Skip to main content

2019 | OriginalPaper | Buchkapitel

Electron Transfer Between Enzymes and Electrodes

verfasst von : Tanja Vidakovic-Koch

Erschienen in: Bioelectrosynthesis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efficient electron transfer between redox enzymes and electrocatalytic surfaces plays a significant role in development of novel energy conversion devices as well as novel reactors for production of commodities and fine chemicals. Major application examples are related to enzymatic fuel cells and electroenzymatic reactors, as well as enzymatic biosensors. The two former applications are still at the level of proof-of-concept, partly due to the low efficiency and obstacles to electron transfer between enzymes and electrodes. This chapter discusses the theoretical backgrounds of enzyme/electrode interactions, including the main mechanisms of electron transfer, as well as thermodynamic and kinetic aspects. Additionally, the main electrochemical methods of study are described for selected examples. Finally, some recent advancements in the preparation of enzyme-modified electrodes as well as electrodes for soluble co-factor regeneration are reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Copeland RA (2000) Enzyme reactions with multiple substrates. In: Enzymes: a practical introduction to structure, mechanism, and data analysis, 2nd edn. Wiley, New York, pp 350–366 Copeland RA (2000) Enzyme reactions with multiple substrates. In: Enzymes: a practical introduction to structure, mechanism, and data analysis, 2nd edn. Wiley, New York, pp 350–366
2.
Zurück zum Zitat Vidakovic-Koch T, Sundmacher K (2017) Porous electrodes in bioelectrochemistry. In: V P (ed) Encyclopedia of interfacial chemistry: surface science and electrochemistry, Elsevier, Amsterdam Vidakovic-Koch T, Sundmacher K (2017) Porous electrodes in bioelectrochemistry. In: V P (ed) Encyclopedia of interfacial chemistry: surface science and electrochemistry, Elsevier, Amsterdam
3.
Zurück zum Zitat Belsare KD et al (2017) Directed evolution of P450cin for mediated electron transfer. Protein Eng Des Sel 30(2):119–127PubMedCrossRef Belsare KD et al (2017) Directed evolution of P450cin for mediated electron transfer. Protein Eng Des Sel 30(2):119–127PubMedCrossRef
4.
Zurück zum Zitat Habermüller K, Mosbach M, Schuhmann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresenius J Anal Chem 366(6):560–568PubMed Habermüller K, Mosbach M, Schuhmann W (2000) Electron-transfer mechanisms in amperometric biosensors. Fresenius J Anal Chem 366(6):560–568PubMed
5.
Zurück zum Zitat Do TQN et al (2014) Mathematical modeling of a porous enzymatic electrode with direct electron transfer mechanism. Electrochim Acta 137:616–626CrossRef Do TQN et al (2014) Mathematical modeling of a porous enzymatic electrode with direct electron transfer mechanism. Electrochim Acta 137:616–626CrossRef
6.
Zurück zum Zitat Andreu R et al (2007) Direct electron transfer kinetics in horseradish peroxidase electrocatalysis. J Phys Chem B 111(2):469–477PubMedCrossRef Andreu R et al (2007) Direct electron transfer kinetics in horseradish peroxidase electrocatalysis. J Phys Chem B 111(2):469–477PubMedCrossRef
7.
Zurück zum Zitat Gupta G et al (2011) Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes. Electrochem Commun 13(3):247–249CrossRef Gupta G et al (2011) Direct electron transfer catalyzed by bilirubin oxidase for air breathing gas-diffusion electrodes. Electrochem Commun 13(3):247–249CrossRef
8.
Zurück zum Zitat Léger C et al (2002) Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes. J Phys Chem B 106(50):13058–13063CrossRef Léger C et al (2002) Effect of a dispersion of interfacial electron transfer rates on steady state catalytic electron transport in [NiFe]-hydrogenase and other enzymes. J Phys Chem B 106(50):13058–13063CrossRef
9.
Zurück zum Zitat Tasca F et al (2008) Direct electron transfer at cellobiose dehydrogenase modified anodes for biofuel cells. J Phys Chem C 112(26):9956–9961CrossRef Tasca F et al (2008) Direct electron transfer at cellobiose dehydrogenase modified anodes for biofuel cells. J Phys Chem C 112(26):9956–9961CrossRef
10.
Zurück zum Zitat Zimmermann H et al (2000) Anisotropic orientation of horseradish peroxidase by reconstitution on a Thiol-modified gold electrode. Chem Eur J 6(4):592–599PubMedCrossRef Zimmermann H et al (2000) Anisotropic orientation of horseradish peroxidase by reconstitution on a Thiol-modified gold electrode. Chem Eur J 6(4):592–599PubMedCrossRef
11.
Zurück zum Zitat Vidaković-Koch T et al (2011) Impact of the gold support on the electrocatalytic oxidation of sugars at enzyme-modified electrodes. Electroanalysis 23(4):927–930CrossRef Vidaković-Koch T et al (2011) Impact of the gold support on the electrocatalytic oxidation of sugars at enzyme-modified electrodes. Electroanalysis 23(4):927–930CrossRef
12.
Zurück zum Zitat Courjean O, Gao F, Mano N (2009) Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chem 121(32):6011–6013CrossRef Courjean O, Gao F, Mano N (2009) Deglycosylation of glucose oxidase for direct and efficient glucose electrooxidation on a glassy carbon electrode. Angew Chem 121(32):6011–6013CrossRef
13.
Zurück zum Zitat Bartlett PN, Al-Lolage FA (2017) There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene. J Electroanal Chem Bartlett PN, Al-Lolage FA (2017) There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene. J Electroanal Chem
14.
Zurück zum Zitat Alberty RA (1993) Thermodynamics of reactions of Nicotinamide adenine dinucleotide and Nicotinamide adenine dinucleotide phosphate. Arch Biochem Biophys 307(1):8–14PubMedCrossRef Alberty RA (1993) Thermodynamics of reactions of Nicotinamide adenine dinucleotide and Nicotinamide adenine dinucleotide phosphate. Arch Biochem Biophys 307(1):8–14PubMedCrossRef
15.
Zurück zum Zitat Krebs HA, Kornberg HL (1957) Energy transformations in living matter. Springer-Verlag Berlin Heidelberg, BerlinCrossRef Krebs HA, Kornberg HL (1957) Energy transformations in living matter. Springer-Verlag Berlin Heidelberg, BerlinCrossRef
16.
Zurück zum Zitat Reiger PH (1994) Electrochemistry.2nd edn. Springer Science+Business Media, DordrechtCrossRef Reiger PH (1994) Electrochemistry.2nd edn. Springer Science+Business Media, DordrechtCrossRef
17.
Zurück zum Zitat Armstrong FA, Hirst J (2011) Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc Natl Acad Sci 108(34):14049–14054PubMedCrossRef Armstrong FA, Hirst J (2011) Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc Natl Acad Sci 108(34):14049–14054PubMedCrossRef
18.
Zurück zum Zitat Togo M et al (2007) An enzyme-based microfluidic biofuel cell using vitamin K3-mediated glucose oxidation. Electrochim Acta 52(14):4669–4674CrossRef Togo M et al (2007) An enzyme-based microfluidic biofuel cell using vitamin K3-mediated glucose oxidation. Electrochim Acta 52(14):4669–4674CrossRef
19.
Zurück zum Zitat Mano N, Mao F, Heller A (2002) A miniature biofuel cell operating in a physiological buffer. J Am Chem Soc 124(44):12962–12963PubMedCrossRef Mano N, Mao F, Heller A (2002) A miniature biofuel cell operating in a physiological buffer. J Am Chem Soc 124(44):12962–12963PubMedCrossRef
21.
Zurück zum Zitat Kim H-H et al (2003) A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J Electrochem Soc 150(2):A209–A213CrossRef Kim H-H et al (2003) A miniature membrane-less biofuel cell operating under physiological conditions at 0.5 V. J Electrochem Soc 150(2):A209–A213CrossRef
22.
Zurück zum Zitat Willner I et al (1998) Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. J Chem Soc Perkin Trans 2(8):1817–1822CrossRef Willner I et al (1998) Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. J Chem Soc Perkin Trans 2(8):1817–1822CrossRef
23.
Zurück zum Zitat Kuwahara T et al (2007) Properties of the enzyme electrode fabricated with a film of polythiophene derivative and its application to a glucose fuel cell. J Appl Polym Sci 104(5):2947–2953CrossRef Kuwahara T et al (2007) Properties of the enzyme electrode fabricated with a film of polythiophene derivative and its application to a glucose fuel cell. J Appl Polym Sci 104(5):2947–2953CrossRef
24.
Zurück zum Zitat Brunel L et al (2007) Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem Commun 9(2):331–336CrossRef Brunel L et al (2007) Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem Commun 9(2):331–336CrossRef
25.
Zurück zum Zitat Bedekar AS et al (2007) Oxygen limitation in microfluidic biofuel cells. Chem Eng Commun 195(3):256–266CrossRef Bedekar AS et al (2007) Oxygen limitation in microfluidic biofuel cells. Chem Eng Commun 195(3):256–266CrossRef
26.
Zurück zum Zitat Nazaruk E et al (2008) Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases. J Power Sources 183(2):533–538CrossRef Nazaruk E et al (2008) Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases. J Power Sources 183(2):533–538CrossRef
27.
Zurück zum Zitat Tamaki T, Yamaguchi T (2006) High-surface-area three-dimensional biofuel cell electrode using redox-polymer-grafted carbon. Ind Eng Chem Res 45(9):3050–3058CrossRef Tamaki T, Yamaguchi T (2006) High-surface-area three-dimensional biofuel cell electrode using redox-polymer-grafted carbon. Ind Eng Chem Res 45(9):3050–3058CrossRef
28.
Zurück zum Zitat Matsue T et al (1985) Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of .beta.-cyclodextrin. J Am Chem Soc 107(12):3411–3417CrossRef Matsue T et al (1985) Electron-transfer reactions associated with host-guest complexation. Oxidation of ferrocenecarboxylic acid in the presence of .beta.-cyclodextrin. J Am Chem Soc 107(12):3411–3417CrossRef
29.
Zurück zum Zitat Yan Y-M, Yehezkeli O, Willner I (2007) Integrated, electrically contacted NAD(P)+−dependent enzyme–carbon nanotube electrodes for biosensors and biofuel cell applications. Chem Eur J 13(36):10168–10175PubMedCrossRef Yan Y-M, Yehezkeli O, Willner I (2007) Integrated, electrically contacted NAD(P)+−dependent enzyme–carbon nanotube electrodes for biosensors and biofuel cell applications. Chem Eur J 13(36):10168–10175PubMedCrossRef
30.
Zurück zum Zitat Li X et al (2008) A miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate. Electrochem Commun 10(6):851–854CrossRef Li X et al (2008) A miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate. Electrochem Commun 10(6):851–854CrossRef
31.
Zurück zum Zitat Gao F et al (2007) An enzymatic glucose/O2 biofuel cell: preparation, characterization and performance in serum. Electrochem Commun 9(5):989–996CrossRef Gao F et al (2007) An enzymatic glucose/O2 biofuel cell: preparation, characterization and performance in serum. Electrochem Commun 9(5):989–996CrossRef
32.
Zurück zum Zitat Yan Y et al (2006) Carbon-nanotube-based glucose/O2 biofuel cells. Adv Mater 18(19):2639–2643CrossRef Yan Y et al (2006) Carbon-nanotube-based glucose/O2 biofuel cells. Adv Mater 18(19):2639–2643CrossRef
33.
Zurück zum Zitat Vidaković-Koch T et al (2013) Application of electrochemical impedance spectroscopy for studying of enzyme kinetics. Electrochim Acta 110:94–104CrossRef Vidaković-Koch T et al (2013) Application of electrochemical impedance spectroscopy for studying of enzyme kinetics. Electrochim Acta 110:94–104CrossRef
34.
Zurück zum Zitat Vidaković-Koch TR et al (2011) Nonlinear frequency response analysis of the Ferrocyanide oxidation kinetics. Part I. A theoretical analysis. J Phys Chem C 115(35):17341–17351CrossRef Vidaković-Koch TR et al (2011) Nonlinear frequency response analysis of the Ferrocyanide oxidation kinetics. Part I. A theoretical analysis. J Phys Chem C 115(35):17341–17351CrossRef
35.
Zurück zum Zitat Do TQN et al (2015) Dynamic and steady state 1-D model of mediated electron transfer in a porous enzymatic electrode. Bioelectrochemistry 106(Part A):3–13PubMedCrossRef Do TQN et al (2015) Dynamic and steady state 1-D model of mediated electron transfer in a porous enzymatic electrode. Bioelectrochemistry 106(Part A):3–13PubMedCrossRef
36.
Zurück zum Zitat Vidaković-Koch T et al (2017) Catalyst layer modeling. In: Breitkopf C, Swider-Lyons K (eds) Springer handbook of electrochemical energy. Springer Berlin Heidelberg, Berlin, pp 259–285CrossRef Vidaković-Koch T et al (2017) Catalyst layer modeling. In: Breitkopf C, Swider-Lyons K (eds) Springer handbook of electrochemical energy. Springer Berlin Heidelberg, Berlin, pp 259–285CrossRef
37.
Zurück zum Zitat Bard A, Faulkner L (2001) Electrochemical methods, fundamentals and applications. Wiley, New York Bard A, Faulkner L (2001) Electrochemical methods, fundamentals and applications. Wiley, New York
38.
Zurück zum Zitat Bartlett PN (2008) In: Bartlett PN (ed) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley, New York Bartlett PN (2008) In: Bartlett PN (ed) Bioelectrochemistry: fundamentals, experimental techniques and applications. Wiley, New York
39.
Zurück zum Zitat Varnicic M et al (2014) Combined electrochemical and microscopic study of porous enzymatic electrodes with direct electron transfer mechanism. RSC Adv 4(69):36471–36479CrossRef Varnicic M et al (2014) Combined electrochemical and microscopic study of porous enzymatic electrodes with direct electron transfer mechanism. RSC Adv 4(69):36471–36479CrossRef
40.
Zurück zum Zitat Varničić M, Vidaković-Koch T, Sundmacher K (2015) Gluconic acid synthesis in an electroenzymatic reactor. Electrochim Acta 174:480–487CrossRef Varničić M, Vidaković-Koch T, Sundmacher K (2015) Gluconic acid synthesis in an electroenzymatic reactor. Electrochim Acta 174:480–487CrossRef
41.
Zurück zum Zitat Varničić M, Vidaković-Koch T, Sundmacher K (2015) Corrigendum to “Gluconic acid synthesis in an Electroenzymatic reactor” [Electrochimica Acta 174 (2015) 480–487]. Electrochim Acta 176:1523CrossRef Varničić M, Vidaković-Koch T, Sundmacher K (2015) Corrigendum to “Gluconic acid synthesis in an Electroenzymatic reactor” [Electrochimica Acta 174 (2015) 480–487]. Electrochim Acta 176:1523CrossRef
42.
Zurück zum Zitat Ivanov I (2012) Development of a glucose-oxygen enzymatic fuel cell. Otto von Guericke University, Magdeburg, p 118 Ivanov I (2012) Development of a glucose-oxygen enzymatic fuel cell. Otto von Guericke University, Magdeburg, p 118
43.
Zurück zum Zitat Ivanov I, Vidaković-Koch T, Sundmacher K (2013) Alternating electron transfer mechanism in the case of high-performance tetrathiafulvalene–tetracyanoquinodimethane enzymatic electrodes. J Electroanal Chem 690:68–73CrossRef Ivanov I, Vidaković-Koch T, Sundmacher K (2013) Alternating electron transfer mechanism in the case of high-performance tetrathiafulvalene–tetracyanoquinodimethane enzymatic electrodes. J Electroanal Chem 690:68–73CrossRef
44.
Zurück zum Zitat Vidakovic-Koch T (2017) Energy conversion based on bio(electro)catalysts. In: Cornelia Breitkopf KS-L (ed) Springer handbook of electrochemical energy. Springer-Verlag Berlin Heidelberg, Berlin, pp 757–777CrossRef Vidakovic-Koch T (2017) Energy conversion based on bio(electro)catalysts. In: Cornelia Breitkopf KS-L (ed) Springer handbook of electrochemical energy. Springer-Verlag Berlin Heidelberg, Berlin, pp 757–777CrossRef
45.
Zurück zum Zitat Mondal MS, Fuller HA, Armstrong FA (1996) Direct measurement of the reduction potential of catalytically active cytochrome c peroxidase compound I: voltammetric detection of a reversible, cooperative two-electron transfer reaction. J Am Chem Soc 118(1):263–264CrossRef Mondal MS, Fuller HA, Armstrong FA (1996) Direct measurement of the reduction potential of catalytically active cytochrome c peroxidase compound I: voltammetric detection of a reversible, cooperative two-electron transfer reaction. J Am Chem Soc 118(1):263–264CrossRef
46.
Zurück zum Zitat Mondal MS, Goodin DB, Armstrong FA (1998) Simultaneous voltammetric comparisons of reduction potentials, reactivities, and stabilities of the high-potential catalytic states of wild-type and distal-pocket mutant (W51F) yeast cytochrome c peroxidase. J Am Chem Soc 120(25):6270–6276CrossRef Mondal MS, Goodin DB, Armstrong FA (1998) Simultaneous voltammetric comparisons of reduction potentials, reactivities, and stabilities of the high-potential catalytic states of wild-type and distal-pocket mutant (W51F) yeast cytochrome c peroxidase. J Am Chem Soc 120(25):6270–6276CrossRef
47.
Zurück zum Zitat Ruzgas T et al (1995) Kinetic models of horseradish peroxidase action on a graphite electrode. J Electroanal Chem 391(1):41–49CrossRef Ruzgas T et al (1995) Kinetic models of horseradish peroxidase action on a graphite electrode. J Electroanal Chem 391(1):41–49CrossRef
48.
Zurück zum Zitat Ferapontova EE, Gorton L (2001) Effect of proton donors on direct electron transfer in the system gold electrode–horseradish peroxidase. Electrochem Commun 3(12):767–774CrossRef Ferapontova EE, Gorton L (2001) Effect of proton donors on direct electron transfer in the system gold electrode–horseradish peroxidase. Electrochem Commun 3(12):767–774CrossRef
49.
Zurück zum Zitat Yu H et al (2015) Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology. J Power Sources 283:84–94CrossRef Yu H et al (2015) Influence of the ionomer/carbon ratio for low-Pt loading catalyst layer prepared by reactive spray deposition technology. J Power Sources 283:84–94CrossRef
50.
Zurück zum Zitat Lojou É, Bianco P (2004) Membrane electrodes for protein and enzyme electrochemistry. Electroanalysis 16(13–14):1113–1121CrossRef Lojou É, Bianco P (2004) Membrane electrodes for protein and enzyme electrochemistry. Electroanalysis 16(13–14):1113–1121CrossRef
51.
Zurück zum Zitat De Poulpiquet A et al (2013) Exploring properties of a hyperthermophilic membrane-bound hydrogenase at carbon nanotube modified electrodes for a powerful H2/O2 biofuel cell. Electroanalysis 25(3):685–695CrossRef De Poulpiquet A et al (2013) Exploring properties of a hyperthermophilic membrane-bound hydrogenase at carbon nanotube modified electrodes for a powerful H2/O2 biofuel cell. Electroanalysis 25(3):685–695CrossRef
52.
Zurück zum Zitat Lojou É et al (2008) Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes. JBIC, J Biol Inorg Chem 13(7):1157–1167PubMedCrossRef Lojou É et al (2008) Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes. JBIC, J Biol Inorg Chem 13(7):1157–1167PubMedCrossRef
53.
Zurück zum Zitat Luo X et al (2009) Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation. JBIC, J Biol Inorg Chem 14(8):1275–1288PubMedCrossRef Luo X et al (2009) Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation. JBIC, J Biol Inorg Chem 14(8):1275–1288PubMedCrossRef
54.
Zurück zum Zitat Lojou E (2011) Hydrogenases as catalysts for fuel cells: strategies for efficient immobilization at electrode interfaces. Electrochim Acta 56(28):10385–10397CrossRef Lojou E (2011) Hydrogenases as catalysts for fuel cells: strategies for efficient immobilization at electrode interfaces. Electrochim Acta 56(28):10385–10397CrossRef
55.
Zurück zum Zitat Yan Y, Su L, Mao L (2007) Multi-walled carbon nanotube-based glucose/O2 biofuel cell with glucose oxidase and Laccase as biocatalysts. J Nanosci Nanotechnol 7(4–1):1625–1630PubMedCrossRef Yan Y, Su L, Mao L (2007) Multi-walled carbon nanotube-based glucose/O2 biofuel cell with glucose oxidase and Laccase as biocatalysts. J Nanosci Nanotechnol 7(4–1):1625–1630PubMedCrossRef
56.
Zurück zum Zitat Khan GF (1997) TTF-TCNQ complex based printed biosensor for long-term operation. Electroanalysis 9(4):325–329CrossRef Khan GF (1997) TTF-TCNQ complex based printed biosensor for long-term operation. Electroanalysis 9(4):325–329CrossRef
57.
Zurück zum Zitat Khan GF (1996) Construction of SEC/CTC electrodes for direct electron transferring biosensors. Sens Actuators B Chem 36(1–3):484–490CrossRef Khan GF (1996) Construction of SEC/CTC electrodes for direct electron transferring biosensors. Sens Actuators B Chem 36(1–3):484–490CrossRef
58.
Zurück zum Zitat Khan GF, Ohwa M, Wernet W (1996) Design of a stable charge transfer complex electrode for a third-generation amperometric glucose sensor. Anal Chem 68(17):2939–2945PubMedCrossRef Khan GF, Ohwa M, Wernet W (1996) Design of a stable charge transfer complex electrode for a third-generation amperometric glucose sensor. Anal Chem 68(17):2939–2945PubMedCrossRef
59.
Zurück zum Zitat Ivanov I, Vidaković-Koch T, Sundmacher K (2011) Direct hybrid glucose–oxygen enzymatic fuel cell based on tetrathiafulvalene–tetracyanoquinodimethane charge transfer complex as anodic mediator. J Power Sources 196(22):9260–9269CrossRef Ivanov I, Vidaković-Koch T, Sundmacher K (2011) Direct hybrid glucose–oxygen enzymatic fuel cell based on tetrathiafulvalene–tetracyanoquinodimethane charge transfer complex as anodic mediator. J Power Sources 196(22):9260–9269CrossRef
60.
Zurück zum Zitat Do TQN (2017) Mathematical modelling of electro-enzymatic system. Otto von Guericke University, Magdeburg Do TQN (2017) Mathematical modelling of electro-enzymatic system. Otto von Guericke University, Magdeburg
61.
Zurück zum Zitat Kochius S et al (2014) Electrochemical regeneration of oxidised nicotinamide cofactors in a scalable reactor. J Mol Catal B Enzym 103:94–99CrossRef Kochius S et al (2014) Electrochemical regeneration of oxidised nicotinamide cofactors in a scalable reactor. J Mol Catal B Enzym 103:94–99CrossRef
62.
Zurück zum Zitat Gorton L, Domínguez E (2007) Electrochemistry of NAD(P)+/NAD(P)H. Encyclopedia of electrochemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Gorton L, Domínguez E (2007) Electrochemistry of NAD(P)+/NAD(P)H. Encyclopedia of electrochemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
63.
Zurück zum Zitat Karyakin AA, Ivanova YN, Karyakina EE (2003) Equilibrium (NAD+/NADH) potential on poly(neutral red) modified electrode. Electrochem Commun 5(8):677–680CrossRef Karyakin AA, Ivanova YN, Karyakina EE (2003) Equilibrium (NAD+/NADH) potential on poly(neutral red) modified electrode. Electrochem Commun 5(8):677–680CrossRef
64.
Zurück zum Zitat Arechederra MN, Addo PK, Minteer SD (2011) Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: towards the development of a rechargeable biobattery. Electrochim Acta 56(3):1585–1590CrossRef Arechederra MN, Addo PK, Minteer SD (2011) Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: towards the development of a rechargeable biobattery. Electrochim Acta 56(3):1585–1590CrossRef
65.
Zurück zum Zitat Karyakin AA et al (1999) Electropolymerized azines: part II. In a search of the best electrocatalyst of NADH oxidation. Electroanalysis 11(8):553–557CrossRef Karyakin AA et al (1999) Electropolymerized azines: part II. In a search of the best electrocatalyst of NADH oxidation. Electroanalysis 11(8):553–557CrossRef
66.
Zurück zum Zitat Li H, Wen H, Calabrese Barton S (2012) NADH oxidation catalyzed by electropolymerized azines on carbon nanotube modified electrodes. Electroanalysis 24(2):398–406CrossRef Li H, Wen H, Calabrese Barton S (2012) NADH oxidation catalyzed by electropolymerized azines on carbon nanotube modified electrodes. Electroanalysis 24(2):398–406CrossRef
67.
Zurück zum Zitat Rincón RA et al (2011) Flow-through 3D biofuel cell anode for NAD+−dependent enzymes. Electrochim Acta 56(5):2503–2509CrossRef Rincón RA et al (2011) Flow-through 3D biofuel cell anode for NAD+−dependent enzymes. Electrochim Acta 56(5):2503–2509CrossRef
68.
Zurück zum Zitat Vuorilehto K, Lütz S, Wandrey C (2004) Indirect electrochemical reduction of nicotinamide coenzymes. Bioelectrochemistry 65(1):1–7PubMedCrossRef Vuorilehto K, Lütz S, Wandrey C (2004) Indirect electrochemical reduction of nicotinamide coenzymes. Bioelectrochemistry 65(1):1–7PubMedCrossRef
69.
Zurück zum Zitat Salimi A et al (2009) Electrocatalytic reduction of NAD+ at glassy carbon electrode modified with single-walled carbon nanotubes and Ru(III) complexes. J Solid State Electrochem 13(3):485–496CrossRef Salimi A et al (2009) Electrocatalytic reduction of NAD+ at glassy carbon electrode modified with single-walled carbon nanotubes and Ru(III) complexes. J Solid State Electrochem 13(3):485–496CrossRef
70.
Zurück zum Zitat Ali I, Soomro B, Omanovic S (2011) Electrochemical regeneration of NADH on a glassy carbon electrode surface: the influence of electrolysis potential. Electrochem Commun 13(6):562–565CrossRef Ali I, Soomro B, Omanovic S (2011) Electrochemical regeneration of NADH on a glassy carbon electrode surface: the influence of electrolysis potential. Electrochem Commun 13(6):562–565CrossRef
71.
Zurück zum Zitat Tosstorff A et al (2014) Mediated electron transfer with monooxygenases—insight in interactions between reduced mediators and the co-substrate oxygen. J Mol Catal B Enzym 108:51–58CrossRef Tosstorff A et al (2014) Mediated electron transfer with monooxygenases—insight in interactions between reduced mediators and the co-substrate oxygen. J Mol Catal B Enzym 108:51–58CrossRef
72.
Zurück zum Zitat Tosstorff A et al (2017) Towards electroenzymatic processes involving old yellow enzymes and mediated cofactor regeneration. Eng Life Sci 17(1):71–76CrossRef Tosstorff A et al (2017) Towards electroenzymatic processes involving old yellow enzymes and mediated cofactor regeneration. Eng Life Sci 17(1):71–76CrossRef
73.
Zurück zum Zitat Çekiç SZ et al (2010) Mediated electron transfer with P450cin. Electrochem Commun 12(11):1547–1550CrossRef Çekiç SZ et al (2010) Mediated electron transfer with P450cin. Electrochem Commun 12(11):1547–1550CrossRef
74.
Zurück zum Zitat Ströhle FW et al (2013) A computational protocol to predict suitable redox mediators for substitution of NAD(P)H in P450 monooxygenases. J Mol Catal B Enzym 88:47–51CrossRef Ströhle FW et al (2013) A computational protocol to predict suitable redox mediators for substitution of NAD(P)H in P450 monooxygenases. J Mol Catal B Enzym 88:47–51CrossRef
Metadaten
Titel
Electron Transfer Between Enzymes and Electrodes
verfasst von
Tanja Vidakovic-Koch
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/10_2017_42

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.