Skip to main content

2022 | OriginalPaper | Buchkapitel

11. Electronically Coupled TTA-UC Solar Cells

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optical and electronic coupling architectures are two distinct strategies for harnessing photon upconversion via triplet-triplet annihilation (TTA-UC) in a solar cell. The former combines a standard solar cell with an UC film (Chap. 10), while the latter integrates TTA-UC directly into the solar cell. In this chapter we will review the various strategies for integrating TTA-UC into dye-sensitized and layered heterojunction solar cells. These strategies include heterogeneous sensitization, multilayers, metal-organic frameworks, co-deposition, and more. We describe these architectures, note advantages and disadvantages of each, and summarize progress in the field to date. We also discuss the efficiency-limiting factors of current devices and the prospects for integrated TTA-UC solar cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Namba, Y. Hishiki, Color sensitization of zinc oxide with cyanine Dyes1. J. Phys. Chem. 69(3), 774–779 (1965)CrossRef S. Namba, Y. Hishiki, Color sensitization of zinc oxide with cyanine Dyes1. J. Phys. Chem. 69(3), 774–779 (1965)CrossRef
2.
Zurück zum Zitat B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)CrossRef B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)CrossRef
3.
Zurück zum Zitat A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)CrossRef A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110(11), 6595–6663 (2010)CrossRef
4.
Zurück zum Zitat A. Hagfeldt, Brief overview of dye-sensitized solar cells. Ambio 41(Suppl 2), 151–155 (2012)CrossRef A. Hagfeldt, Brief overview of dye-sensitized solar cells. Ambio 41(Suppl 2), 151–155 (2012)CrossRef
5.
Zurück zum Zitat J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sust. Energ. Rev. 68, 234–246 (2017)CrossRef J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sust. Energ. Rev. 68, 234–246 (2017)CrossRef
6.
Zurück zum Zitat J.C. Wang, S.P. Hill, T. Dilbeck, O.O. Ogunsolu, T. Banerjee, K. Hanson, Multimolecular assemblies on high surface area metal oxides and their role in interfacial energy and electron transfer. Chem. Soc. Rev. 47(1), 104–148 (2018)CrossRef J.C. Wang, S.P. Hill, T. Dilbeck, O.O. Ogunsolu, T. Banerjee, K. Hanson, Multimolecular assemblies on high surface area metal oxides and their role in interfacial energy and electron transfer. Chem. Soc. Rev. 47(1), 104–148 (2018)CrossRef
7.
Zurück zum Zitat M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phys. Chem. B 107(34), 8981–8987 (2003)CrossRef M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phys. Chem. B 107(34), 8981–8987 (2003)CrossRef
8.
Zurück zum Zitat J. Albero, P. Atienzar, A. Corma, H. Garcia, Efficiency records in mesoscopic dye-sensitized solar cells. Chem. Rec. 15(4), 803–828 (2015)CrossRef J. Albero, P. Atienzar, A. Corma, H. Garcia, Efficiency records in mesoscopic dye-sensitized solar cells. Chem. Rec. 15(4), 803–828 (2015)CrossRef
9.
Zurück zum Zitat V.S. Manthou, E.K. Pefkianakis, P. Falaras, G.C. Vougioukalakis, Co-adsorbents: a key component in efficient and robust dye-sensitized solar cells. ChemSusChem 8(4), 588–599 (2015)CrossRef V.S. Manthou, E.K. Pefkianakis, P. Falaras, G.C. Vougioukalakis, Co-adsorbents: a key component in efficient and robust dye-sensitized solar cells. ChemSusChem 8(4), 588–599 (2015)CrossRef
10.
Zurück zum Zitat Z. Zhang, S.M. Zakeeruddin, B.C. O’Regan, R. Humphry-Baker, M. Grätzel, Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells. J. Phys. Chem. B 109(46), 21818–21824 (2005)CrossRef Z. Zhang, S.M. Zakeeruddin, B.C. O’Regan, R. Humphry-Baker, M. Grätzel, Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells. J. Phys. Chem. B 109(46), 21818–21824 (2005)CrossRef
11.
Zurück zum Zitat J.S. Lissau, J.M. Gardner, A. Morandeira, Photon upconversion on dye-sensitized nanostructured ZrO2 films. J. Phys. Chem. C 115(46), 23226–23232 (2011)CrossRef J.S. Lissau, J.M. Gardner, A. Morandeira, Photon upconversion on dye-sensitized nanostructured ZrO2 films. J. Phys. Chem. C 115(46), 23226–23232 (2011)CrossRef
12.
Zurück zum Zitat A. Haefele, J. Blumhoff, R.S. Khnayzer, F.N. Castellano, Getting to the (square) root of the problem: how to make noncoherent pumped upconversion linear. J. Phys. Chem. Lett. 3(3), 299–303 (2012)CrossRef A. Haefele, J. Blumhoff, R.S. Khnayzer, F.N. Castellano, Getting to the (square) root of the problem: how to make noncoherent pumped upconversion linear. J. Phys. Chem. Lett. 3(3), 299–303 (2012)CrossRef
13.
Zurück zum Zitat A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino, F. Meinardi, Upconversion-induced fluorescence in multicomponent systems: steady-state excitation power threshold. Phys. Rev. B 78(19), 195112 (2008)CrossRef A. Monguzzi, J. Mezyk, F. Scotognella, R. Tubino, F. Meinardi, Upconversion-induced fluorescence in multicomponent systems: steady-state excitation power threshold. Phys. Rev. B 78(19), 195112 (2008)CrossRef
14.
Zurück zum Zitat Y.Y. Cheng, T. Khoury, R.G.C.R. Clady, M.J.Y. Tayebjee, N.J. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, On the efficiency limit of triplet-triplet annihilation for photochemical upconversion. Phys. Chem. Chem. Phys. 12(1), 66–71 (2010)CrossRef Y.Y. Cheng, T. Khoury, R.G.C.R. Clady, M.J.Y. Tayebjee, N.J. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, On the efficiency limit of triplet-triplet annihilation for photochemical upconversion. Phys. Chem. Chem. Phys. 12(1), 66–71 (2010)CrossRef
15.
Zurück zum Zitat J.E. Auckett, Y.Y. Chen, T. Khoury, R.G. Clady, N. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, Efficient up-conversion by triplet-triplet annihilation. J. Phys.: Conf. Ser. 185, 012002 (2009). IOP Publishing J.E. Auckett, Y.Y. Chen, T. Khoury, R.G. Clady, N. Ekins-Daukes, M.J. Crossley, T.W. Schmidt, Efficient up-conversion by triplet-triplet annihilation. J. Phys.: Conf. Ser. 185, 012002 (2009). IOP Publishing
16.
Zurück zum Zitat J.S. Lissau, D. Nauroozi, M.-P. Santoni, S. Ott, J.M. Gardner, A. Morandeira, Anchoring energy acceptors to nanostructured ZrO2 enhances photon upconversion by sensitized triplet–triplet annihilation under simulated solar flux. J. Phys. Chem. C 117(28), 14493–14501 (2013)CrossRef J.S. Lissau, D. Nauroozi, M.-P. Santoni, S. Ott, J.M. Gardner, A. Morandeira, Anchoring energy acceptors to nanostructured ZrO2 enhances photon upconversion by sensitized triplet–triplet annihilation under simulated solar flux. J. Phys. Chem. C 117(28), 14493–14501 (2013)CrossRef
17.
Zurück zum Zitat J.S. Lissau, D. Nauroozi, M.-P. Santoni, T. Edvinsson, S. Ott, J.M. Gardner, A. Morandeira, What limits photon upconversion on mesoporous thin films sensitized by solution-phase absorbers? J. Phys. Chem. C 119(9), 4550–4564 (2015)CrossRef J.S. Lissau, D. Nauroozi, M.-P. Santoni, T. Edvinsson, S. Ott, J.M. Gardner, A. Morandeira, What limits photon upconversion on mesoporous thin films sensitized by solution-phase absorbers? J. Phys. Chem. C 119(9), 4550–4564 (2015)CrossRef
18.
Zurück zum Zitat J.S. Lissau, D. Nauroozi, M.-P. Santoni, S. Ott, J.M. Gardner, A. Morandeira, Photon upconversion from chemically bound triplet sensitizers and emitters on mesoporous ZrO2: implications for solar energy conversion. J. Phys. Chem. C 119(46), 25792–25806 (2015)CrossRef J.S. Lissau, D. Nauroozi, M.-P. Santoni, S. Ott, J.M. Gardner, A. Morandeira, Photon upconversion from chemically bound triplet sensitizers and emitters on mesoporous ZrO2: implications for solar energy conversion. J. Phys. Chem. C 119(46), 25792–25806 (2015)CrossRef
19.
Zurück zum Zitat J.M. Giaimuccio, J.G. Rowley, G.J. Meyer, D. Wang, E. Galoppini, Heavy atom effects on anthracene-rigid-rod excited states anchored to metal oxide nanoparticles. Chem. Phys. 339(1), 146–153 (2007)CrossRef J.M. Giaimuccio, J.G. Rowley, G.J. Meyer, D. Wang, E. Galoppini, Heavy atom effects on anthracene-rigid-rod excited states anchored to metal oxide nanoparticles. Chem. Phys. 339(1), 146–153 (2007)CrossRef
20.
Zurück zum Zitat C. Simpson, T.M. Clarke, R.W. MacQueen, Y.Y. Cheng, A.J. Trevitt, A.J. Mozer, P. Wagner, T.W. Schmidt, A. Nattestad, An intermediate band dye-sensitised solar cell using triplet-triplet annihilation. Phys. Chem. Chem. Phys. 17(38), 24826–24830 (2015)CrossRef C. Simpson, T.M. Clarke, R.W. MacQueen, Y.Y. Cheng, A.J. Trevitt, A.J. Mozer, P. Wagner, T.W. Schmidt, A. Nattestad, An intermediate band dye-sensitised solar cell using triplet-triplet annihilation. Phys. Chem. Chem. Phys. 17(38), 24826–24830 (2015)CrossRef
21.
Zurück zum Zitat H. Lee, L.J. Kepley, H.G. Hong, S. Akhter, T.E. Mallouk, Adsorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces. J. Phys. Chem. 92(9), 2597–2601 (1988)CrossRef H. Lee, L.J. Kepley, H.G. Hong, S. Akhter, T.E. Mallouk, Adsorption of ordered zirconium phosphonate multilayer films on silicon and gold surfaces. J. Phys. Chem. 92(9), 2597–2601 (1988)CrossRef
22.
Zurück zum Zitat H. Lee, L.J. Kepley, H.G. Hong, T.E. Mallouk, Inorganic analogs of Langmuir-Blodgett films: adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces. J. Am. Chem. Soc. 110(2), 618–620 (1988)CrossRef H. Lee, L.J. Kepley, H.G. Hong, T.E. Mallouk, Inorganic analogs of Langmuir-Blodgett films: adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces. J. Am. Chem. Soc. 110(2), 618–620 (1988)CrossRef
23.
Zurück zum Zitat H.E. Katz, Multilayer deposition of novel organophosphonates with zirconium(IV). Chem. Mater. 6(12), 2227–2232 (1994)CrossRef H.E. Katz, Multilayer deposition of novel organophosphonates with zirconium(IV). Chem. Mater. 6(12), 2227–2232 (1994)CrossRef
24.
Zurück zum Zitat H.E. Katz, G. Scheller, T.M. Putvinski, M.L. Schilling, W.L. Wilson, C.E.D. Chidsey, Polar orientation of dyes in robust multilayers by zirconium phosphate-phosphonate interlayers. Science 254(5037), 1485–1487 (1991)CrossRef H.E. Katz, G. Scheller, T.M. Putvinski, M.L. Schilling, W.L. Wilson, C.E.D. Chidsey, Polar orientation of dyes in robust multilayers by zirconium phosphate-phosphonate interlayers. Science 254(5037), 1485–1487 (1991)CrossRef
25.
Zurück zum Zitat T. Ishida, K.-I. Terada, K. Hasegawa, H. Kuwahata, K. Kusama, R. Sato, M. Nakano, Y. Naitoh, M.-A. Haga, Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface. Appl. Surf. Sci. 255(21), 8824–8830 (2009)CrossRef T. Ishida, K.-I. Terada, K. Hasegawa, H. Kuwahata, K. Kusama, R. Sato, M. Nakano, Y. Naitoh, M.-A. Haga, Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface. Appl. Surf. Sci. 255(21), 8824–8830 (2009)CrossRef
26.
Zurück zum Zitat T. Keiichi, K. Katsuaki, H. Jiro, H. Masa-aki, Electric conduction properties of self-assembled monolayer films of Ru complexes with disulfide/phosphonate anchors in a Au–(molecular ensemble)–(Au nanoparticle) junction. Chem. Lett. 38(5), 416–417 (2009)CrossRef T. Keiichi, K. Katsuaki, H. Jiro, H. Masa-aki, Electric conduction properties of self-assembled monolayer films of Ru complexes with disulfide/phosphonate anchors in a Au–(molecular ensemble)–(Au nanoparticle) junction. Chem. Lett. 38(5), 416–417 (2009)CrossRef
27.
Zurück zum Zitat L.A. Vermeulen, J.L. Snover, L.S. Sapochak, M.E. Thompson, Efficient photoinduced charge separation in layered zirconium viologen phosphonate compounds. J. Am. Chem. Soc. 115(25), 11767–11774 (1993)CrossRef L.A. Vermeulen, J.L. Snover, L.S. Sapochak, M.E. Thompson, Efficient photoinduced charge separation in layered zirconium viologen phosphonate compounds. J. Am. Chem. Soc. 115(25), 11767–11774 (1993)CrossRef
28.
Zurück zum Zitat S.B. Ungashe, W.L. Wilson, H.E. Katz, G.R. Scheller, T.M. Putvinski, Synthesis, self-assembly, and photophysical dynamics of stacked layers of porphyrin and viologen phosphonates. J. Am. Chem. Soc. 114(22), 8717–8719 (1992)CrossRef S.B. Ungashe, W.L. Wilson, H.E. Katz, G.R. Scheller, T.M. Putvinski, Synthesis, self-assembly, and photophysical dynamics of stacked layers of porphyrin and viologen phosphonates. J. Am. Chem. Soc. 114(22), 8717–8719 (1992)CrossRef
29.
Zurück zum Zitat K. Hanson, D.A. Torelli, A.K. Vannucci, M.K. Brennaman, H. Luo, L. Alibabaei, W. Song, D.L. Ashford, M.R. Norris, C.R.K. Glasson, J.J. Concepcion, T.J. Meyer, Self-assembled bilayer films of ruthenium(II)/polypyridyl complexes through layer-by-layer deposition on nanostructured metal oxides. Angew. Chem. Int. Ed. 51(51), 12782–12785 (2012)CrossRef K. Hanson, D.A. Torelli, A.K. Vannucci, M.K. Brennaman, H. Luo, L. Alibabaei, W. Song, D.L. Ashford, M.R. Norris, C.R.K. Glasson, J.J. Concepcion, T.J. Meyer, Self-assembled bilayer films of ruthenium(II)/polypyridyl complexes through layer-by-layer deposition on nanostructured metal oxides. Angew. Chem. Int. Ed. 51(51), 12782–12785 (2012)CrossRef
30.
Zurück zum Zitat O.O. Ogunsolu, I.A. Murphy, J.C. Wang, A. Das, K. Hanson, Energy and electron transfer cascade in self-assembled bilayer dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8(42), 28633–28640 (2016)CrossRef O.O. Ogunsolu, I.A. Murphy, J.C. Wang, A. Das, K. Hanson, Energy and electron transfer cascade in self-assembled bilayer dye-sensitized solar cells. ACS Appl. Mater. Interfaces 8(42), 28633–28640 (2016)CrossRef
31.
Zurück zum Zitat O.O. Ogunsolu, J.C. Wang, K. Hanson, Inhibiting interfacial recombination events in dye-sensitized solar cells using self-assembled bilayers. ACS Appl. Mater. Interfaces 7(50), 27730–27734 (2015)CrossRef O.O. Ogunsolu, J.C. Wang, K. Hanson, Inhibiting interfacial recombination events in dye-sensitized solar cells using self-assembled bilayers. ACS Appl. Mater. Interfaces 7(50), 27730–27734 (2015)CrossRef
32.
Zurück zum Zitat X. Ding, Y. Gao, L. Zhang, Z. Yu, J. Liu, L. Sun, Visible light-driven water splitting in photoelectrochemical cells with supramolecular catalysts on photoanodes. ACS Catal. 4(7), 2347–2350 (2014)CrossRef X. Ding, Y. Gao, L. Zhang, Z. Yu, J. Liu, L. Sun, Visible light-driven water splitting in photoelectrochemical cells with supramolecular catalysts on photoanodes. ACS Catal. 4(7), 2347–2350 (2014)CrossRef
33.
Zurück zum Zitat A.J. Robb, E.S. Knorr, N. Watson, K. Hanson, Metal ion linked multilayers on mesoporous substrates: energy/electron transfer, photon upconversion, and more. J. Photochem. Photobiol. A Chem. 390, 112291 (2020)CrossRef A.J. Robb, E.S. Knorr, N. Watson, K. Hanson, Metal ion linked multilayers on mesoporous substrates: energy/electron transfer, photon upconversion, and more. J. Photochem. Photobiol. A Chem. 390, 112291 (2020)CrossRef
34.
Zurück zum Zitat T. Dilbeck, K. Hanson, Molecular photon upconversion solar cells using multilayer assemblies: progress and prospects. J. Phys. Chem. Lett. 9(19), 5810–5821 (2018)CrossRef T. Dilbeck, K. Hanson, Molecular photon upconversion solar cells using multilayer assemblies: progress and prospects. J. Phys. Chem. Lett. 9(19), 5810–5821 (2018)CrossRef
35.
Zurück zum Zitat S.P. Hill, T. Banerjee, T. Dilbeck, K. Hanson, Photon upconversion and photocurrent generation via self-assembly at organic–inorganic interfaces. J. Phys. Chem. Lett. 6(22), 4510–4517 (2015)CrossRef S.P. Hill, T. Banerjee, T. Dilbeck, K. Hanson, Photon upconversion and photocurrent generation via self-assembly at organic–inorganic interfaces. J. Phys. Chem. Lett. 6(22), 4510–4517 (2015)CrossRef
36.
Zurück zum Zitat T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254(21), 2560–2573 (2010)CrossRef T.N. Singh-Rachford, F.N. Castellano, Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 254(21), 2560–2573 (2010)CrossRef
37.
Zurück zum Zitat D.V. Kozlov, F.N. Castellano, Anti-Stokes delayed fluorescence from metal–organic bichromophores. Chem. Commun. 24, 2860–2861 (2004)CrossRef D.V. Kozlov, F.N. Castellano, Anti-Stokes delayed fluorescence from metal–organic bichromophores. Chem. Commun. 24, 2860–2861 (2004)CrossRef
38.
Zurück zum Zitat S.P. Hill, T. Dilbeck, E. Baduell, K. Hanson, Integrated photon upconversion solar cell via molecular self-assembled bilayers. ACS Energy Lett. 1(1), 3–8 (2016)CrossRef S.P. Hill, T. Dilbeck, E. Baduell, K. Hanson, Integrated photon upconversion solar cell via molecular self-assembled bilayers. ACS Energy Lett. 1(1), 3–8 (2016)CrossRef
39.
Zurück zum Zitat M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115(14), 6382–6390 (1993)CrossRef M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115(14), 6382–6390 (1993)CrossRef
40.
Zurück zum Zitat Y. Zhou, S. Ayad, C. Ruchlin, V. Posey, S.P. Hill, Q. Wu, K. Hanson, Examining the role of acceptor molecule structure in self-assembled bilayers: surface loading, stability, energy transfer, and upconverted emission. Phys. Chem. Chem. Phys. 20(31), 20513–20524 (2018)CrossRef Y. Zhou, S. Ayad, C. Ruchlin, V. Posey, S.P. Hill, Q. Wu, K. Hanson, Examining the role of acceptor molecule structure in self-assembled bilayers: surface loading, stability, energy transfer, and upconverted emission. Phys. Chem. Chem. Phys. 20(31), 20513–20524 (2018)CrossRef
41.
Zurück zum Zitat Y. Zhou, S.P. Hill, K. Hanson, Influence of meta- and para-phosphonated diphenylanthracene on photon upconversion in self-assembled bilayers. J. Photonics Energy 8(11), 1–11 (2018) Y. Zhou, S.P. Hill, K. Hanson, Influence of meta- and para-phosphonated diphenylanthracene on photon upconversion in self-assembled bilayers. J. Photonics Energy 8(11), 1–11 (2018)
42.
Zurück zum Zitat T. Ogawa, N. Yanai, A. Monguzzi, N. Kimizuka, Highly efficient photon upconversion in self-assembled light-harvesting molecular systems. Sci. Rep. 5, 10882 (2015)CrossRef T. Ogawa, N. Yanai, A. Monguzzi, N. Kimizuka, Highly efficient photon upconversion in self-assembled light-harvesting molecular systems. Sci. Rep. 5, 10882 (2015)CrossRef
43.
Zurück zum Zitat S.P. Hill, K. Hanson, Harnessing molecular photon upconversion in a solar cell at sub-solar irradiance: role of the redox mediator. J. Am. Chem. Soc. 139(32), 10988–10991 (2017)CrossRef S.P. Hill, K. Hanson, Harnessing molecular photon upconversion in a solar cell at sub-solar irradiance: role of the redox mediator. J. Am. Chem. Soc. 139(32), 10988–10991 (2017)CrossRef
44.
Zurück zum Zitat S.A. Sapp, C.M. Elliott, C. Contado, S. Caramori, C.A. Bignozzi, Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 124(37), 11215–11222 (2002)CrossRef S.A. Sapp, C.M. Elliott, C. Contado, S. Caramori, C.A. Bignozzi, Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 124(37), 11215–11222 (2002)CrossRef
45.
Zurück zum Zitat E. Mosconi, J.-H. Yum, F. Kessler, C.J. Gómez García, C. Zuccaccia, A. Cinti, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. J. Am. Chem. Soc. 134(47), 19438–19453 (2012)CrossRef E. Mosconi, J.-H. Yum, F. Kessler, C.J. Gómez García, C. Zuccaccia, A. Cinti, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, Cobalt electrolyte/dye interactions in dye-sensitized solar cells: a combined computational and experimental study. J. Am. Chem. Soc. 134(47), 19438–19453 (2012)CrossRef
46.
Zurück zum Zitat T. Dilbeck, S.P. Hill, K. Hanson, Harnessing molecular photon upconversion at sub-solar irradiance using dual sensitized self-assembled trilayers. J. Mater. Chem. A 5(23), 11652–11660 (2017)CrossRef T. Dilbeck, S.P. Hill, K. Hanson, Harnessing molecular photon upconversion at sub-solar irradiance using dual sensitized self-assembled trilayers. J. Mater. Chem. A 5(23), 11652–11660 (2017)CrossRef
47.
Zurück zum Zitat Y. Zhou, C. Ruchlin, A.J. Robb, K. Hanson, Singlet sensitization-enhanced upconversion solar cells via self-assembled trilayers. ACS Energy Lett. 4(6), 1458–1463 (2019)CrossRef Y. Zhou, C. Ruchlin, A.J. Robb, K. Hanson, Singlet sensitization-enhanced upconversion solar cells via self-assembled trilayers. ACS Energy Lett. 4(6), 1458–1463 (2019)CrossRef
48.
Zurück zum Zitat J. Pedrini, A. Monguzzi, F. Meinardi, Cascade sensitization of triplet–triplet annihilation based photon upconversion at sub-solar irradiance. Phys. Chem. Chem. Phys. 20(15), 9745–9750 (2018)CrossRef J. Pedrini, A. Monguzzi, F. Meinardi, Cascade sensitization of triplet–triplet annihilation based photon upconversion at sub-solar irradiance. Phys. Chem. Chem. Phys. 20(15), 9745–9750 (2018)CrossRef
49.
Zurück zum Zitat H. Gliemann, C. Wöll, Epitaxially grown metal-organic frameworks. Mater. Today 15(3), 110–116 (2012)CrossRef H. Gliemann, C. Wöll, Epitaxially grown metal-organic frameworks. Mater. Today 15(3), 110–116 (2012)CrossRef
50.
Zurück zum Zitat S. Ahmad, J. Liu, C. Gong, J. Zhao, L. Sun, Photon up-conversion via epitaxial surface-supported metal–organic framework thin films with enhanced photocurrent. ACS Appl. Energy Mater. 1(2), 249–253 (2018)CrossRef S. Ahmad, J. Liu, C. Gong, J. Zhao, L. Sun, Photon up-conversion via epitaxial surface-supported metal–organic framework thin films with enhanced photocurrent. ACS Appl. Energy Mater. 1(2), 249–253 (2018)CrossRef
51.
Zurück zum Zitat Z. Wang, A. Knebel, S. Grosjean, D. Wagner, S. Bräse, C. Wöll, J. Caro, L. Heinke, Tunable molecular separation by nanoporous membranes. Nat. Commun. 7, 13872–13872 (2016)CrossRef Z. Wang, A. Knebel, S. Grosjean, D. Wagner, S. Bräse, C. Wöll, J. Caro, L. Heinke, Tunable molecular separation by nanoporous membranes. Nat. Commun. 7, 13872–13872 (2016)CrossRef
52.
Zurück zum Zitat J. Lin, X. Hu, P. Zhang, A. Van Rynbach, D.N. Beratan, C.A. Kent, B.P. Mehl, J.M. Papanikolas, T.J. Meyer, W. Lin, S.S. Skourtis, M. Constantinou, Triplet excitation energy dynamics in metal–organic frameworks. J. Phys. Chem. C 117(43), 22250–22259 (2013)CrossRef J. Lin, X. Hu, P. Zhang, A. Van Rynbach, D.N. Beratan, C.A. Kent, B.P. Mehl, J.M. Papanikolas, T.J. Meyer, W. Lin, S.S. Skourtis, M. Constantinou, Triplet excitation energy dynamics in metal–organic frameworks. J. Phys. Chem. C 117(43), 22250–22259 (2013)CrossRef
53.
Zurück zum Zitat C.A. Kent, B.P. Mehl, L. Ma, J.M. Papanikolas, T.J. Meyer, W. Lin, Energy transfer dynamics in metal−organic frameworks. J. Am. Chem. Soc. 132(37), 12767–12769 (2010)CrossRef C.A. Kent, B.P. Mehl, L. Ma, J.M. Papanikolas, T.J. Meyer, W. Lin, Energy transfer dynamics in metal−organic frameworks. J. Am. Chem. Soc. 132(37), 12767–12769 (2010)CrossRef
54.
Zurück zum Zitat T. Morifuji, Y. Takekuma, M. Nagata, Integrated photon upconversion dye-sensitized solar cell by co-adsorption with derivative of Pt–porphyrin and anthracene on mesoporous TiO2. ACS Omega 4(6), 11271–11275 (2019)CrossRef T. Morifuji, Y. Takekuma, M. Nagata, Integrated photon upconversion dye-sensitized solar cell by co-adsorption with derivative of Pt–porphyrin and anthracene on mesoporous TiO2. ACS Omega 4(6), 11271–11275 (2019)CrossRef
55.
Zurück zum Zitat J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3(4), 510–535 (2015)CrossRef J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3(4), 510–535 (2015)CrossRef
56.
Zurück zum Zitat C. Mongin, S. Garakyaraghi, N. Razgoniaeva, M. Zamkov, F.N. Castellano, Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351(6271), 369 (2016)CrossRef C. Mongin, S. Garakyaraghi, N. Razgoniaeva, M. Zamkov, F.N. Castellano, Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351(6271), 369 (2016)CrossRef
57.
Zurück zum Zitat Z. Huang, X. Li, M. Mahboub, K.M. Hanson, V.M. Nichols, H. Le, M.L. Tang, C.J. Bardeen, Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15(8), 5552–5557 (2015)CrossRef Z. Huang, X. Li, M. Mahboub, K.M. Hanson, V.M. Nichols, H. Le, M.L. Tang, C.J. Bardeen, Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15(8), 5552–5557 (2015)CrossRef
58.
Zurück zum Zitat Z. Huang, X. Li, B.D. Yip, J.M. Rubalcava, C.J. Bardeen, M.L. Tang, Nanocrystal size and quantum yield in the upconversion of green to violet light with CdSe and anthracene derivatives. Chem. Mater. 27(21), 7503–7507 (2015)CrossRef Z. Huang, X. Li, B.D. Yip, J.M. Rubalcava, C.J. Bardeen, M.L. Tang, Nanocrystal size and quantum yield in the upconversion of green to violet light with CdSe and anthracene derivatives. Chem. Mater. 27(21), 7503–7507 (2015)CrossRef
59.
Zurück zum Zitat M. Mahboub, Z. Huang, M.L. Tang, Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16(11), 7169–7175 (2016)CrossRef M. Mahboub, Z. Huang, M.L. Tang, Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett. 16(11), 7169–7175 (2016)CrossRef
60.
Zurück zum Zitat A. Ronchi, P. Brazzo, M. Sassi, L. Beverina, J. Pedrini, F. Meinardi, A. Monguzzi, Triplet–triplet annihilation based photon up-conversion in hybrid molecule–semiconductor nanocrystal systems. Phys. Chem. Chem. Phys. 21(23), 12353–12359 (2019)CrossRef A. Ronchi, P. Brazzo, M. Sassi, L. Beverina, J. Pedrini, F. Meinardi, A. Monguzzi, Triplet–triplet annihilation based photon up-conversion in hybrid molecule–semiconductor nanocrystal systems. Phys. Chem. Chem. Phys. 21(23), 12353–12359 (2019)CrossRef
61.
Zurück zum Zitat K. Okumura, K. Mase, N. Yanai, N. Kimizuka, Employing core-shell quantum dots as triplet sensitizers for photon upconversion. Chem. Eur. J. 22(23), 7721–7726 (2016)CrossRef K. Okumura, K. Mase, N. Yanai, N. Kimizuka, Employing core-shell quantum dots as triplet sensitizers for photon upconversion. Chem. Eur. J. 22(23), 7721–7726 (2016)CrossRef
62.
Zurück zum Zitat B. Shan, T.-T. Li, M.K. Brennaman, A. Nayak, L. Wu, T.J. Meyer, Charge transfer from upconverting nanocrystals to semiconducting electrodes: optimizing thermodynamic outputs by electronic energy transfer. J. Am. Chem. Soc. 141(1), 463–471 (2019)CrossRef B. Shan, T.-T. Li, M.K. Brennaman, A. Nayak, L. Wu, T.J. Meyer, Charge transfer from upconverting nanocrystals to semiconducting electrodes: optimizing thermodynamic outputs by electronic energy transfer. J. Am. Chem. Soc. 141(1), 463–471 (2019)CrossRef
63.
Zurück zum Zitat C. Mongin, P. Moroz, M. Zamkov, F.N. Castellano, Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem. 10(2), 225–230 (2018)CrossRef C. Mongin, P. Moroz, M. Zamkov, F.N. Castellano, Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots. Nat. Chem. 10(2), 225–230 (2018)CrossRef
64.
Zurück zum Zitat S. Garakyaraghi, F.N. Castellano, Nanocrystals for triplet sensitization: molecular behavior from quantum-confined materials. Inorg. Chem. 57(5), 2351–2359 (2018)CrossRef S. Garakyaraghi, F.N. Castellano, Nanocrystals for triplet sensitization: molecular behavior from quantum-confined materials. Inorg. Chem. 57(5), 2351–2359 (2018)CrossRef
65.
Zurück zum Zitat R. Rossetti, J.L. Ellison, J.M. Gibson, L.E. Brus, Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 80(9), 4464–4469 (1984)CrossRef R. Rossetti, J.L. Ellison, J.M. Gibson, L.E. Brus, Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 80(9), 4464–4469 (1984)CrossRef
66.
Zurück zum Zitat D. Beery, J.P. Wheeler, A. Arcidiacono, K. Hanson, CdSe quantum dot sensitized molecular photon upconversion solar cells. ACS Appl. Energy Mater. 3(1), 29–37 (2020)CrossRef D. Beery, J.P. Wheeler, A. Arcidiacono, K. Hanson, CdSe quantum dot sensitized molecular photon upconversion solar cells. ACS Appl. Energy Mater. 3(1), 29–37 (2020)CrossRef
67.
Zurück zum Zitat Y. Xie, J. Baillargeon, T.W. Hamann, Kinetics of regeneration and recombination reactions in dye-sensitized solar cells employing cobalt redox shuttles. J. Phys. Chem. C 119(50), 28155–28166 (2015)CrossRef Y. Xie, J. Baillargeon, T.W. Hamann, Kinetics of regeneration and recombination reactions in dye-sensitized solar cells employing cobalt redox shuttles. J. Phys. Chem. C 119(50), 28155–28166 (2015)CrossRef
68.
Zurück zum Zitat S. Chinnathambi, N. Shirahata, Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20(1), 337–355 (2019)CrossRef S. Chinnathambi, N. Shirahata, Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivo imaging. Sci. Technol. Adv. Mater. 20(1), 337–355 (2019)CrossRef
69.
Zurück zum Zitat J.M. Pietryga, Y.-S. Park, J. Lim, A.F. Fidler, W.K. Bae, S. Brovelli, V.I. Klimov, Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116(18), 10513–10622 (2016)CrossRef J.M. Pietryga, Y.-S. Park, J. Lim, A.F. Fidler, W.K. Bae, S. Brovelli, V.I. Klimov, Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116(18), 10513–10622 (2016)CrossRef
70.
Zurück zum Zitat Y.L. Lin, M. Koch, A.N. Brigeman, D.M.E. Freeman, L. Zhao, H. Bronstein, N.C. Giebink, G.D. Scholes, B.P. Rand, Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet-triplet annihilation. Energy Environ. Sci. 10(6), 1465–1475 (2017)CrossRef Y.L. Lin, M. Koch, A.N. Brigeman, D.M.E. Freeman, L. Zhao, H. Bronstein, N.C. Giebink, G.D. Scholes, B.P. Rand, Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet-triplet annihilation. Energy Environ. Sci. 10(6), 1465–1475 (2017)CrossRef
71.
Zurück zum Zitat K.M. Felter, M.C. Fravventura, E. Koster, R.D. Abellon, T.J. Savenije, F.C. Grozema, Solid-state infrared upconversion in perylene diimides followed by direct electron injection. ACS Energy Lett. 5(1), 124–129 (2020)CrossRef K.M. Felter, M.C. Fravventura, E. Koster, R.D. Abellon, T.J. Savenije, F.C. Grozema, Solid-state infrared upconversion in perylene diimides followed by direct electron injection. ACS Energy Lett. 5(1), 124–129 (2020)CrossRef
72.
Zurück zum Zitat L. Frazer, J.K. Gallaher, T.W. Schmidt, Optimizing the efficiency of solar photon upconversion. ACS Energy Lett. 2(6), 1346–1354 (2017)CrossRef L. Frazer, J.K. Gallaher, T.W. Schmidt, Optimizing the efficiency of solar photon upconversion. ACS Energy Lett. 2(6), 1346–1354 (2017)CrossRef
73.
Zurück zum Zitat Y.Y. Cheng, B. Fückel, T. Schulze, R. MacQueen, M. Tayebjee, A. Danos, T. Khoury, R.G. Clady, N. Ekins-Daukes, M. Crossley, B. Stannowski, K. Lips, T. Schmidt, Improving the light-harvesting of second generation solar cells with photochemical upconversion. SPIE 8477 (2012) Y.Y. Cheng, B. Fückel, T. Schulze, R. MacQueen, M. Tayebjee, A. Danos, T. Khoury, R.G. Clady, N. Ekins-Daukes, M. Crossley, B. Stannowski, K. Lips, T. Schmidt, Improving the light-harvesting of second generation solar cells with photochemical upconversion. SPIE 8477 (2012)
74.
Zurück zum Zitat Y.Y. Cheng, B. Fuckel, R.W. MacQueen, T. Khoury, R.G.C.R. Clady, T.F. Schulze, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips, T.W. Schmidt, Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ. Sci. 5(5), 6953–6959 (2012)CrossRef Y.Y. Cheng, B. Fuckel, R.W. MacQueen, T. Khoury, R.G.C.R. Clady, T.F. Schulze, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips, T.W. Schmidt, Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ. Sci. 5(5), 6953–6959 (2012)CrossRef
75.
Zurück zum Zitat T.F. Schulze, J. Czolk, Y.-Y. Cheng, B. Fückel, R.W. MacQueen, T. Khoury, M.J. Crossley, B. Stannowski, K. Lips, U. Lemmer, A. Colsmann, T.W. Schmidt, Efficiency enhancement of organic and thin-film silicon solar cells with photochemical upconversion. J. Phys. Chem. C 116(43), 22794–22801 (2012)CrossRef T.F. Schulze, J. Czolk, Y.-Y. Cheng, B. Fückel, R.W. MacQueen, T. Khoury, M.J. Crossley, B. Stannowski, K. Lips, U. Lemmer, A. Colsmann, T.W. Schmidt, Efficiency enhancement of organic and thin-film silicon solar cells with photochemical upconversion. J. Phys. Chem. C 116(43), 22794–22801 (2012)CrossRef
76.
Zurück zum Zitat A.L. Hagstrom, F. Deng, J.-H. Kim, Enhanced triplet–triplet annihilation upconversion in dual-sensitizer systems: translating broadband light absorption to practical solid-state materials. ACS Photonics 4(1), 127–137 (2017)CrossRef A.L. Hagstrom, F. Deng, J.-H. Kim, Enhanced triplet–triplet annihilation upconversion in dual-sensitizer systems: translating broadband light absorption to practical solid-state materials. ACS Photonics 4(1), 127–137 (2017)CrossRef
77.
Zurück zum Zitat D. Dzebo, K. Moth-Poulsen, B. Albinsson, Robust triplet–triplet annihilation photon upconversion by efficient oxygen scavenging. Photochem. Photobiol. Sci. 16(8), 1327–1334 (2017)CrossRef D. Dzebo, K. Moth-Poulsen, B. Albinsson, Robust triplet–triplet annihilation photon upconversion by efficient oxygen scavenging. Photochem. Photobiol. Sci. 16(8), 1327–1334 (2017)CrossRef
78.
Zurück zum Zitat C. Li, C. Koenigsmann, F. Deng, A. Hagstrom, C.A. Schmuttenmaer, J.-H. Kim, Photocurrent enhancement from solid-state triplet–triplet annihilation upconversion of low-intensity, low-energy photons. ACS Photonics 3(5), 784–790 (2016)CrossRef C. Li, C. Koenigsmann, F. Deng, A. Hagstrom, C.A. Schmuttenmaer, J.-H. Kim, Photocurrent enhancement from solid-state triplet–triplet annihilation upconversion of low-intensity, low-energy photons. ACS Photonics 3(5), 784–790 (2016)CrossRef
79.
Zurück zum Zitat D. Di, L. Yang, J.M. Richter, L. Meraldi, R.M. Altamimi, A.Y. Alyamani, D. Credgington, K.P. Musselman, J.L. MacManus-Driscoll, R.H. Friend, Efficient triplet exciton fusion in molecularly doped polymer light-emitting diodes. Adv. Mater. 29(13), 1605987 (2017)CrossRef D. Di, L. Yang, J.M. Richter, L. Meraldi, R.M. Altamimi, A.Y. Alyamani, D. Credgington, K.P. Musselman, J.L. MacManus-Driscoll, R.H. Friend, Efficient triplet exciton fusion in molecularly doped polymer light-emitting diodes. Adv. Mater. 29(13), 1605987 (2017)CrossRef
80.
Zurück zum Zitat T.F. Schulze, Y.Y. Cheng, B. Fückel, R.W. MacQueen, A. Danos, N.J.L.K. Davis, M.J.Y. Tayebjee, T. Khoury, R.G.C.R. Clady, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips, T.W. Schmidt, Photochemical upconversion enhanced solar cells: effect of a back reflector. Aust. J. Chem. 65(5), 480–485 (2012)CrossRef T.F. Schulze, Y.Y. Cheng, B. Fückel, R.W. MacQueen, A. Danos, N.J.L.K. Davis, M.J.Y. Tayebjee, T. Khoury, R.G.C.R. Clady, N.J. Ekins-Daukes, M.J. Crossley, B. Stannowski, K. Lips, T.W. Schmidt, Photochemical upconversion enhanced solar cells: effect of a back reflector. Aust. J. Chem. 65(5), 480–485 (2012)CrossRef
81.
Zurück zum Zitat T. Schulze, Y.Y. Cheng, T. Khoury, M. Crossley, B. Stannowski, K. Lips, T. Schmidt, Micro-optical design of photochemical upconverters for thin-film solar cells. J. Photonics Energy 3(1), 034598 (2013)CrossRef T. Schulze, Y.Y. Cheng, T. Khoury, M. Crossley, B. Stannowski, K. Lips, T. Schmidt, Micro-optical design of photochemical upconverters for thin-film solar cells. J. Photonics Energy 3(1), 034598 (2013)CrossRef
82.
Zurück zum Zitat A. Monguzzi, S.M. Borisov, J. Pedrini, I. Klimant, M. Salvalaggio, P. Biagini, F. Melchiorre, C. Lelii, F. Meinardi, Efficient broadband triplet–triplet annihilation-assisted photon upconversion at subsolar irradiance in fully organic systems. Adv. Funct. Mater. 25(35), 5617–5624 (2015)CrossRef A. Monguzzi, S.M. Borisov, J. Pedrini, I. Klimant, M. Salvalaggio, P. Biagini, F. Melchiorre, C. Lelii, F. Meinardi, Efficient broadband triplet–triplet annihilation-assisted photon upconversion at subsolar irradiance in fully organic systems. Adv. Funct. Mater. 25(35), 5617–5624 (2015)CrossRef
83.
Zurück zum Zitat Y.Y. Cheng, A. Nattestad, T.F. Schulze, R.W. MacQueen, B. Fuckel, K. Lips, G.G. Wallace, T. Khoury, M.J. Crossley, T.W. Schmidt, Increased upconversion performance for thin film solar cells: a trimolecular composition. Chem. Sci. 7(1), 559–568 (2016)CrossRef Y.Y. Cheng, A. Nattestad, T.F. Schulze, R.W. MacQueen, B. Fuckel, K. Lips, G.G. Wallace, T. Khoury, M.J. Crossley, T.W. Schmidt, Increased upconversion performance for thin film solar cells: a trimolecular composition. Chem. Sci. 7(1), 559–568 (2016)CrossRef
84.
Zurück zum Zitat S. Hoseinkhani, R. Tubino, F. Meinardi, A. Monguzzi, Achieving the photon up-conversion thermodynamic yield upper limit by sensitized triplet–triplet annihilation. Phys. Chem. Chem. Phys. 17(6), 4020–4024 (2015)CrossRef S. Hoseinkhani, R. Tubino, F. Meinardi, A. Monguzzi, Achieving the photon up-conversion thermodynamic yield upper limit by sensitized triplet–triplet annihilation. Phys. Chem. Chem. Phys. 17(6), 4020–4024 (2015)CrossRef
85.
Zurück zum Zitat M.C. DeRosa, R.J. Crutchley, Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234, 351–371 (2002)CrossRef M.C. DeRosa, R.J. Crutchley, Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234, 351–371 (2002)CrossRef
86.
Zurück zum Zitat J.L. Charlton, R. Dabestani, J. Saltiel, Role of triplet-triplet annihilation in anthracene dimerization. J. Am. Chem. Soc. 105(11), 3473–3476 (1983)CrossRef J.L. Charlton, R. Dabestani, J. Saltiel, Role of triplet-triplet annihilation in anthracene dimerization. J. Am. Chem. Soc. 105(11), 3473–3476 (1983)CrossRef
87.
Zurück zum Zitat J. Saltiel, B.W. Atwater, Spin-Statistical Factors in Diffusion-Controlled Reactions. In Advances in Photochemistry (eds D. H. Volman, G. S. Hammond and K. Gollnick). (1988) J. Saltiel, B.W. Atwater, Spin-Statistical Factors in Diffusion-Controlled Reactions. In Advances in Photochemistry (eds D. H. Volman, G. S. Hammond and K. Gollnick). (1988)
88.
Zurück zum Zitat A.J. McLean, T.G. Truscott, Faraday communications. Efficiency of triplet-photosensitised singlet oxygen generation in benzene. J. Chem. Soc. Faraday Trans. 86(14), 2671–2672 (1990)CrossRef A.J. McLean, T.G. Truscott, Faraday communications. Efficiency of triplet-photosensitised singlet oxygen generation in benzene. J. Chem. Soc. Faraday Trans. 86(14), 2671–2672 (1990)CrossRef
89.
Zurück zum Zitat S.M. Bachilo, R.B. Weisman, Determination of triplet quantum yields from triplet−triplet annihilation fluorescence. Chem. A Eur. J. 104(33), 7711–7714 (2000) S.M. Bachilo, R.B. Weisman, Determination of triplet quantum yields from triplet−triplet annihilation fluorescence. Chem. A Eur. J. 104(33), 7711–7714 (2000)
90.
Zurück zum Zitat B.M. Klahr, T.W. Hamann, Performance enhancement and limitations of cobalt bipyridyl redox shuttles in dye-sensitized solar cells. J. Phys. Chem. C 113(31), 14040–14045 (2009)CrossRef B.M. Klahr, T.W. Hamann, Performance enhancement and limitations of cobalt bipyridyl redox shuttles in dye-sensitized solar cells. J. Phys. Chem. C 113(31), 14040–14045 (2009)CrossRef
91.
Zurück zum Zitat P.M. Sommeling, B.C. O’Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, J.M. Kroon, J.A.M. van Roosmalen, Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J. Phys. Chem. B 110(39), 19191–19197 (2006)CrossRef P.M. Sommeling, B.C. O’Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, J.M. Kroon, J.A.M. van Roosmalen, Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J. Phys. Chem. B 110(39), 19191–19197 (2006)CrossRef
92.
Zurück zum Zitat R. Englman, J. Jortner, The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18(2), 145–164 (1970)CrossRef R. Englman, J. Jortner, The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18(2), 145–164 (1970)CrossRef
93.
Zurück zum Zitat K.F. Freed, J. Jortner, Multiphonon processes in the nonradiative decay of large molecules. J. Chem. Phys. 52(12), 6272–6291 (1970)CrossRef K.F. Freed, J. Jortner, Multiphonon processes in the nonradiative decay of large molecules. J. Chem. Phys. 52(12), 6272–6291 (1970)CrossRef
94.
Zurück zum Zitat W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)CrossRef W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)CrossRef
95.
Zurück zum Zitat S.K. Balasingam, M. Lee, M.G. Kang, Y. Jun, Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum. Chem. Commun. 49(15), 1471–1487 (2013)CrossRef S.K. Balasingam, M. Lee, M.G. Kang, Y. Jun, Improvement of dye-sensitized solar cells toward the broader light harvesting of the solar spectrum. Chem. Commun. 49(15), 1471–1487 (2013)CrossRef
96.
Zurück zum Zitat K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-I. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51(88), 15894–15897 (2015)CrossRef K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-I. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem. Commun. 51(88), 15894–15897 (2015)CrossRef
97.
Zurück zum Zitat W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)CrossRef W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)CrossRef
Metadaten
Titel
Electronically Coupled TTA-UC Solar Cells
verfasst von
Yan Zhou
Kenneth Hanson
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70358-5_11

Neuer Inhalt