Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 23/2018

09.10.2018

Electrochemical study of the Li-ion storage process in MWCNT@TiO2–SiO2 composites

verfasst von: Próspero Acevedo-Peña, René Cabrera, Marina E. Rincón-González

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 23/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tuning the Li-ion storage mechanism from battery-like to pseudocapacitive is a current strategy to improve the rate capability of intercalation materials. A widespread methodology is decreasing the particle size of the active material, offering larger number of active sites available to storage Li-ions on the surface of the materials. Core@shell composites were obtained by hydrolyzing TTIP and TEOS, at different ratios, over previously dispersed home-made MWCNTs in Isopropanol, in order to obtain a TiO2 shell modified with 1 mol% and 9 mol% of SiO2. This led to a detriment in the anatase crystalline size (TEM and XRD) and an increment in the specific surface area (BET) of the composite, but kept constant the TiO2 shell thickness formed around the MWCNTs. A change in the Li-ion storage process from mostly insertion (at SiO2 1 mol%) to entirely pseudocapacitive (at SiO2 9 mol%), was observed. This allowed a better capacity retention at high cycling rates, when the material was tested between 3 and 1 V vs. Li/Li+. Nonetheless, when the potential windows during cycling was increased from 3 to 0.5 V, the specific capacity of the composite modified with 9 mol% of SiO2, vanished at high cycling rates. The thoroughly EIS characterization in the whole potential window (from 3 to 0.5 V) of the tested half cells, evidenced the enlargement of charge transfer resistance; which was associated to highly reactive –OH groups (FTIR and TGA) present in the composite, promoted by the addition of SiO2 in the shell.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications. Renew. Sust. Energy Rev. 13, 1513–1522 (2009) I. Hadjipaschalis, A. Poullikkas, V. Efthimiou, Overview of current and future energy storage technologies for electric power applications. Renew. Sust. Energy Rev. 13, 1513–1522 (2009)
2.
Zurück zum Zitat R. Amirante, E. Cassone, E. Distaso, P. Tamburrano, Overview on recent developments in energy storage: mechanical, electrochemical and hydrogen technologies. Energy Conv. Manag. 132, 372–387 (2017)CrossRef R. Amirante, E. Cassone, E. Distaso, P. Tamburrano, Overview on recent developments in energy storage: mechanical, electrochemical and hydrogen technologies. Energy Conv. Manag. 132, 372–387 (2017)CrossRef
3.
Zurück zum Zitat M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018)CrossRef M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018)CrossRef
4.
Zurück zum Zitat B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)CrossRef B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)CrossRef
5.
Zurück zum Zitat J. Zhou, B. Wang, Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem. Soc. Rev. 46, 6927–6945 (2017) J. Zhou, B. Wang, Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem. Soc. Rev. 46, 6927–6945 (2017)
6.
Zurück zum Zitat M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)CrossRef M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113, 5364–5457 (2013)CrossRef
7.
Zurück zum Zitat S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)CrossRef S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)CrossRef
8.
Zurück zum Zitat E.-S.M. Duraia, S. Niu, G.W. Beall, C.P. Rhodes, Humic acid-derived graphene-SnO2 nanocomposites for high capacity lithium-ion battery anodes. J. Mater. Sci. Mater. Electron. 29, 8456–8464 (2018)CrossRef E.-S.M. Duraia, S. Niu, G.W. Beall, C.P. Rhodes, Humic acid-derived graphene-SnO2 nanocomposites for high capacity lithium-ion battery anodes. J. Mater. Sci. Mater. Electron. 29, 8456–8464 (2018)CrossRef
9.
Zurück zum Zitat G. Quin, M. Zeng, X. Wu, J. Wen, J. Li, Fabrication of Fe2O3@TiO2 core-shell nanospheres as anode materials for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 29, 12944–12950 (2018)CrossRef G. Quin, M. Zeng, X. Wu, J. Wen, J. Li, Fabrication of Fe2O3@TiO2 core-shell nanospheres as anode materials for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 29, 12944–12950 (2018)CrossRef
10.
Zurück zum Zitat Y. Li, Y. Song, J. Guo, Q. Ma, X. Dong, W. Tu, Y. Yang, T. Wang, J. Wang, G. Liu, High performance Co3O4/Li2TiO3 composite hollow nanofibers as anode material for Li-ion batteries. J. Mater. Sci. Mater. Electron. 29, 14222–14231 (2018)CrossRef Y. Li, Y. Song, J. Guo, Q. Ma, X. Dong, W. Tu, Y. Yang, T. Wang, J. Wang, G. Liu, High performance Co3O4/Li2TiO3 composite hollow nanofibers as anode material for Li-ion batteries. J. Mater. Sci. Mater. Electron. 29, 14222–14231 (2018)CrossRef
11.
Zurück zum Zitat J. Brumbarov, J.P. Vivek, S. Leonardi, C. Valero-Vidal, E. Portenkirchner, J. Kunze-Liebhäuser, Oxygen deficient, carbon coated self-organized TiO2 nanotube as anode material for Li-ion intercalation. J. Mater. Chem. A 3, 16469–16477 (2015)CrossRef J. Brumbarov, J.P. Vivek, S. Leonardi, C. Valero-Vidal, E. Portenkirchner, J. Kunze-Liebhäuser, Oxygen deficient, carbon coated self-organized TiO2 nanotube as anode material for Li-ion intercalation. J. Mater. Chem. A 3, 16469–16477 (2015)CrossRef
12.
Zurück zum Zitat K. Siwińska-Stefańska, B. Kurc, Preparation and application of a titanium dioxide/graphene oxide anode material for lithium-ion batteries. J. Power Sources 299, 286–292 (2015)CrossRef K. Siwińska-Stefańska, B. Kurc, Preparation and application of a titanium dioxide/graphene oxide anode material for lithium-ion batteries. J. Power Sources 299, 286–292 (2015)CrossRef
13.
Zurück zum Zitat M. Minella, D. Versaci, S. Casino, F. Di Lupo, C. Minero, A. Battiato, N. Penazzi, S. Bodoardo, Anodic materials for lithium-ion batteries: TiO2-rGO composites for high power applications. Electrochim. Acta 230, 132–140 (2017)CrossRef M. Minella, D. Versaci, S. Casino, F. Di Lupo, C. Minero, A. Battiato, N. Penazzi, S. Bodoardo, Anodic materials for lithium-ion batteries: TiO2-rGO composites for high power applications. Electrochim. Acta 230, 132–140 (2017)CrossRef
14.
Zurück zum Zitat X.-L. Shi, M.-S. Cao, J. Yuan, X.-Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95, 163108 (2009)CrossRef X.-L. Shi, M.-S. Cao, J. Yuan, X.-Y. Fang, Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability. Appl. Phys. Lett. 95, 163108 (2009)CrossRef
15.
Zurück zum Zitat B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang, M.-M. Lu, H.B. Jin, X.-Y. Fang, W.-Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbonnanotube/silica composites. Carbon 65, 124–139 (2013)CrossRef B. Wen, M.-S. Cao, Z.-L. Hou, W.-L. Song, L. Zhang, M.-M. Lu, H.B. Jin, X.-Y. Fang, W.-Z. Wang, J. Yuan, Temperature dependent microwave attenuation behavior for carbonnanotube/silica composites. Carbon 65, 124–139 (2013)CrossRef
16.
Zurück zum Zitat Y. Yu, Q. Li, H. Zhang, M. Li, X. Yang, T. Yan, J. Li, Y. He, Design of micronanostructures Mn2O3@CNTs with long cycling for lithium-ion storage. J. Mater. Sci. Mater. Electron. 29, 4675–4682 (2018) Y. Yu, Q. Li, H. Zhang, M. Li, X. Yang, T. Yan, J. Li, Y. He, Design of micronanostructures Mn2O3@CNTs with long cycling for lithium-ion storage. J. Mater. Sci. Mater. Electron. 29, 4675–4682 (2018)
17.
Zurück zum Zitat A.A. Kashale, K.A. Ghule, K.P. Gattum, V.H. Ingole, S.S. Dhanayat, R. Sharma, Y.-C. Ling, J.-Y. Chang, M.M. Vadiyar, A.V. Ghule, Annealing atmosphere dependant properties of biosynthesized TiO2 anode for lithium ion battery application. J. Mater. Sci. Mater. Electron. 28, 1472–1479 (2017)CrossRef A.A. Kashale, K.A. Ghule, K.P. Gattum, V.H. Ingole, S.S. Dhanayat, R. Sharma, Y.-C. Ling, J.-Y. Chang, M.M. Vadiyar, A.V. Ghule, Annealing atmosphere dependant properties of biosynthesized TiO2 anode for lithium ion battery application. J. Mater. Sci. Mater. Electron. 28, 1472–1479 (2017)CrossRef
18.
Zurück zum Zitat Y. Chen, Z. Li, S. Shi, C. Song, Z. Jiang, X. Cui, Scalable synthesis of TiO2 crystallites embedded in breadderived carbon matrix with enhanced lithium storage performance. J. Mater. Sci. Mater. Electron. 28, 9206–9220 (2017)CrossRef Y. Chen, Z. Li, S. Shi, C. Song, Z. Jiang, X. Cui, Scalable synthesis of TiO2 crystallites embedded in breadderived carbon matrix with enhanced lithium storage performance. J. Mater. Sci. Mater. Electron. 28, 9206–9220 (2017)CrossRef
19.
Zurück zum Zitat N. Pineda-Aguilar, L.L. Garza-Tovar, E.M. Sánchez-Cervantes, M. Sánchez-Domínguez, Preparation of TiO2(B) by microemulsion mediated hydrothermal method: effect of the precursor and its electrochemical performance. J. Mater. Sci. Mater. Electron. 29, 15464–15479 (2018)CrossRef N. Pineda-Aguilar, L.L. Garza-Tovar, E.M. Sánchez-Cervantes, M. Sánchez-Domínguez, Preparation of TiO2(B) by microemulsion mediated hydrothermal method: effect of the precursor and its electrochemical performance. J. Mater. Sci. Mater. Electron. 29, 15464–15479 (2018)CrossRef
20.
Zurück zum Zitat F.-F. Cao, Y.-G. Guo, S.-F. Zheng, X.-L. Wu, L.-Y. Jiang, R.-R. Bi, L.-J. Wan, J. Maier, Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem. Mater. 22, 1908–1914 (2010)CrossRef F.-F. Cao, Y.-G. Guo, S.-F. Zheng, X.-L. Wu, L.-Y. Jiang, R.-R. Bi, L.-J. Wan, J. Maier, Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem. Mater. 22, 1908–1914 (2010)CrossRef
21.
Zurück zum Zitat S. Ding, J.S. Chen, X. Wen, One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties. Adv. Funct. Mater. 21, 4120–4125 (2011)CrossRef S. Ding, J.S. Chen, X. Wen, One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties. Adv. Funct. Mater. 21, 4120–4125 (2011)CrossRef
22.
Zurück zum Zitat H. Zhou, L. Liu, X. Wang, F. Liang, S. Bao, D. Lv, Y. Tang, D. Jia, Multimodal porous CNT@TiO2 nanocables with superior performance in lithium-ion batteries. J. Mater. Chem. A 1, 8525–8528 (2013)CrossRef H. Zhou, L. Liu, X. Wang, F. Liang, S. Bao, D. Lv, Y. Tang, D. Jia, Multimodal porous CNT@TiO2 nanocables with superior performance in lithium-ion batteries. J. Mater. Chem. A 1, 8525–8528 (2013)CrossRef
23.
Zurück zum Zitat Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, J. Chen, CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries. Nanoscale Res. Lett. 8, 499 (2013)CrossRef Z. Wen, S. Ci, S. Mao, S. Cui, Z. He, J. Chen, CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries. Nanoscale Res. Lett. 8, 499 (2013)CrossRef
24.
Zurück zum Zitat B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci. Rep. 4, 3279 (2014) B. Wang, H. Xin, X. Li, J. Cheng, G. Yang, F. Nie, Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci. Rep. 4, 3279 (2014)
25.
Zurück zum Zitat K. Hemalatha, A.S. Prakash, K. Guruprakash, M. Jayakumar, TiO2 coated carbon nanotubes for electrochemical energy storage. J. Mater. Chem. A 2, 1757–1776 (2014)CrossRef K. Hemalatha, A.S. Prakash, K. Guruprakash, M. Jayakumar, TiO2 coated carbon nanotubes for electrochemical energy storage. J. Mater. Chem. A 2, 1757–1776 (2014)CrossRef
26.
Zurück zum Zitat M.O. Guler, T. Centinkaya, M. Uysal, H. Akbulut, High efficiency TiO2/MWCNT based anode electrodes for Li-ion batteries. Int. J. Energy Res. 39, 172–180 (2015)CrossRef M.O. Guler, T. Centinkaya, M. Uysal, H. Akbulut, High efficiency TiO2/MWCNT based anode electrodes for Li-ion batteries. Int. J. Energy Res. 39, 172–180 (2015)CrossRef
27.
Zurück zum Zitat P. Acevedo-Peña, M. Haro, M.E. Rincón, J. Bisquert, G. Garcia-Belmonte, Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes. J. Power Sources 268, 397–403 (2014)CrossRef P. Acevedo-Peña, M. Haro, M.E. Rincón, J. Bisquert, G. Garcia-Belmonte, Facile kinetics of Li-ion intake causes superior rate capability in multiwalled carbon nanotube@TiO2 nanocomposite battery anodes. J. Power Sources 268, 397–403 (2014)CrossRef
28.
Zurück zum Zitat M. Xie, X. Sun, C. Zhou, A.S. Cavanagh, H. Sun, T. Hu, G. Wang, J. Lian, S.M. George, Amorphous ultrathin TiO2 atomic layer deposition films on carbon nanotubes as anodes for lithium ion batteries. J. Electrochem. Soc. 162, A974–A981 (2015)CrossRef M. Xie, X. Sun, C. Zhou, A.S. Cavanagh, H. Sun, T. Hu, G. Wang, J. Lian, S.M. George, Amorphous ultrathin TiO2 atomic layer deposition films on carbon nanotubes as anodes for lithium ion batteries. J. Electrochem. Soc. 162, A974–A981 (2015)CrossRef
29.
Zurück zum Zitat M. Han, G. Chen, Optimized dispersion of conductive agents for enhanced Li-storage performance of TiO2. Appl. Surf. Sci. 388, 401–405 (2016)CrossRef M. Han, G. Chen, Optimized dispersion of conductive agents for enhanced Li-storage performance of TiO2. Appl. Surf. Sci. 388, 401–405 (2016)CrossRef
30.
Zurück zum Zitat M. Zou, Z. Ma, Q. Wang, Y. Yang, S. Wu, L. Yang, S. Hu, W. Xu, P. Han, R. Zhou, A. Cao, Coaxial TiO2-carbon nanotube sponges as compressible anodes for lithium-ion batteries. J. Mater. Chem. A 4, 7398–7405 (2016)CrossRef M. Zou, Z. Ma, Q. Wang, Y. Yang, S. Wu, L. Yang, S. Hu, W. Xu, P. Han, R. Zhou, A. Cao, Coaxial TiO2-carbon nanotube sponges as compressible anodes for lithium-ion batteries. J. Mater. Chem. A 4, 7398–7405 (2016)CrossRef
31.
Zurück zum Zitat P. AcevedoPeña, M.E. Rincón, Tailoring TiO2-shell thickness and surface coverage for best performance of multiwalled carbon nanotubes@TiO2 in Li-ion batteries. J. Mater. Sci. Mater. Electron. 27, 2985–2993 (2016)CrossRef P. AcevedoPeña, M.E. Rincón, Tailoring TiO2-shell thickness and surface coverage for best performance of multiwalled carbon nanotubes@TiO2 in Li-ion batteries. J. Mater. Sci. Mater. Electron. 27, 2985–2993 (2016)CrossRef
32.
Zurück zum Zitat Y. Tang, L. Liu, H. Zhao, D. Jia, X. Xie, Y. Zhang, X. Li, Anatase/rutile titania anchored carbon nanotube porous nanocomposites as superior anodes for lithium ion batteries. CrystEngComm 18, 4489–4494 (2016)CrossRef Y. Tang, L. Liu, H. Zhao, D. Jia, X. Xie, Y. Zhang, X. Li, Anatase/rutile titania anchored carbon nanotube porous nanocomposites as superior anodes for lithium ion batteries. CrystEngComm 18, 4489–4494 (2016)CrossRef
33.
Zurück zum Zitat M. Ramírez-Vargas, J.C. Calva, M.S. de la Fuente, O.A. Jaramillo-Quintero, J.R. Herrera-Garza, P. Acevedo-Peña, M.E. Rincón, Effect of titanium content in MWCNT@Sn1−xTi1−xO2 composites on the lithium ion storage process. Chem. Select 2, 6850–6856 (2017) M. Ramírez-Vargas, J.C. Calva, M.S. de la Fuente, O.A. Jaramillo-Quintero, J.R. Herrera-Garza, P. Acevedo-Peña, M.E. Rincón, Effect of titanium content in MWCNT@Sn1−xTi1−xO2 composites on the lithium ion storage process. Chem. Select 2, 6850–6856 (2017)
34.
Zurück zum Zitat V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)CrossRef V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014)CrossRef
35.
Zurück zum Zitat W.J.H. Borghols, D. Lützenkirchen-Hecht, U. Haake, W. Chang, U. Lafint, E.M. Kelder, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, M. Wagemaker, Lithium storage in amorphous TiO2 nanoparticles. J. Electrochem. Soc. 157, A582–A588 (2010)CrossRef W.J.H. Borghols, D. Lützenkirchen-Hecht, U. Haake, W. Chang, U. Lafint, E.M. Kelder, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, M. Wagemaker, Lithium storage in amorphous TiO2 nanoparticles. J. Electrochem. Soc. 157, A582–A588 (2010)CrossRef
36.
Zurück zum Zitat S. Li, P. Xe, C. Lai, J. Qiu, M. Ling, S. Zhang, Pseudocapacitance of amorphous TiO2@nitrogen doped graphene composite for high rate lithium storage. Electrochim. Acta 180, 112–119 (2015)CrossRef S. Li, P. Xe, C. Lai, J. Qiu, M. Ling, S. Zhang, Pseudocapacitance of amorphous TiO2@nitrogen doped graphene composite for high rate lithium storage. Electrochim. Acta 180, 112–119 (2015)CrossRef
37.
Zurück zum Zitat M. Li, X. Li, W. Li, X. Meng, Y. Yu, X. Sun, Atomic layer deposition derived amorphous TiO2 thin film decorating graphene nanosheets with superior rate capability. Electrochem. Commun. 57, 43–47 (2015)CrossRef M. Li, X. Li, W. Li, X. Meng, Y. Yu, X. Sun, Atomic layer deposition derived amorphous TiO2 thin film decorating graphene nanosheets with superior rate capability. Electrochem. Commun. 57, 43–47 (2015)CrossRef
38.
Zurück zum Zitat M. Wagemaker, W.J.H. Borghols, F.M. Mulder, Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 129, 4324–4327 (2007)CrossRef M. Wagemaker, W.J.H. Borghols, F.M. Mulder, Large impact of particle size on insertion reactions. A case for anatase LixTiO2. J. Am. Chem. Soc. 129, 4324–4327 (2007)CrossRef
39.
Zurück zum Zitat J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007)CrossRef J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007)CrossRef
40.
Zurück zum Zitat M. Wagemaker, F.M. Mulder, Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 46, 1206–1215 (2013)CrossRef M. Wagemaker, F.M. Mulder, Properties and promises of nanosized insertion materials for Li-ion batteries. Acc. Chem. Res. 46, 1206–1215 (2013)CrossRef
41.
Zurück zum Zitat J. Lara-Romero, J.C. Calva-Yañez, J. López-Tinoco, G. Alonso-Nuñez, S. Jiménez-Sandoval, F. Paraguay-Delgado, Temperature effect on the synthesis of multi-walled carbon nanotubes by spray pyrolysis of botanical carbon feedstocks: turpentine, α-pinene and β-pinene. Fuller. Nanotub. Carbon Nanostructures 19, 483–496 (2011)CrossRef J. Lara-Romero, J.C. Calva-Yañez, J. López-Tinoco, G. Alonso-Nuñez, S. Jiménez-Sandoval, F. Paraguay-Delgado, Temperature effect on the synthesis of multi-walled carbon nanotubes by spray pyrolysis of botanical carbon feedstocks: turpentine, α-pinene and β-pinene. Fuller. Nanotub. Carbon Nanostructures 19, 483–496 (2011)CrossRef
42.
Zurück zum Zitat J. Muñiz, M.E. Rincón, P. Acevedo-Peña, The role of the oxide shell on the stability and energy storage properties of MWCNT@TiO2 nanohybrid materials used in Li-ion batteries. Theor. Chem. Acc. 135, 181 (2016)CrossRef J. Muñiz, M.E. Rincón, P. Acevedo-Peña, The role of the oxide shell on the stability and energy storage properties of MWCNT@TiO2 nanohybrid materials used in Li-ion batteries. Theor. Chem. Acc. 135, 181 (2016)CrossRef
43.
Zurück zum Zitat J.J. Zhang, Z. Wei, T. Huang, Z.L. Liu, A.S. Yu, Carbon coated TiO2–SiO2 nanocomposites with high grain boundary density as anode materials for lithium-ion batteries. J. Mater. Chem. A 1, 7360–7369 (2013)CrossRef J.J. Zhang, Z. Wei, T. Huang, Z.L. Liu, A.S. Yu, Carbon coated TiO2–SiO2 nanocomposites with high grain boundary density as anode materials for lithium-ion batteries. J. Mater. Chem. A 1, 7360–7369 (2013)CrossRef
44.
Zurück zum Zitat P. Sehrawat, C. Julien, S.S. Islam, Carbon nanotubes in Li-ion batteries: a review. Mater. Sci. Eng. B 213, 12–40 (2016)CrossRef P. Sehrawat, C. Julien, S.S. Islam, Carbon nanotubes in Li-ion batteries: a review. Mater. Sci. Eng. B 213, 12–40 (2016)CrossRef
45.
Zurück zum Zitat N. Vicente, M. Haro, D. Cíntora-Juárez, C. Pérez-Vicente, J.L. Tirado, S. Ahmad, G. García-Belmonte, LiFePO4 particle conductive composite strategies for improving cathode rate capability. Electrochim. Acta 163, 323–329 (2015)CrossRef N. Vicente, M. Haro, D. Cíntora-Juárez, C. Pérez-Vicente, J.L. Tirado, S. Ahmad, G. García-Belmonte, LiFePO4 particle conductive composite strategies for improving cathode rate capability. Electrochim. Acta 163, 323–329 (2015)CrossRef
46.
Zurück zum Zitat K.J. Park, B.B. Lim, M.H. Choi, H.G. Jung, Y.K. Sun, M. Haro, N. Vicente, J. Bisquert, G. García-Belmonte, A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries. J. Mater. Chem. A 3, 22183–22190 (2015)CrossRef K.J. Park, B.B. Lim, M.H. Choi, H.G. Jung, Y.K. Sun, M. Haro, N. Vicente, J. Bisquert, G. García-Belmonte, A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries. J. Mater. Chem. A 3, 22183–22190 (2015)CrossRef
47.
Zurück zum Zitat M. Haro, T. Song, A. Guerrero, L. Bertoluzzi, J. Bisquert, U. Paik, G. García-Belmonte, Germanium coating boosts lithium uptake in si nanotube battery anodes. Phys. Chem. Chem. Phys. 16, 17930–17935 (2014)CrossRef M. Haro, T. Song, A. Guerrero, L. Bertoluzzi, J. Bisquert, U. Paik, G. García-Belmonte, Germanium coating boosts lithium uptake in si nanotube battery anodes. Phys. Chem. Chem. Phys. 16, 17930–17935 (2014)CrossRef
48.
Zurück zum Zitat C. Xu, Y. Zeng, X. Rui, J. Zhu, H. Tan, A. Guerrero, J. Toribio, J. Bisquert, G. García-Belmonte, Q. Yan, Amorphous iron oxyhydroxide nanosheets: synthesis, Li storage, and conversion reaction kinetics. J. Phys. Chem. C 117, 17462–17469 (2013)CrossRef C. Xu, Y. Zeng, X. Rui, J. Zhu, H. Tan, A. Guerrero, J. Toribio, J. Bisquert, G. García-Belmonte, Q. Yan, Amorphous iron oxyhydroxide nanosheets: synthesis, Li storage, and conversion reaction kinetics. J. Phys. Chem. C 117, 17462–17469 (2013)CrossRef
49.
Zurück zum Zitat F. Martínez-Julian, A. Guerrero, M. Haro, J. Bisquert, D. Bresser, E. Paillard, S. Passerini, G. García-Belmonte, J. Phys. Chem. C 118, 6069–6076 (2014)CrossRef F. Martínez-Julian, A. Guerrero, M. Haro, J. Bisquert, D. Bresser, E. Paillard, S. Passerini, G. García-Belmonte, J. Phys. Chem. C 118, 6069–6076 (2014)CrossRef
50.
Zurück zum Zitat S. Brutti, V. Gentili, H. Menard, B. Scrosati, P.G. Bruce, TiO2-(B) Nanotubes as anodes for lithium batteries: origin and mitigation of irreversible capacity. Adv. Energy Mater. 2, 322–327 (2012)CrossRef S. Brutti, V. Gentili, H. Menard, B. Scrosati, P.G. Bruce, TiO2-(B) Nanotubes as anodes for lithium batteries: origin and mitigation of irreversible capacity. Adv. Energy Mater. 2, 322–327 (2012)CrossRef
51.
Zurück zum Zitat S. Ganapathy, S. Basak, A. Lefering, E. Rogers, H.W. Zandbergen, M. Wagemaker, Improving reversible capacities of high-surface lithium insertion materials—the case of amorphous TiO2. Front. Energy Res. 2, 53 (2014) S. Ganapathy, S. Basak, A. Lefering, E. Rogers, H.W. Zandbergen, M. Wagemaker, Improving reversible capacities of high-surface lithium insertion materials—the case of amorphous TiO2. Front. Energy Res. 2, 53 (2014)
Metadaten
Titel
Electrochemical study of the Li-ion storage process in MWCNT@TiO2–SiO2 composites
verfasst von
Próspero Acevedo-Peña
René Cabrera
Marina E. Rincón-González
Publikationsdatum
09.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 23/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0119-5

Weitere Artikel der Ausgabe 23/2018

Journal of Materials Science: Materials in Electronics 23/2018 Zur Ausgabe

Neuer Inhalt