Skip to main content

2022 | OriginalPaper | Buchkapitel

12. Rare-Earth Ion-Based Photon Up-Conversion for Transmission-Loss Reduction in Solar Cells

verfasst von : Hai-Qiao Wang, Andres Osvet, Miroslaw Batentschuk, Christoph J. Brabec

Erschienen in: Emerging Strategies to Reduce Transmission and Thermalization Losses in Solar Cells

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Photon up-conversion (UC) describes an anti-Stokes emission process, in which a luminophor emits one higher energy photon after being excited by multiple low-energy photons, among which rare-earth (RE) ion-doped materials present promising UC properties due to unique electron configuration. RE UC materials have been widely studied in solar cells with the purpose to reduce transmission losses, i.e., achieve wide/full solar spectral harvesting and high-power conversion efficiency, by converting unutilized sub-bandgap photons into sensitive resonant photons. This chapter exclusively focuses on RE-doped UC materials and their applications in solar cells. The RE-based UC photophysics, UC enhancement, and applications in solar cells will be reviewed and briefly discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L.C. Hirst, N.J. Ekins-Daukes, Fundamental losses in solar cells. Prog. Photovolt. Res. Appl. 19, 286–293 (2011)CrossRef L.C. Hirst, N.J. Ekins-Daukes, Fundamental losses in solar cells. Prog. Photovolt. Res. Appl. 19, 286–293 (2011)CrossRef
2.
Zurück zum Zitat W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRef W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)CrossRef
3.
Zurück zum Zitat H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, C.J. Brabec, Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 23, 2675–2680 (2011b)CrossRef H.-Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, C.J. Brabec, Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 23, 2675–2680 (2011b)CrossRef
4.
Zurück zum Zitat J. de Wild, A. Meijerink, J.K. Rath, W.G.J.H.M. van Sark, R.E.I. Schropp, Upconverter solar cells: materials and applications. Energy Environ. Sci. 4, 4835–4848 (2011)CrossRef J. de Wild, A. Meijerink, J.K. Rath, W.G.J.H.M. van Sark, R.E.I. Schropp, Upconverter solar cells: materials and applications. Energy Environ. Sci. 4, 4835–4848 (2011)CrossRef
5.
Zurück zum Zitat D. Wöhrle, D. Meissner, Organic solar cells. Adv. Mater. 3, 129–138 (1991)CrossRef D. Wöhrle, D. Meissner, Organic solar cells. Adv. Mater. 3, 129–138 (1991)CrossRef
6.
Zurück zum Zitat Y. Cai, L. Huo, Y. Sun, Recent advances in wide-bandgap photovoltaic polymers. Adv. Mater. 29, 1605437 (2017)CrossRef Y. Cai, L. Huo, Y. Sun, Recent advances in wide-bandgap photovoltaic polymers. Adv. Mater. 29, 1605437 (2017)CrossRef
7.
Zurück zum Zitat G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009)CrossRef G. Dennler, M.C. Scharber, C.J. Brabec, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323–1338 (2009)CrossRef
8.
Zurück zum Zitat H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2011)CrossRef H. Hoppe, N.S. Sariciftci, Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2011)CrossRef
9.
Zurück zum Zitat T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Organic tandem solar cells: a review. Energy Environ. Sci. 2, 347–363 (2009)CrossRef T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Organic tandem solar cells: a review. Energy Environ. Sci. 2, 347–363 (2009)CrossRef
10.
Zurück zum Zitat T. Ameri, N. Li, C.J. Brabec, Highly efficient organic tandem solar cells: a follow up review. Energy Environ. Sci. 6, 2390–2413 (2013)CrossRef T. Ameri, N. Li, C.J. Brabec, Highly efficient organic tandem solar cells: a follow up review. Energy Environ. Sci. 6, 2390–2413 (2013)CrossRef
11.
Zurück zum Zitat R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B. de Boer, Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym. Rev. 48, 531–582 (2008)CrossRef R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom, B. de Boer, Small bandgap polymers for organic solar cells (polymer material development in the last 5 years). Polym. Rev. 48, 531–582 (2008)CrossRef
12.
Zurück zum Zitat T. Dilbeck, K. Hanson, Molecular photon upconversion solar cells using multilayer assemblies: progress and prospects. J. Phys. Chem. Lett. 9, 5810–5821 (2018)CrossRef T. Dilbeck, K. Hanson, Molecular photon upconversion solar cells using multilayer assemblies: progress and prospects. J. Phys. Chem. Lett. 9, 5810–5821 (2018)CrossRef
13.
Zurück zum Zitat A.J. Nozik, J. Miller, Introduction to solar photon conversion. Chem. Rev. 110, 6443–6445 (2010)CrossRef A.J. Nozik, J. Miller, Introduction to solar photon conversion. Chem. Rev. 110, 6443–6445 (2010)CrossRef
14.
Zurück zum Zitat X. Xie, X. Liu, Upconversion goes broadband. Nat. Mater. 11, 842–843 (2012)CrossRef X. Xie, X. Liu, Upconversion goes broadband. Nat. Mater. 11, 842–843 (2012)CrossRef
15.
Zurück zum Zitat C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010)CrossRef C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010)CrossRef
16.
Zurück zum Zitat N. Bloembergen, Solid state infrared quantum counters. Phys. Rev. Lett. 2, 84–85 (1959)CrossRef N. Bloembergen, Solid state infrared quantum counters. Phys. Rev. Lett. 2, 84–85 (1959)CrossRef
17.
Zurück zum Zitat X. Liu, C.-H. Yan, J.A. Capobianco, Photon upconversion nanomaterials. Chem. Soc. Rev. 44, 1299–1301 (2015)CrossRef X. Liu, C.-H. Yan, J.A. Capobianco, Photon upconversion nanomaterials. Chem. Soc. Rev. 44, 1299–1301 (2015)CrossRef
18.
Zurück zum Zitat F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)CrossRef F. Auzel, Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)CrossRef
19.
Zurück zum Zitat V. Gray, K. Moth-Poulsen, B. Albinsson, M. Abrahamsson, Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362, 54–71 (2018)CrossRef V. Gray, K. Moth-Poulsen, B. Albinsson, M. Abrahamsson, Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362, 54–71 (2018)CrossRef
20.
Zurück zum Zitat A. Nonat, T. Fix, 6—photon converters for photovoltaics, in Advanced Micro- and Nanomaterials for Photovoltaics, ed. by D. Ginley, T. Fix, (Elsevier, 2019), pp. 121–151CrossRef A. Nonat, T. Fix, 6—photon converters for photovoltaics, in Advanced Micro- and Nanomaterials for Photovoltaics, ed. by D. Ginley, T. Fix, (Elsevier, 2019), pp. 121–151CrossRef
21.
Zurück zum Zitat J.A. Briggs, A.C. Atre, J.A. Dionne, Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits. J. Appl. Phys. 113, 124509 (2013)CrossRef J.A. Briggs, A.C. Atre, J.A. Dionne, Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits. J. Appl. Phys. 113, 124509 (2013)CrossRef
22.
Zurück zum Zitat T. Trupke, A. Shalav, B.S. Richards, P. Würfel, M.A. Green, Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006)CrossRef T. Trupke, A. Shalav, B.S. Richards, P. Würfel, M.A. Green, Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006)CrossRef
23.
Zurück zum Zitat G. Chen, J. Shen, T.Y. Ohulchanskyy, N.J. Patel, A. Kutikov, Z. Li, J. Song, R.K. Pandey, H. Ågren, P.N. Prasad, G. Han, (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012)CrossRef G. Chen, J. Shen, T.Y. Ohulchanskyy, N.J. Patel, A. Kutikov, Z. Li, J. Song, R.K. Pandey, H. Ågren, P.N. Prasad, G. Han, (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 6, 8280–8287 (2012)CrossRef
24.
Zurück zum Zitat P. Gibart, F. Auzel, J.-C. Guillaume, K. Zahraman, Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion. Jpn. J. Appl. Phys. 35, 4401–4402 (1996)CrossRef P. Gibart, F. Auzel, J.-C. Guillaume, K. Zahraman, Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion. Jpn. J. Appl. Phys. 35, 4401–4402 (1996)CrossRef
25.
Zurück zum Zitat G. Liu, Electronic energy level structure, in Spectroscopic Properties of Rare Earths in Optical Materials, ed. by R. Hull, J. Parisi, R. M. Osgood, H. Warlimont, G. Liu, B. Jacquier, (Springer, Berlin, Heidelberg, 2005), pp. 1–94 G. Liu, Electronic energy level structure, in Spectroscopic Properties of Rare Earths in Optical Materials, ed. by R. Hull, J. Parisi, R. M. Osgood, H. Warlimont, G. Liu, B. Jacquier, (Springer, Berlin, Heidelberg, 2005), pp. 1–94
26.
Zurück zum Zitat S.V. Eliseeva, J.C.G. Bunzli, Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010)CrossRef S.V. Eliseeva, J.C.G. Bunzli, Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 39, 189–227 (2010)CrossRef
27.
Zurück zum Zitat F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10, 968–973 (2011a)CrossRef F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu, Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater. 10, 968–973 (2011a)CrossRef
28.
Zurück zum Zitat O. Ehlert, R. Thomann, M. Darbandi, T. Nann, A four-color colloidal multiplexing nanoparticle system. ACS Nano 2, 120–124 (2008)CrossRef O. Ehlert, R. Thomann, M. Darbandi, T. Nann, A four-color colloidal multiplexing nanoparticle system. ACS Nano 2, 120–124 (2008)CrossRef
29.
Zurück zum Zitat J.C. Boyer, F.C.J.M. van Veggel, Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010)CrossRef J.C. Boyer, F.C.J.M. van Veggel, Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2, 1417–1419 (2010)CrossRef
30.
Zurück zum Zitat G.A. Crosby, J.N. Demas, Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971)CrossRef G.A. Crosby, J.N. Demas, Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971)CrossRef
31.
Zurück zum Zitat Y. Zorenko, V. Gorbenko, T. Zorenko, K. Paprocki, A. Osvet, M. Batentschuk, C. Brabec, A. Fedorov, Enhancement of up-conversion luminescence in Er,Ce doped Y3−xYbxAG single crystalline films. J. Lumin. 169, 816–821 (2016)CrossRef Y. Zorenko, V. Gorbenko, T. Zorenko, K. Paprocki, A. Osvet, M. Batentschuk, C. Brabec, A. Fedorov, Enhancement of up-conversion luminescence in Er,Ce doped Y3−xYbxAG single crystalline films. J. Lumin. 169, 816–821 (2016)CrossRef
32.
Zurück zum Zitat F. Wang, X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008)CrossRef F. Wang, X. Liu, Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008)CrossRef
33.
Zurück zum Zitat D. Li, H. Ågren, G. Chen, Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials. Dalton Trans. 47, 8526–8537 (2018)CrossRef D. Li, H. Ågren, G. Chen, Near infrared harvesting dye-sensitized solar cells enabled by rare-earth upconversion materials. Dalton Trans. 47, 8526–8537 (2018)CrossRef
34.
Zurück zum Zitat H.-Q. Wang, M. Mačković, A. Osvet, I. Litzov, E. Epelbaum, A. Stiegelschmitt, M. Batentschuk, E. Spiecker, C.J. Brabec, A new crystal phase molybdate Yb2Mo4O15: the synthesis and upconversion properties. Part. Part. Syst. Charact. 32, 340–346 (2015)CrossRef H.-Q. Wang, M. Mačković, A. Osvet, I. Litzov, E. Epelbaum, A. Stiegelschmitt, M. Batentschuk, E. Spiecker, C.J. Brabec, A new crystal phase molybdate Yb2Mo4O15: the synthesis and upconversion properties. Part. Part. Syst. Charact. 32, 340–346 (2015)CrossRef
35.
Zurück zum Zitat K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244–1251 (2004)CrossRef K.W. Krämer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244–1251 (2004)CrossRef
36.
Zurück zum Zitat I. Etchart, Metal Oxides for Efficient Infrared to Visible Upconversion. University of Cambrige Ph.D. Thesis (2010) I. Etchart, Metal Oxides for Efficient Infrared to Visible Upconversion. University of Cambrige Ph.D. Thesis (2010)
37.
Zurück zum Zitat A. Nadort, J. Zhao, E.M. Goldys, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8, 13099–13130 (2016)CrossRef A. Nadort, J. Zhao, E.M. Goldys, Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8, 13099–13130 (2016)CrossRef
38.
Zurück zum Zitat J.H.V. Vleck, The puzzle of rare-earth spectra in solids. J. Phys. Chem. 41, 67–80 (1937)CrossRef J.H.V. Vleck, The puzzle of rare-earth spectra in solids. J. Phys. Chem. 41, 67–80 (1937)CrossRef
39.
Zurück zum Zitat H.-Q. Wang, T. Nann, Book Chapter: Upconverting nanoparticles, in Springer Book: Lanthanide Luminescence, vol. 7, (2010), pp. 115–132CrossRef H.-Q. Wang, T. Nann, Book Chapter: Upconverting nanoparticles, in Springer Book: Lanthanide Luminescence, vol. 7, (2010), pp. 115–132CrossRef
40.
Zurück zum Zitat J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3, 510–535 (2015)CrossRef J.C. Goldschmidt, S. Fischer, Upconversion for photovoltaics—a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3, 510–535 (2015)CrossRef
41.
Zurück zum Zitat S. Heer, K. Kömpe, H.-U. Güdel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004)CrossRef S. Heer, K. Kömpe, H.-U. Güdel, M. Haase, Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004)CrossRef
42.
Zurück zum Zitat H. Dong, L.-D. Sun, C.-H. Yan, Basic understanding of the lanthanide related upconversion emissions. Nanoscale 5, 5703–5714 (2013)CrossRef H. Dong, L.-D. Sun, C.-H. Yan, Basic understanding of the lanthanide related upconversion emissions. Nanoscale 5, 5703–5714 (2013)CrossRef
43.
Zurück zum Zitat H.-Q. Wang, T. Nann, Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 3, 3804–3808 (2009)CrossRef H.-Q. Wang, T. Nann, Monodisperse upconverting nanocrystals by microwave-assisted synthesis. ACS Nano 3, 3804–3808 (2009)CrossRef
44.
Zurück zum Zitat Z. Li, Y. Zhang, S. Jiang, Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765–4769 (2008)CrossRef Z. Li, Y. Zhang, S. Jiang, Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765–4769 (2008)CrossRef
45.
Zurück zum Zitat Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong, H. Zhang, Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: excitation power density and surface dependence. J. Phys. Chem. C 113, 7164–7169 (2009)CrossRef Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong, H. Zhang, Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: excitation power density and surface dependence. J. Phys. Chem. C 113, 7164–7169 (2009)CrossRef
46.
Zurück zum Zitat H.-S. Qian, Y. Zhang, Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 24, 12123–12125 (2008)CrossRef H.-S. Qian, Y. Zhang, Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 24, 12123–12125 (2008)CrossRef
47.
Zurück zum Zitat G.-S. Yi, G.-M. Chow, Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341–343 (2007)CrossRef G.-S. Yi, G.-M. Chow, Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341–343 (2007)CrossRef
48.
Zurück zum Zitat F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, D. Zhao, Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 12, 2852–2858 (2012a)CrossRef F. Zhang, R. Che, X. Li, C. Yao, J. Yang, D. Shen, P. Hu, W. Li, D. Zhao, Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 12, 2852–2858 (2012a)CrossRef
49.
Zurück zum Zitat X. Li, D. Shen, J. Yang, C. Yao, R. Che, F. Zhang, D. Zhao, Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 25, 106–112 (2013)CrossRef X. Li, D. Shen, J. Yang, C. Yao, R. Che, F. Zhang, D. Zhao, Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 25, 106–112 (2013)CrossRef
50.
Zurück zum Zitat Z. Li, W. Park, G. Zorzetto, J.S. Lemaire, C.J. Summers, Synthesis protocols for δ-doped NaYF4:Yb,Er. Chem. Mater. 26, 1770–1778 (2014)CrossRef Z. Li, W. Park, G. Zorzetto, J.S. Lemaire, C.J. Summers, Synthesis protocols for δ-doped NaYF4:Yb,Er. Chem. Mater. 26, 1770–1778 (2014)CrossRef
51.
Zurück zum Zitat H. Zhang, Y. Li, I.A. Ivanov, Y. Qu, Y. Huang, X. Duan, Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 49, 2865–2868 (2010)CrossRef H. Zhang, Y. Li, I.A. Ivanov, Y. Qu, Y. Huang, X. Duan, Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 49, 2865–2868 (2010)CrossRef
52.
Zurück zum Zitat S.P. Madsen, J. Christiansen, R.E. Christiansen, J. Vester-Petersen, S.H. Møller, H. Lakhotiya, A. Nazir, E. Eriksen, S. Roesgaard, O. Sigmund, J.S. Lissau, E. Destouesse, M. Madsen, B. Julsgaard, P. Balling, Improving the efficiency of upconversion by light concentration using nanoparticle design. J. Phys. D. Appl. Phys. 53, 073001 (2019)CrossRef S.P. Madsen, J. Christiansen, R.E. Christiansen, J. Vester-Petersen, S.H. Møller, H. Lakhotiya, A. Nazir, E. Eriksen, S. Roesgaard, O. Sigmund, J.S. Lissau, E. Destouesse, M. Madsen, B. Julsgaard, P. Balling, Improving the efficiency of upconversion by light concentration using nanoparticle design. J. Phys. D. Appl. Phys. 53, 073001 (2019)CrossRef
53.
Zurück zum Zitat W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I.M. Kennedy, E.M. Goldys, Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures. Nanotechnology 22, 325604 (2011)CrossRef W. Deng, L. Sudheendra, J. Zhao, J. Fu, D. Jin, I.M. Kennedy, E.M. Goldys, Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures. Nanotechnology 22, 325604 (2011)CrossRef
54.
Zurück zum Zitat J.H. Lin, H.Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, C.C. Hsu, Giant enhancement of upconversion fluorescence of NaYF4:Yb3+,Tm3+ nanocrystals with resonant waveguide grating substrate. ACS Photonics 2, 530–536 (2015)CrossRef J.H. Lin, H.Y. Liou, C.-D. Wang, C.-Y. Tseng, C.-T. Lee, C.-C. Ting, H.-C. Kan, C.C. Hsu, Giant enhancement of upconversion fluorescence of NaYF4:Yb3+,Tm3+ nanocrystals with resonant waveguide grating substrate. ACS Photonics 2, 530–536 (2015)CrossRef
55.
Zurück zum Zitat W. Zou, C. Visser, J.A. Maduro, M.S. Pshenichnikov, J.C. Hummelen, Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 6, 560–564 (2012)CrossRef W. Zou, C. Visser, J.A. Maduro, M.S. Pshenichnikov, J.C. Hummelen, Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 6, 560–564 (2012)CrossRef
56.
Zurück zum Zitat G. Chen, J. Damasco, H. Qiu, W. Shao, T.Y. Ohulchanskyy, R.R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, P.N. Prasad, Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 15, 7400–7407 (2015a)CrossRef G. Chen, J. Damasco, H. Qiu, W. Shao, T.Y. Ohulchanskyy, R.R. Valiev, X. Wu, G. Han, Y. Wang, C. Yang, H. Ågren, P.N. Prasad, Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 15, 7400–7407 (2015a)CrossRef
57.
Zurück zum Zitat J.F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K.W. Krämer, C. Reinhard, H.U. Güdel, Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111–1130 (2005)CrossRef J.F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K.W. Krämer, C. Reinhard, H.U. Güdel, Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111–1130 (2005)CrossRef
58.
Zurück zum Zitat Y. Zhang, J.D. Lin, V. Vijayaragavan, K.K. Bhakoo, T.T.Y. Tan, Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 48, 10322–10324 (2012b)CrossRef Y. Zhang, J.D. Lin, V. Vijayaragavan, K.K. Bhakoo, T.T.Y. Tan, Tuning sub-10 nm single-phase NaMnF3 nanocrystals as ultrasensitive hosts for pure intense fluorescence and excellent T1 magnetic resonance imaging. Chem. Commun. 48, 10322–10324 (2012b)CrossRef
59.
Zurück zum Zitat D. Gao, X. Zhang, W. Gao, Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening. ACS Appl. Mater. Interfaces 5, 9732–9739 (2013)CrossRef D. Gao, X. Zhang, W. Gao, Formation of bundle-shaped β-NaYF4 upconversion microtubes via Ostwald ripening. ACS Appl. Mater. Interfaces 5, 9732–9739 (2013)CrossRef
60.
Zurück zum Zitat Z. Wu, M. Lin, S. Liang, Y. Liu, H. Zhang, B. Yang, Hot-injection synthesis of manganese-ion-doped NaYF4:Yb,Er nanocrystals with red up-converting emission and tunable diameter. Part. Part. Syst. Charact. 30, 311–315 (2013)CrossRef Z. Wu, M. Lin, S. Liang, Y. Liu, H. Zhang, B. Yang, Hot-injection synthesis of manganese-ion-doped NaYF4:Yb,Er nanocrystals with red up-converting emission and tunable diameter. Part. Part. Syst. Charact. 30, 311–315 (2013)CrossRef
61.
Zurück zum Zitat L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K.R. Kittilstved, A. Aebischer, J.-C.G. Bünzli, A. Hauser, C. Piguet, Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex. Angew. Chem. Int. Ed. 50, 4108–4112 (2011)CrossRef L. Aboshyan-Sorgho, C. Besnard, P. Pattison, K.R. Kittilstved, A. Aebischer, J.-C.G. Bünzli, A. Hauser, C. Piguet, Near-infrared→visible light upconversion in a molecular trinuclear d-f-d complex. Angew. Chem. Int. Ed. 50, 4108–4112 (2011)CrossRef
62.
Zurück zum Zitat L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, C. Piguet, Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes. Coord. Chem. Rev. 256, 1644–1663 (2012)CrossRef L. Aboshyan-Sorgho, M. Cantuel, S. Petoud, A. Hauser, C. Piguet, Optical sensitization and upconversion in discrete polynuclear chromium-lanthanide complexes. Coord. Chem. Rev. 256, 1644–1663 (2012)CrossRef
63.
Zurück zum Zitat S. Ye, E.H. Song, E. Ma, S.J. Zhang, J. Wang, X.Y. Chen, Q.Y. Zhang, J.R. Qiu, Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14:Cr3+,Yb3+,Er3+. Opt. Mater. Express 4, 638–648 (2014) S. Ye, E.H. Song, E. Ma, S.J. Zhang, J. Wang, X.Y. Chen, Q.Y. Zhang, J.R. Qiu, Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14:Cr3+,Yb3+,Er3+. Opt. Mater. Express 4, 638–648 (2014)
64.
Zurück zum Zitat Y. Takeda, S. Mizuno, H.N. Luitel, T. Tani, A broadband-sensitive upconverter La(Ga0.5Sc0.5)O3:Er,Ni,Nb for crystalline silicon solar cells. Appl. Phys. Lett. 108, 043901 (2016)CrossRef Y. Takeda, S. Mizuno, H.N. Luitel, T. Tani, A broadband-sensitive upconverter La(Ga0.5Sc0.5)O3:Er,Ni,Nb for crystalline silicon solar cells. Appl. Phys. Lett. 108, 043901 (2016)CrossRef
65.
Zurück zum Zitat H. Liu, C.T. Xu, G. Dumlupinar, O.B. Jensen, P.E. Andersen, S. Andersson-Engels, Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power. Nanoscale 5, 10034–10040 (2013)CrossRef H. Liu, C.T. Xu, G. Dumlupinar, O.B. Jensen, P.E. Andersen, S. Andersson-Engels, Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power. Nanoscale 5, 10034–10040 (2013)CrossRef
66.
Zurück zum Zitat Z. Chen, W. Cui, S. Kang, H. Zhang, G. Dong, C. Jiang, S. Zhou, J. Qiu, Fast-slow red upconversion fluorescence modulation from Ho3+-doped glass ceramics upon two-wavelength excitation. Adv. Opt. Mater. 5, 1600554 (2017)CrossRef Z. Chen, W. Cui, S. Kang, H. Zhang, G. Dong, C. Jiang, S. Zhou, J. Qiu, Fast-slow red upconversion fluorescence modulation from Ho3+-doped glass ceramics upon two-wavelength excitation. Adv. Opt. Mater. 5, 1600554 (2017)CrossRef
67.
Zurück zum Zitat Z. Chen, G. Wu, H. Jia, K. Sharafudeen, W. Dai, X. Zhang, S. Zeng, J. Liu, R. Wei, S. Lv, G. Dong, J. Qiu, Improved up-conversion luminescence from Er3+:LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation. J. Phys. Chem. C 119, 24056–24061 (2015c)CrossRef Z. Chen, G. Wu, H. Jia, K. Sharafudeen, W. Dai, X. Zhang, S. Zeng, J. Liu, R. Wei, S. Lv, G. Dong, J. Qiu, Improved up-conversion luminescence from Er3+:LaF3 nanocrystals embedded in oxyfluoride glass ceramics via simultaneous triwavelength excitation. J. Phys. Chem. C 119, 24056–24061 (2015c)CrossRef
68.
Zurück zum Zitat V. Saxena, Phosphors for Solar-Cells-tb-Doped Lanthanum Fluoride and th-Doped Calcium Tungstate (Council Scientific Industrial Research Publ & Info Directorate, New Delhi, 1983), pp. 306–307 V. Saxena, Phosphors for Solar-Cells-tb-Doped Lanthanum Fluoride and th-Doped Calcium Tungstate (Council Scientific Industrial Research Publ & Info Directorate, New Delhi, 1983), pp. 306–307
69.
Zurück zum Zitat A. Shalav, B.S. Richards, T. Trupke, K.W. Krämer, H.U. Güdel, Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 86, 013505 (2005)CrossRef A. Shalav, B.S. Richards, T. Trupke, K.W. Krämer, H.U. Güdel, Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 86, 013505 (2005)CrossRef
70.
Zurück zum Zitat S. Fischer, E. Favilla, M. Tonelli, J.C. Goldschmidt, Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter. Sol. Energy Mater. Sol. Cells 136, 127–134 (2015)CrossRef S. Fischer, E. Favilla, M. Tonelli, J.C. Goldschmidt, Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter. Sol. Energy Mater. Sol. Cells 136, 127–134 (2015)CrossRef
71.
Zurück zum Zitat F. Lahoz, Ho3+-doped nanophase glass ceramics for efficiency enhancement in silicon solar cells. Opt. Lett. 33, 2982–2984 (2008)CrossRef F. Lahoz, Ho3+-doped nanophase glass ceramics for efficiency enhancement in silicon solar cells. Opt. Lett. 33, 2982–2984 (2008)CrossRef
72.
Zurück zum Zitat F. Lahoz, C. Pérez-Rodríguez, S.E. Hernández, I.R. Martín, V. Lavín, U.R. Rodríguez-Mendoza, Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells. Sol. Energy Mater. Sol. Cells 95, 1671–1677 (2011)CrossRef F. Lahoz, C. Pérez-Rodríguez, S.E. Hernández, I.R. Martín, V. Lavín, U.R. Rodríguez-Mendoza, Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells. Sol. Energy Mater. Sol. Cells 95, 1671–1677 (2011)CrossRef
73.
Zurück zum Zitat J. de Wild, J.K. Rath, A. Meijerink, W.G.J.H.M. van Sark, R.E.I. Schropp, Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors. Sol. Energy Mater. Sol. Cells 94, 2395–2398 (2010)CrossRef J. de Wild, J.K. Rath, A. Meijerink, W.G.J.H.M. van Sark, R.E.I. Schropp, Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors. Sol. Energy Mater. Sol. Cells 94, 2395–2398 (2010)CrossRef
74.
Zurück zum Zitat M. Takei, Conductive paste for solar cell, Pat. Nr. JP20100099623 20100423 (A) (2011) M. Takei, Conductive paste for solar cell, Pat. Nr. JP20100099623 20100423 (A) (2011)
75.
Zurück zum Zitat C. Miao, T. Liu, Y. Zhu, Q. Dai, W. Xu, L. Xu, S. Xu, Y. Zhao, H. Song, Super-intense white upconversion emission of Yb2O3 polycrystals and its application on luminescence converter of dye-sensitized solar cells. Opt. Lett. 38, 3340–3343 (2013)CrossRef C. Miao, T. Liu, Y. Zhu, Q. Dai, W. Xu, L. Xu, S. Xu, Y. Zhao, H. Song, Super-intense white upconversion emission of Yb2O3 polycrystals and its application on luminescence converter of dye-sensitized solar cells. Opt. Lett. 38, 3340–3343 (2013)CrossRef
76.
Zurück zum Zitat G.B. Shan, G.P. Demopoulos, Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv. Mater. 22, 4373–4377 (2010)CrossRef G.B. Shan, G.P. Demopoulos, Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv. Mater. 22, 4373–4377 (2010)CrossRef
77.
Zurück zum Zitat Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, X.-Z. Zhao, Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles. Nanoscale 6, 2052–2055 (2014)CrossRef Z. Zhou, J. Wang, F. Nan, C. Bu, Z. Yu, W. Liu, S. Guo, H. Hu, X.-Z. Zhao, Upconversion induced enhancement of dye sensitized solar cells based on core-shell structured β-NaYF4:Er3+, Yb3+@SiO2 nanoparticles. Nanoscale 6, 2052–2055 (2014)CrossRef
78.
Zurück zum Zitat L. Liang, Y. Liu, C. Bu, K. Guo, W. Sun, N. Huang, T. Peng, B. Sebo, M. Pan, W. Liu, S. Guo, X.-Z. Zhao, Highly uniform, bifunctional core/double-shell-structured β-NaYF4:Er3+, Yb3+ @ SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv. Mater. 25, 2174–2180 (2013)CrossRef L. Liang, Y. Liu, C. Bu, K. Guo, W. Sun, N. Huang, T. Peng, B. Sebo, M. Pan, W. Liu, S. Guo, X.-Z. Zhao, Highly uniform, bifunctional core/double-shell-structured β-NaYF4:Er3+, Yb3+ @ SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells. Adv. Mater. 25, 2174–2180 (2013)CrossRef
79.
Zurück zum Zitat C. Yuan, G. Chen, P.N. Prasad, T.Y. Ohulchanskyy, Z. Ning, H. Tian, L. Sun, H. Ågren, Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. J. Mater. Chem. 22, 16709–16713 (2012)CrossRef C. Yuan, G. Chen, P.N. Prasad, T.Y. Ohulchanskyy, Z. Ning, H. Tian, L. Sun, H. Ågren, Use of colloidal upconversion nanocrystals for energy relay solar cell light harvesting in the near-infrared region. J. Mater. Chem. 22, 16709–16713 (2012)CrossRef
80.
Zurück zum Zitat G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells towards 15% energy-conversion efficiency. Adv. Mater. 20, 579–583 (2008)CrossRef G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C.J. Brabec, Design rules for donors in bulk-heterojunction tandem solar cells towards 15% energy-conversion efficiency. Adv. Mater. 20, 579–583 (2008)CrossRef
81.
Zurück zum Zitat W. Chen, Y. Hou, A. Osvet, F. Guo, P. Kubis, M. Batentschuk, B. Winter, E. Spiecker, K. Forberich, C.J. Brabec, Sub-bandgap photon harvesting for organic solar cells via integrating up-conversion nanophosphors. Org. Electron. 19, 113–119 (2015b)CrossRef W. Chen, Y. Hou, A. Osvet, F. Guo, P. Kubis, M. Batentschuk, B. Winter, E. Spiecker, K. Forberich, C.J. Brabec, Sub-bandgap photon harvesting for organic solar cells via integrating up-conversion nanophosphors. Org. Electron. 19, 113–119 (2015b)CrossRef
82.
Zurück zum Zitat H.-Q. Wang, T. Stubhan, A. Osvet, I. Litzov, C.J. Brabec, Up-conversion semiconducting MoO3:Yb/Er nanocomposites as buffer layer in organic solar cells. Sol. Energy Mater. Sol. Cells 105, 196–201 (2012)CrossRef H.-Q. Wang, T. Stubhan, A. Osvet, I. Litzov, C.J. Brabec, Up-conversion semiconducting MoO3:Yb/Er nanocomposites as buffer layer in organic solar cells. Sol. Energy Mater. Sol. Cells 105, 196–201 (2012)CrossRef
83.
Zurück zum Zitat W. Guo, K. Zheng, W. Xie, L. Sun, L. Shen, C. Liu, Y. He, Z. Zhang, Efficiency enhancement of inverted polymer solar cells by doping NaYF4:Yb3+, Er3+ nanocomposites in PCDTBT:PCBM active layer. Sol. Energy Mater. Sol. Cells 124, 126–132 (2014)CrossRef W. Guo, K. Zheng, W. Xie, L. Sun, L. Shen, C. Liu, Y. He, Z. Zhang, Efficiency enhancement of inverted polymer solar cells by doping NaYF4:Yb3+, Er3+ nanocomposites in PCDTBT:PCBM active layer. Sol. Energy Mater. Sol. Cells 124, 126–132 (2014)CrossRef
84.
Zurück zum Zitat X. Chen, W. Xu, H. Song, C. Chen, H. Xia, Y. Zhu, D. Zhou, S. Cui, Q. Dai, J. Zhang, Highly efficient LiYF4:Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application. ACS Appl. Mater. Interfaces 8, 9071–9079 (2016)CrossRef X. Chen, W. Xu, H. Song, C. Chen, H. Xia, Y. Zhu, D. Zhou, S. Cui, Q. Dai, J. Zhang, Highly efficient LiYF4:Yb3+, Er3+ upconversion single crystal under solar cell spectrum excitation and photovoltaic application. ACS Appl. Mater. Interfaces 8, 9071–9079 (2016)CrossRef
85.
Zurück zum Zitat M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, Z. Lin, Monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells. Angew. Chem. Int. Ed. 55, 4280–4284 (2016)CrossRef M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, Z. Lin, Monodisperse dual-functional upconversion nanoparticles enabled near-infrared organolead halide perovskite solar cells. Angew. Chem. Int. Ed. 55, 4280–4284 (2016)CrossRef
86.
Zurück zum Zitat M. Que, W. Que, X. Yin, P. Chen, Y. Yang, J. Hu, B. Yu, Y. Du, Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light. Nanoscale 8, 14432–14437 (2016)CrossRef M. Que, W. Que, X. Yin, P. Chen, Y. Yang, J. Hu, B. Yu, Y. Du, Enhanced conversion efficiency in perovskite solar cells by effectively utilizing near infrared light. Nanoscale 8, 14432–14437 (2016)CrossRef
87.
Zurück zum Zitat J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, M. Chen, Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air. IEEE J. Photovoltaics 8, 132–136 (2018)CrossRef J. Hu, Y. Qiao, Y. Yang, L. Zhao, W. Liu, S. Li, P. Liu, M. Chen, Enhanced performance of hole-conductor-free perovskite solar cells by utilization of core/shell-structured β-NaYF4:Yb3+,Er3+@SiO2 nanoparticles in ambient air. IEEE J. Photovoltaics 8, 132–136 (2018)CrossRef
88.
Zurück zum Zitat X. Lai, X. Li, X. Lv, Y.-Z. Zheng, F. Meng, X. Tao, Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells. J. Power Sources 372, 125–133 (2017)CrossRef X. Lai, X. Li, X. Lv, Y.-Z. Zheng, F. Meng, X. Tao, Broadband dye-sensitized upconverting nanocrystals enabled near-infrared planar perovskite solar cells. J. Power Sources 372, 125–133 (2017)CrossRef
Metadaten
Titel
Rare-Earth Ion-Based Photon Up-Conversion for Transmission-Loss Reduction in Solar Cells
verfasst von
Hai-Qiao Wang
Andres Osvet
Miroslaw Batentschuk
Christoph J. Brabec
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70358-5_12

Neuer Inhalt