Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 4/2017

30.08.2016

Electromechanical modeling and analytical investigation of nonlinearities in energy harvesting piezoelectric beams

verfasst von: Abdolreza Pasharavesh, M. T. Ahmadian, H. Zohoor

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Piezoelectric materials are extensively applied for vibrational energy harvesting especially in micro-scale devices where other energy conversion mechanisms such as electromagnetic and electrostatic methods encounter fabrication limitations. A cantilevered piezoelectric bimorph beam with an attached proof (tip) mass for the sake of resonance frequency reduction is the most common structure in vibrational harvesters. According to the amplitude and frequency of applied excitations and physical parameters of the harvester, the system may be pushed into a nonlinear regime which arises from material or geometric nonlinearities. In this study nonlinear dynamics of a piezoelectric bimorph harvester implementing constitutive relations of nonlinear piezoelectricity together with nonlinear curvature and shortening effect relations, is investigated. To achieve this goal first of all a comprehensive fully-coupled electromechanical nonlinear model is presented through a variational approach. The governing nonlinear partial differential equations of the proposed model are order reduced and solved by means of the perturbation method of multiple scales. Results are presented for a PZT/Silicon/PZT laminated beam as a case study. Findings indicate that material nonlinearities of the PZT layer has the dominant effect leading to softening behavior of the frequency response. At the primary resonance, different frequency responses of the extracted power can be distinguished according to the excitation amplitude, which is due to harmonic generation as a result of piezoelectric nonlinearity. The extracted power is analytically computed and validated with a good agreement by a numerical solution.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andosca, R., McDonald, T.G., Genova, V., Rosenberg, S., Keating, J., Benedixen, C., Wu, J.: Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens. Actuators, A 178, 76–87 (2012)CrossRef Andosca, R., McDonald, T.G., Genova, V., Rosenberg, S., Keating, J., Benedixen, C., Wu, J.: Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens. Actuators, A 178, 76–87 (2012)CrossRef
Zurück zum Zitat Benasciutti, D., Moro, L., Zelenika, S., Brusa, E.: Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst. Technol. 16(5), 657–668 (2010)CrossRef Benasciutti, D., Moro, L., Zelenika, S., Brusa, E.: Vibration energy scavenging via piezoelectric bimorphs of optimized shapes. Microsyst. Technol. 16(5), 657–668 (2010)CrossRef
Zurück zum Zitat Chung, G.-S., Lee, B.-C.: Fabrication and characterization of vibration-driven AlN piezoelectric micropower generator compatible with complementary metal-oxide semiconductor process. J. Intell. Mater. Syst. Struct. 26(15), 1971–1979 (2015). doi:10.1177/1045389x14546649 CrossRef Chung, G.-S., Lee, B.-C.: Fabrication and characterization of vibration-driven AlN piezoelectric micropower generator compatible with complementary metal-oxide semiconductor process. J. Intell. Mater. Syst. Struct. 26(15), 1971–1979 (2015). doi:10.​1177/​1045389x14546649​ CrossRef
Zurück zum Zitat Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)CrossRef Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)CrossRef
Zurück zum Zitat Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61(9), 1267 (1998)CrossRef Damjanovic, D.: Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61(9), 1267 (1998)CrossRef
Zurück zum Zitat Daqaq, M.F.: Response of uni-modal duffing-type harvesters to random forced excitations. J. Sound Vib. 329(18), 3621–3631 (2010)CrossRef Daqaq, M.F.: Response of uni-modal duffing-type harvesters to random forced excitations. J. Sound Vib. 329(18), 3621–3631 (2010)CrossRef
Zurück zum Zitat Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osório, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20(5), 545–557 (2009)CrossRef Daqaq, M.F., Stabler, C., Qaroush, Y., Seuaciuc-Osório, T.: Investigation of power harvesting via parametric excitations. J. Intell. Mater. Syst. Struct. 20(5), 545–557 (2009)CrossRef
Zurück zum Zitat Elfrink, R., Renaud, M., Kamel, T., De Nooijer, C., Jambunathan, M., Goedbloed, M., Hohlfeld, D., Matova, S., Pop, V., Caballero, L.: Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system. J. Micromech. Microeng. 20(10), 104001 (2010)CrossRef Elfrink, R., Renaud, M., Kamel, T., De Nooijer, C., Jambunathan, M., Goedbloed, M., Hohlfeld, D., Matova, S., Pop, V., Caballero, L.: Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system. J. Micromech. Microeng. 20(10), 104001 (2010)CrossRef
Zurück zum Zitat Erturk, A.: Assumed-modes modeling of piezoelectric energy harvesters: Euler-Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput. Struct. 106, 214–227 (2012)CrossRef Erturk, A.: Assumed-modes modeling of piezoelectric energy harvesters: Euler-Bernoulli, Rayleigh, and Timoshenko models with axial deformations. Comput. Struct. 106, 214–227 (2012)CrossRef
Zurück zum Zitat Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130(4), 041002 (2008)CrossRef Erturk, A., Inman, D.J.: A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 130(4), 041002 (2008)CrossRef
Zurück zum Zitat Ferrari, M., Ferrari, V., Guizzetti, M., Andò, B., Baglio, S., Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuators, A 162(2), 425–431 (2010)CrossRef Ferrari, M., Ferrari, V., Guizzetti, M., Andò, B., Baglio, S., Trigona, C.: Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuators, A 162(2), 425–431 (2010)CrossRef
Zurück zum Zitat Guyomar, D., Aurelle, N., Eyraud, L.: Piezoelectric ceramics nonlinear behavior. Application to Langevin transducer. J. Phys. III 7(6), 1197–1208 (1997) Guyomar, D., Aurelle, N., Eyraud, L.: Piezoelectric ceramics nonlinear behavior. Application to Langevin transducer. J. Phys. III 7(6), 1197–1208 (1997)
Zurück zum Zitat Hall, D.: Review nonlinearity in piezoelectric ceramics. J. Mater. Sci. 36(19), 4575–4601 (2001)CrossRef Hall, D.: Review nonlinearity in piezoelectric ceramics. J. Mater. Sci. 36(19), 4575–4601 (2001)CrossRef
Zurück zum Zitat Hande, A., Bridgelall, R., Bhatia, D.: Energy harvesting for active RF sensors and ID tags. In: Energy Harvesting Technologies, pp. 459–492. Springer, New York (2009) Hande, A., Bridgelall, R., Bhatia, D.: Energy harvesting for active RF sensors and ID tags. In: Energy Harvesting Technologies, pp. 459–492. Springer, New York (2009)
Zurück zum Zitat He, C., Arora, A., Kiziroglou, M.E., Yates, D.C., O’Hare, D., Yeatman, E.M.: MEMS energy harvesting powered wireless biometric sensor. In: Wearable and Implantable Body Sensor Networks. BSN 2009. Sixth International Workshop on 2009, pp. 207–212. IEEE (2009) He, C., Arora, A., Kiziroglou, M.E., Yates, D.C., O’Hare, D., Yeatman, E.M.: MEMS energy harvesting powered wireless biometric sensor. In: Wearable and Implantable Body Sensor Networks. BSN 2009. Sixth International Workshop on 2009, pp. 207–212. IEEE (2009)
Zurück zum Zitat Jiang, S., Li, X., Guo, S., Hu, Y., Yang, J., Jiang, Q.: Performance of a piezoelectric bimorph for scavenging vibration energy. Smart Mater. Struct. 14(4), 769 (2005)CrossRef Jiang, S., Li, X., Guo, S., Hu, Y., Yang, J., Jiang, Q.: Performance of a piezoelectric bimorph for scavenging vibration energy. Smart Mater. Struct. 14(4), 769 (2005)CrossRef
Zurück zum Zitat Kaya, T., Koser, H.: A new batteryless active RFID system: smart RFID. In: RFID Eurasia, 2007 1st Annual 2007, pp. 1–4. IEEE (2007) Kaya, T., Koser, H.: A new batteryless active RFID system: smart RFID. In: RFID Eurasia, 2007 1st Annual 2007, pp. 1–4. IEEE (2007)
Zurück zum Zitat Lee, B., Lin, S., Wu, W.: Fabrication and evaluation of a MEMS piezoelectric bimorph generator for vibration energy harvesting. J. Mech. 26(04), 493–499 (2010)CrossRef Lee, B., Lin, S., Wu, W.: Fabrication and evaluation of a MEMS piezoelectric bimorph generator for vibration energy harvesting. J. Mech. 26(04), 493–499 (2010)CrossRef
Zurück zum Zitat Liu, J.-Q., Fang, H.-B., Xu, Z.-Y., Mao, X.-H., Shen, X.-C., Chen, D., Liao, H., Cai, B.-C.: A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron. J. 39(5), 802–806 (2008)CrossRef Liu, J.-Q., Fang, H.-B., Xu, Z.-Y., Mao, X.-H., Shen, X.-C., Chen, D., Liao, H., Cai, B.-C.: A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron. J. 39(5), 802–806 (2008)CrossRef
Zurück zum Zitat Lu, F., Lee, H., Lim, S.: Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater. Struct. 13(1), 57 (2004)CrossRef Lu, F., Lee, H., Lim, S.: Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater. Struct. 13(1), 57 (2004)CrossRef
Zurück zum Zitat Mahmoodi, S.N., Afshari, M., Jalili, N.: Nonlinear vibrations of piezoelectric microcantilevers for biologically-induced surface stress sensing. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1964–1977 (2008a)CrossRef Mahmoodi, S.N., Afshari, M., Jalili, N.: Nonlinear vibrations of piezoelectric microcantilevers for biologically-induced surface stress sensing. Commun. Nonlinear Sci. Numer. Simul. 13(9), 1964–1977 (2008a)CrossRef
Zurück zum Zitat Mahmoodi, S.N., Jalili, N., Daqaq, M.F.: Modeling, nonlinear dynamics, and identification of a piezoelectrically actuated microcantilever sensor. IEEE/ASME Trans. Mechatron. 13(1), 58–65 (2008b)CrossRef Mahmoodi, S.N., Jalili, N., Daqaq, M.F.: Modeling, nonlinear dynamics, and identification of a piezoelectrically actuated microcantilever sensor. IEEE/ASME Trans. Mechatron. 13(1), 58–65 (2008b)CrossRef
Zurück zum Zitat Masana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono-and bi-stable potentials. J. Sound Vib. 330(24), 6036–6052 (2011)CrossRef Masana, R., Daqaq, M.F.: Relative performance of a vibratory energy harvester in mono-and bi-stable potentials. J. Sound Vib. 330(24), 6036–6052 (2011)CrossRef
Zurück zum Zitat Miao, P., Mitcheson, P., Holmes, A., Yeatman, E., Green, T., Stark, B.: MEMS inertial power generators for biomedical applications. Microsyst. Technol. 12(10–11), 1079–1083 (2006)CrossRef Miao, P., Mitcheson, P., Holmes, A., Yeatman, E., Green, T., Stark, B.: MEMS inertial power generators for biomedical applications. Microsyst. Technol. 12(10–11), 1079–1083 (2006)CrossRef
Zurück zum Zitat Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E., Holmes, A., Green, T.: MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 115(2), 523–529 (2004)CrossRef Mitcheson, P.D., Miao, P., Stark, B.H., Yeatman, E., Holmes, A., Green, T.: MEMS electrostatic micropower generator for low frequency operation. Sens. Actuators, A 115(2), 523–529 (2004)CrossRef
Zurück zum Zitat Nayfeh, A.H.: Perturbation Methods. Wiley, New York (2008) Nayfeh, A.H.: Perturbation Methods. Wiley, New York (2008)
Zurück zum Zitat Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)MATH Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (2008)MATH
Zurück zum Zitat Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2008)MATH Nayfeh, A.H., Pai, P.F.: Linear and Nonlinear Structural Mechanics. Wiley, New York (2008)MATH
Zurück zum Zitat Ottman, G.K., Hofmann, H.F., Bhatt, A.C., Lesieutre, G.: Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 17(5), 669–676 (2002)CrossRef Ottman, G.K., Hofmann, H.F., Bhatt, A.C., Lesieutre, G.: Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans. Power Electron. 17(5), 669–676 (2002)CrossRef
Zurück zum Zitat Paquin, S., St-Amant, Y.: Improving the performance of a piezoelectric energy harvester using a variable thickness beam. Smart Mater. Struct. 19(10), 105020 (2010)CrossRef Paquin, S., St-Amant, Y.: Improving the performance of a piezoelectric energy harvester using a variable thickness beam. Smart Mater. Struct. 19(10), 105020 (2010)CrossRef
Zurück zum Zitat Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007) Rao, S.S.: Vibration of Continuous Systems. Wiley, New York (2007)
Zurück zum Zitat Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13(5), 1131 (2004)CrossRef Roundy, S., Wright, P.K.: A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 13(5), 1131 (2004)CrossRef
Zurück zum Zitat Roundy, S., Wright, P., Rabaey, J.: Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations. Kluwer Academic Publishers, Norwell (2004)CrossRef Roundy, S., Wright, P., Rabaey, J.: Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations. Kluwer Academic Publishers, Norwell (2004)CrossRef
Zurück zum Zitat Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K., Sundararajan, V.: Improving power output for vibration-based energy scavengers. Pervasive Comput. IEEE 4(1), 28–36 (2005)CrossRef Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Wright, P.K., Sundararajan, V.: Improving power output for vibration-based energy scavengers. Pervasive Comput. IEEE 4(1), 28–36 (2005)CrossRef
Zurück zum Zitat Sheu, G.-J., Yang, S.-M., Lee, T.: Development of a low frequency electrostatic comb-drive energy harvester compatible to SoC design by CMOS process. Sens. Actuators, A 167(1), 70–76 (2011)CrossRef Sheu, G.-J., Yang, S.-M., Lee, T.: Development of a low frequency electrostatic comb-drive energy harvester compatible to SoC design by CMOS process. Sens. Actuators, A 167(1), 70–76 (2011)CrossRef
Zurück zum Zitat Shindo, Y., Narita, F.: Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters. Int. J. Mech. Mater. Des. 10(3), 305–311 (2014)CrossRef Shindo, Y., Narita, F.: Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters. Int. J. Mech. Mater. Des. 10(3), 305–311 (2014)CrossRef
Zurück zum Zitat Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108(7), 074903 (2010)CrossRef Stanton, S.C., Erturk, A., Mann, B.P., Inman, D.J.: Nonlinear piezoelectricity in electroelastic energy harvesters: modeling and experimental identification. J. Appl. Phys. 108(7), 074903 (2010)CrossRef
Zurück zum Zitat Sue, C.-Y., Tsai, N.-C.: Human powered MEMS-based energy harvest devices. Appl. Energy 93, 390–403 (2012)CrossRef Sue, C.-Y., Tsai, N.-C.: Human powered MEMS-based energy harvest devices. Appl. Energy 93, 390–403 (2012)CrossRef
Zurück zum Zitat Wang, P., Tanaka, K., Sugiyama, S., Dai, X., Zhao, X., Liu, J.: A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst. Technol. 15(6), 941–951 (2009)CrossRef Wang, P., Tanaka, K., Sugiyama, S., Dai, X., Zhao, X., Liu, J.: A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst. Technol. 15(6), 941–951 (2009)CrossRef
Zurück zum Zitat Williams, C., Shearwood, C., Harradine, M., Mellor, P., Birch, T., Yates, R.: Development of an electromagnetic micro-generator. In: Circuits, Devices and Systems, IEE Proceedings-2001, pp. 337–342. IET (2001) Williams, C., Shearwood, C., Harradine, M., Mellor, P., Birch, T., Yates, R.: Development of an electromagnetic micro-generator. In: Circuits, Devices and Systems, IEE Proceedings-2001, pp. 337–342. IET (2001)
Zurück zum Zitat Yang, J.: An Introduction to the Theory of Piezoelectricity, vol. 9. Springer, New York (2005)MATH Yang, J.: An Introduction to the Theory of Piezoelectricity, vol. 9. Springer, New York (2005)MATH
Zurück zum Zitat Yu, H., Zhou, J., Deng, L., Wen, Z.: A vibration-based mems piezoelectric energy harvester and power conditioning circuit. Sensors 14(2), 3323–3341 (2014)CrossRef Yu, H., Zhou, J., Deng, L., Wen, Z.: A vibration-based mems piezoelectric energy harvester and power conditioning circuit. Sensors 14(2), 3323–3341 (2014)CrossRef
Metadaten
Titel
Electromechanical modeling and analytical investigation of nonlinearities in energy harvesting piezoelectric beams
verfasst von
Abdolreza Pasharavesh
M. T. Ahmadian
H. Zohoor
Publikationsdatum
30.08.2016
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 4/2017
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-016-9353-2

Weitere Artikel der Ausgabe 4/2017

International Journal of Mechanics and Materials in Design 4/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.