temperature synthesis of pyrolytic-PVDF-coated SnO2@hard carbon nanocomposite anodes for Li-ion batteries, J. Mater. Sci. Mater. Electron., 2020, vol. 31, p. 6449.CrossRef
17.
Zurück zum Zitat Bezza, I., Trouillet, V., Fiedler, A., Bruns, M., et al., Understanding the lithiation/delithiation process in SnP2O7 anode material for lithium-ion batteries, Electrochim. Acta, 2017, vol. 252, p. 446.CrossRef Bezza, I., Trouillet, V., Fiedler, A., Bruns, M., et al., Understanding the lithiation/delithiation process in SnP2O7 anode material for lithium-ion batteries, Electrochim. Acta, 2017, vol. 252, p. 446.CrossRef
18.
Zurück zum Zitat Lee, J.G., Son, D., Kim, C., and Park, B., Electrochemical properties of tin phosphates with various mesopore ratios, J. Power Sources, 2007, vol. 172, p. 908.CrossRef Lee, J.G., Son, D., Kim, C., and Park, B., Electrochemical properties of tin phosphates with various mesopore ratios, J. Power Sources, 2007, vol. 172, p. 908.CrossRef
19.
Zurück zum Zitat Zuo, M., Zhou, M., Hu, D., Gao, F., et al., A novel 3D framework indium phosphite-oxalate based on a pcu-type topology, J. Solid State Chem., 2016, vol. 237, p. 219.CrossRef Zuo, M., Zhou, M., Hu, D., Gao, F., et al., A novel 3D framework indium phosphite-oxalate based on a pcu-type topology, J. Solid State Chem., 2016, vol. 237, p. 219.CrossRef
21.
Zurück zum Zitat Lallaoui, A., Edfouf, Z., Benabdallah, O., Idrissi, S., et al., New titanium(III) phosphite structure and its application as anode for lithium ion batteries, Int. J. Hydrogen Energy, 2018, vol. 45, p. 1. Lallaoui, A., Edfouf, Z., Benabdallah, O., Idrissi, S., et al., New titanium(III) phosphite structure and its application as anode for lithium ion batteries, Int. J. Hydrogen Energy, 2018, vol. 45, p. 1.
22.
Zurück zum Zitat Cherkaoui El Moursli, F., Lallaoui, A., Edfouf, Z., Saadoune, I., et al., MA Patent 40156 A1, 2017. Cherkaoui El Moursli, F., Lallaoui, A., Edfouf, Z., Saadoune, I., et al., MA Patent 40156 A1, 2017.
23.
Zurück zum Zitat Cherkaoui El Moursli, F., Lallaoui, A., Edfouf, Z., Saadoune, I., et al., WO Patent 2019/013609 A1, 2019. Cherkaoui El Moursli, F., Lallaoui, A., Edfouf, Z., Saadoune, I., et al., WO Patent 2019/013609 A1, 2019.
24.
Zurück zum Zitat Dahbi, M., Nakano, T., Yabuuchi, N., Ishikawa, T., et al., Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries, Electrochem. Commun., 2014, vol. 44, p. 66.CrossRef Dahbi, M., Nakano, T., Yabuuchi, N., Ishikawa, T., et al., Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries, Electrochem. Commun., 2014, vol. 44, p. 66.CrossRef
25.
Zurück zum Zitat Ma, Z., Lyu, Y., Yang, H., Li, Q., et al., Systematic investigation of the Binder’s role in the electrochemical performance of tin sulfide electrodes in SIBs, J. Power Sources, 2018, vol. 401, p. 195.CrossRef Ma, Z., Lyu, Y., Yang, H., Li, Q., et al., Systematic investigation of the Binder’s role in the electrochemical performance of tin sulfide electrodes in SIBs, J. Power Sources, 2018, vol. 401, p. 195.CrossRef
28.
Zurück zum Zitat Nirmale, T.C., Kale, B.B., and Varma, A.J., A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery, Int. J. Biol. Macromol., 2017, vol. 103, p. 1032.CrossRef Nirmale, T.C., Kale, B.B., and Varma, A.J., A review on cellulose and lignin based binders and electrodes: Small steps towards a sustainable lithium ion battery, Int. J. Biol. Macromol., 2017, vol. 103, p. 1032.CrossRef
29.
Zurück zum Zitat Liu, G., Shen, X., Ui, K., Wang, L., et al., Influence of the binder types on the electrochemical characteristics of tin nanoparticle negative electrode for lithium secondary batteries, J. Power Sources, 2012, vol. 217, p. 108.CrossRef Liu, G., Shen, X., Ui, K., Wang, L., et al., Influence of the binder types on the electrochemical characteristics of tin nanoparticle negative electrode for lithium secondary batteries, J. Power Sources, 2012, vol. 217, p. 108.CrossRef
30.
Zurück zum Zitat Hamchaoui, F., Alonzo, V., Venegas-Yazigi, D., Rebbah, H., et al., Six novel transition-metal phosphite compounds, with structure related to yavapaiite: Crystal structures and magnetic and thermal properties of AI[MIII(HPO3)2] (A = K, NH4, Rb and M=V, Fe), J. Solid State Chem., 2013, vol. 198, p. 295.CrossRef Hamchaoui, F., Alonzo, V., Venegas-Yazigi, D., Rebbah, H., et al., Six novel transition-metal phosphite compounds, with structure related to yavapaiite: Crystal structures and magnetic and thermal properties of AI[MIII(HPO3)2] (A = K, NH4, Rb and M=V, Fe), J. Solid State Chem., 2013, vol. 198, p. 295.CrossRef
31.
Zurück zum Zitat McDonald, R.C., Hau, H.K., and Eriks, K., Crystallographic studies of tin(II) compounds. I. Crystal structure of tin(II) fluoride, SnF2, Inorg. Chem., 1976, vol. 15, p. 762.CrossRef McDonald, R.C., Hau, H.K., and Eriks, K., Crystallographic studies of tin(II) compounds. I. Crystal structure of tin(II) fluoride, SnF2, Inorg. Chem., 1976, vol. 15, p. 762.CrossRef
32.
Zurück zum Zitat Yaghoobnejad, H.S. and Choudhury, A., Phosphite as polyanion-based cathode for Li-ion battery: Synthesis, structure, and electrochemistry of LiFe(HPO3)2, Inorg. Chem., 2015, vol. 54, p. 6566.CrossRef Yaghoobnejad, H.S. and Choudhury, A., Phosphite as polyanion-based cathode for Li-ion battery: Synthesis, structure, and electrochemistry of LiFe(HPO3)2, Inorg. Chem., 2015, vol. 54, p. 6566.CrossRef
33.
Zurück zum Zitat Xiong, D.B., Zhang, Z.J., Gulay, L.D., Tang, M.B., et al., Hydrothermal synthesis, crystal structure and physical properties of a new gadolinium phosphite hydrate, Inorg. Chim. Acta, 2009, vol. 362, p. 3013.CrossRef Xiong, D.B., Zhang, Z.J., Gulay, L.D., Tang, M.B., et al., Hydrothermal synthesis, crystal structure and physical properties of a new gadolinium phosphite hydrate, Inorg. Chim. Acta, 2009, vol. 362, p. 3013.CrossRef
35.
Zurück zum Zitat Edfouf, Z., Étude de nouveaux matériaux composites de type Si/Sn-Ni/Al/C pour électrode négative de batteries lithium ion, Thesis, Université Paris-Est, 2011. https://tel.archives-ouvertes.fr/tel-00673220/document Edfouf, Z., Étude de nouveaux matériaux composites de type Si/Sn-Ni/Al/C pour électrode négative de batteries lithium ion, Thesis, Université Paris-Est, 2011. https://​tel.​archives-ouvertes.​fr/​tel-00673220/​document
36.
Zurück zum Zitat Bezza, I., Kaus, M., Riekehr, L., Pfaffmann, L., et al., Electrochemical lithiation/delithiation of SnP2O7 observed by in situ XRD and ex situ 7Li/31P NMR, and 119Sn Mössbauer spectroscopy, Phys. Chem. Chem. Phys., 2016, vol. 18, p. 10375.CrossRef Bezza, I., Kaus, M., Riekehr, L., Pfaffmann, L., et al., Electrochemical lithiation/delithiation of SnP2O7 observed by in situ XRD and ex situ 7Li/31P NMR, and 119Sn Mössbauer spectroscopy, Phys. Chem. Chem. Phys., 2016, vol. 18, p. 10375.CrossRef
37.
Zurück zum Zitat Azmi, B.M., Hasanaly, S.M., and Zakaria, M., Mesoporous tin phosphate as anode material for lithium-ion cells, Adv. Mater. Res., 2012, vol. 545, p. 175.CrossRef Azmi, B.M., Hasanaly, S.M., and Zakaria, M., Mesoporous tin phosphate as anode material for lithium-ion cells, Adv. Mater. Res., 2012, vol. 545, p. 175.CrossRef
38.
Zurück zum Zitat Yin, L., Chai, S., Ma, J., Huang, J., et al., Effects of binders on electrochemical properties of the SnS2 nanostructured anode of the lithium-ion batteries, J. Alloys Compd., 2017, vol. 698, p. 828.CrossRef Yin, L., Chai, S., Ma, J., Huang, J., et al., Effects of binders on electrochemical properties of the SnS2 nanostructured anode of the lithium-ion batteries, J. Alloys Compd., 2017, vol. 698, p. 828.CrossRef
39.
Zurück zum Zitat Sandu, I., Brousse, T., Schleich, D.M., and Danot, M., The chemical changes occurring upon cycling of a SnO2 negative electrode for lithium ion cell: In situ Mössbauer investigation, J. Solid State Chem., 2006, vol. 179, p. 476.CrossRef Sandu, I., Brousse, T., Schleich, D.M., and Danot, M., The chemical changes occurring upon cycling of a SnO2 negative electrode for lithium ion cell: In situ Mössbauer investigation, J. Solid State Chem., 2006, vol. 179, p. 476.CrossRef
Metadaten
Titel
Electrochemical Performances of Tin Phosphite Electrode for Lithium Ion Batteries
verfasst von
Siham Idrissi
Zineb Edfouf
Abdelfettah Lallaoui
Mohammed Abd-Lefdil
Fouzia Cherkaoui El Moursli
Publikationsdatum
01.10.2022
Verlag
Pleiades Publishing
Erschienen in
Surface Engineering and Applied Electrochemistry / Ausgabe 5/2022
Print ISSN: 1068-3755
Elektronische ISSN: 1934-8002
DOI
https://doi.org/10.3103/S1068375522050064

Weitere Artikel der Ausgabe 5/2022

Surface Engineering and Applied Electrochemistry 5/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.