Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 11/2018

17.03.2018

Electrophoretic deposition of copper–copper hydroxide/graphene oxide nanocomposite for supercapacitor

verfasst von: Fatemeh Ahmadi, Shahram Ghasemi

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Copper–copper hydroxide-electrochemically reduced graphene oxide (Cu–Cu(OH)2/RGO) nanocomposite is formed successfully on stainless steel (SS) in two steps: (i) electrophoretic deposition of nanocomposite film from CuSO4 and graphene oxide (GO) colloidal suspension on SS and (ii) electrochemical reduction of prepared electrode in 0.5 M NaNO3 electrolyte. Cu–Cu(OH)2/RGO is characterized by X-ray diffraction, atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray spectrometry. AFM and FESEM images indicate the homogenous distribution of Cu–Cu(OH)2 nanoparticles on the surface of RGO. The electrochemical properties of Cu–Cu(OH)2–RGO/SS are investigated by cyclic voltammetery, galvanostatic charge/discharge technique and electrochemical impedance spectroscopy. Cu–Cu(OH)2–RGO/SS exhibits a high capacitance of 333 F g−1 in 0.5 M Na2SO4 electrolyte which is two times higher than that of RGO/SS (192 F g−1) and indicate the positive effect of Cu–Cu(OH)2 on capacitance of electrode. Also, it is observed that with addition of 0.1 M \({\text{Fe}}({\text{CN}})_{6}^{{3 - /4 - }}\) into aqueous solution of 0.5 M Na2SO4, the electrochemical performance of Cu–Cu(OH)2–RGO/SS increases substantially and shows a high specific capacitance of 492 F g−1 at current density of 5 A g−1, which is higher than that of Cu–Cu(OH)2–RGO/SS (333 F g−1). A positive effect of the presence of \({\text{Fe}}({\text{CN}})_{6}^{{3 - /4 - }}\) in the electrolyte is due to electron relay of \({\text{Fe}}({\text{CN}})_{6}^{{ - 3}}/{\text{Fe}}({\text{CN}})_{6}^{{ - 4}}\) ion pair at the electrode/electrolyte interface by coupling in the redox transition of Cu(I)/Cu(II). The electrochemical tests indicate that Cu(OH)2–RGO/SS in 0.5 M Na2SO4 electrolyte containing 0.1 M \({\text{Fe}}({\text{CN}})_{6}^{{3 - /4 - }}\) shows an outstanding cyclic stability with specific retention of 97% after 500 cycles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, A.F. Hebard, High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012)CrossRef X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, A.F. Hebard, High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012)CrossRef
2.
Zurück zum Zitat H.J. Yoon, J.H. Yang, Z. Zhou, S.S. Yang, M.M.C. Cheng, Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B 157, 310–313 (2011)CrossRef H.J. Yoon, J.H. Yang, Z. Zhou, S.S. Yang, M.M.C. Cheng, Carbon dioxide gas sensor using a graphene sheet. Sens. Actuators B 157, 310–313 (2011)CrossRef
3.
Zurück zum Zitat H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2009)CrossRef H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2009)CrossRef
4.
Zurück zum Zitat Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)CrossRef Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)CrossRef
5.
Zurück zum Zitat P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRef P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008)CrossRef
6.
Zurück zum Zitat S.H. Lee, H.W. Kim, J.O. Hwang, W.J. Lee, J.K. Won, C.W. Bielawski, R.S. Ruoff, S.O. Kim, Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew. Chem. Int. Ed. 49, 10084–10088 (2010)CrossRef S.H. Lee, H.W. Kim, J.O. Hwang, W.J. Lee, J.K. Won, C.W. Bielawski, R.S. Ruoff, S.O. Kim, Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films. Angew. Chem. Int. Ed. 49, 10084–10088 (2010)CrossRef
7.
Zurück zum Zitat G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011)CrossRef G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett. 11, 4438–4442 (2011)CrossRef
8.
Zurück zum Zitat H. Wang, C.M. Holt, Z. Li, X. Tan, B.S. Amirkhiz, Z. Xu, D. Mitlin, Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 5, 605–617 (2012)CrossRef H. Wang, C.M. Holt, Z. Li, X. Tan, B.S. Amirkhiz, Z. Xu, D. Mitlin, Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 5, 605–617 (2012)CrossRef
9.
Zurück zum Zitat C. Zhao, X. Wang, S. Wang, Y. Wang, Y. Zhao, W. Zheng, Synthesis of Co(OH)2/graphene/Ni foam nano-electrodes with excellent pseudocapacitive behavior and high cycling stability for supercapacitors. Int. J. Hydrogen Energy 37, 11846–11852 (2012)CrossRef C. Zhao, X. Wang, S. Wang, Y. Wang, Y. Zhao, W. Zheng, Synthesis of Co(OH)2/graphene/Ni foam nano-electrodes with excellent pseudocapacitive behavior and high cycling stability for supercapacitors. Int. J. Hydrogen Energy 37, 11846–11852 (2012)CrossRef
10.
Zurück zum Zitat J. Xie, X. Sun, N. Zhang, K. Xu, M. Zhou, Y. Xie, Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy 2, 65–74 (2013)CrossRef J. Xie, X. Sun, N. Zhang, K. Xu, M. Zhou, Y. Xie, Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy 2, 65–74 (2013)CrossRef
11.
Zurück zum Zitat Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4, 1963–1970 (2010)CrossRef Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4, 1963–1970 (2010)CrossRef
12.
Zurück zum Zitat H.H. Chang, C.K. Chang, Y.C. Tsai, C.S. Liao, Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 50, 2331–2336 (2012)CrossRef H.H. Chang, C.K. Chang, Y.C. Tsai, C.S. Liao, Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 50, 2331–2336 (2012)CrossRef
13.
Zurück zum Zitat F. Alvi, P.A. Basnayaka, M.K. Ram, H. Gomez, E. Stefanako, Y. Goswami, A. Kumar, Graphene-polythiophene nanocomposite as novel supercapacitor electrode material. J. New Mater. Electrochem. Syst. 15, 89–95 (2011) F. Alvi, P.A. Basnayaka, M.K. Ram, H. Gomez, E. Stefanako, Y. Goswami, A. Kumar, Graphene-polythiophene nanocomposite as novel supercapacitor electrode material. J. New Mater. Electrochem. Syst. 15, 89–95 (2011)
14.
Zurück zum Zitat K. Wang, X. Dong, C. Zhao, X. Qian, Y. Xu, Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochim. Acta 152, 433–442 (2015)CrossRef K. Wang, X. Dong, C. Zhao, X. Qian, Y. Xu, Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochim. Acta 152, 433–442 (2015)CrossRef
15.
Zurück zum Zitat B. Vidhyadharan, I.I. Misnon, R.A. Aziz, K.P. Padmasree, M.M. Yusoff, R. Jose, Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. J. Mater. Chem. A 2, 6578–6588 (2014)CrossRef B. Vidhyadharan, I.I. Misnon, R.A. Aziz, K.P. Padmasree, M.M. Yusoff, R. Jose, Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. J. Mater. Chem. A 2, 6578–6588 (2014)CrossRef
16.
Zurück zum Zitat G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J. Power Sources 196, 5756–5760 (2011)CrossRef G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, Preparation and supercapacitance of CuO nanosheet arrays grown on nickel foam. J. Power Sources 196, 5756–5760 (2011)CrossRef
17.
Zurück zum Zitat S.E. Moosavifard, J. Shamsi, S. Fani, S. Kadkhodazade, Facile synthesis of hierarchical CuO nanorod arrays on carbon nanofibers for high-performance supercapacitors. Ceram. Int. 40, 15973–15979 (2014)CrossRef S.E. Moosavifard, J. Shamsi, S. Fani, S. Kadkhodazade, Facile synthesis of hierarchical CuO nanorod arrays on carbon nanofibers for high-performance supercapacitors. Ceram. Int. 40, 15973–15979 (2014)CrossRef
18.
Zurück zum Zitat K.K. Purushothaman, B. Saravanakumar, I.M. Babu, B. Sethuraman, G. Muralidharan, Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv. 4, 23485–23491 (2014)CrossRef K.K. Purushothaman, B. Saravanakumar, I.M. Babu, B. Sethuraman, G. Muralidharan, Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors. RSC Adv. 4, 23485–23491 (2014)CrossRef
19.
Zurück zum Zitat Y.K. Hsu, Y.C. Chen, Y.G. Lin, Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes. J. Electroanal. Chem. 673, 43–47 (2012)CrossRef Y.K. Hsu, Y.C. Chen, Y.G. Lin, Characteristics and electrochemical performances of lotus-like CuO/Cu(OH)2 hybrid material electrodes. J. Electroanal. Chem. 673, 43–47 (2012)CrossRef
20.
Zurück zum Zitat X. Dong, K. Wang, C. Zhao, X. Qian, S. Chen, Z. Li, S. Dou, Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors. J. Alloys Compd. 586, 745–753 (2014)CrossRef X. Dong, K. Wang, C. Zhao, X. Qian, S. Chen, Z. Li, S. Dou, Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors. J. Alloys Compd. 586, 745–753 (2014)CrossRef
21.
Zurück zum Zitat K.V. Gurav, U.M. Patil, S.W. Shin, G.L. Agawane, M.P. Suryawanshi, S.M. Pawar, J.H. Kim, Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application. J. Alloys Compd. 573, 27–31 (2013)CrossRef K.V. Gurav, U.M. Patil, S.W. Shin, G.L. Agawane, M.P. Suryawanshi, S.M. Pawar, J.H. Kim, Room temperature chemical synthesis of Cu(OH)2 thin films for supercapacitor application. J. Alloys Compd. 573, 27–31 (2013)CrossRef
22.
Zurück zum Zitat F. Wang, W. Tao, M. Zhao, M. Xu, S. Yang, Z. Sun, X. Song, Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries. J. Alloys Compd. 509, 9798–9803 (2011)CrossRef F. Wang, W. Tao, M. Zhao, M. Xu, S. Yang, Z. Sun, X. Song, Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries. J. Alloys Compd. 509, 9798–9803 (2011)CrossRef
23.
Zurück zum Zitat O. Akhavan, R. Azimirad, S. Safa, E. Hasani, CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem. 21, 9634–9640 (2011)CrossRef O. Akhavan, R. Azimirad, S. Safa, E. Hasani, CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts. J. Mater. Chem. 21, 9634–9640 (2011)CrossRef
24.
Zurück zum Zitat C. Du, N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 160, 1487–1494 (2006)CrossRef C. Du, N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition. J. Power Sources 160, 1487–1494 (2006)CrossRef
25.
Zurück zum Zitat Y. Wang, I. Zhitomirsky, Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors. Langmuir 25, 9684–9689 (2009)CrossRef Y. Wang, I. Zhitomirsky, Electrophoretic deposition of manganese dioxide-multiwalled carbon nanotube composites for electrochemical supercapacitors. Langmuir 25, 9684–9689 (2009)CrossRef
26.
Zurück zum Zitat L.H. Su, X.G. Zhang, C.H. Mi, B. Gao, Y. Liu, Improvement of the capacitive performances for Co–Al layered double hydroxide by adding hexacyanoferrate into the electrolyte. Phys. Chem. Chem. Phys. 11, 2195–2202 (2009)CrossRef L.H. Su, X.G. Zhang, C.H. Mi, B. Gao, Y. Liu, Improvement of the capacitive performances for Co–Al layered double hydroxide by adding hexacyanoferrate into the electrolyte. Phys. Chem. Chem. Phys. 11, 2195–2202 (2009)CrossRef
27.
Zurück zum Zitat S.T. Senthilkumar, R.K. Selvan, Y.S. Lee, J.S. Melo, Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A 1, 1086–1095 (2013)CrossRef S.T. Senthilkumar, R.K. Selvan, Y.S. Lee, J.S. Melo, Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A 1, 1086–1095 (2013)CrossRef
28.
Zurück zum Zitat S. Roldan, Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew. Chem. Int. Ed. 50, 1699–1701 (2011)CrossRef S. Roldan, Towards a further generation of high-energy carbon-based capacitors by using redox-active electrolytes. Angew. Chem. Int. Ed. 50, 1699–1701 (2011)CrossRef
29.
Zurück zum Zitat N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.-W. Liu, C.H. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184:469–477 (2017)CrossRef N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.-W. Liu, C.H. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184:469–477 (2017)CrossRef
30.
Zurück zum Zitat A. Pramanik, S. Maiti, S. Mahanty, Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor. Dalton Trans. 44, 14604–14612 (2015)CrossRef A. Pramanik, S. Maiti, S. Mahanty, Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor. Dalton Trans. 44, 14604–14612 (2015)CrossRef
31.
Zurück zum Zitat I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reducedgrapheneoxidebychemical graphitization. Nat. Commun. 1, 73 (2010)CrossRef I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Reducedgrapheneoxidebychemical graphitization. Nat. Commun. 1, 73 (2010)CrossRef
32.
Zurück zum Zitat A.M. Awwad, B. Albiss, Biosynthesis of colloidal copper hydroxide nanowires using pistachio leaf extract. Adv. Mater. Lett. 6, 51–54 (2015)CrossRef A.M. Awwad, B. Albiss, Biosynthesis of colloidal copper hydroxide nanowires using pistachio leaf extract. Adv. Mater. Lett. 6, 51–54 (2015)CrossRef
33.
Zurück zum Zitat T. Theivasanthi, M. Alagar, (2010) X-ray diffraction studies of copper nanopowder. arXiv preprint arXiv 1003.6068 T. Theivasanthi, M. Alagar, (2010) X-ray diffraction studies of copper nanopowder. arXiv preprint arXiv 1003.6068
34.
Zurück zum Zitat P. Xu, K. Ye, M. Du, J. Liu, K. Cheng, J. Yin, J. Wang, D. Cao, One-step synthesis of copper compounds on copper foil and their supercapacitive performance. RSC Adv. 5, 36656–36664 (2015)CrossRef P. Xu, K. Ye, M. Du, J. Liu, K. Cheng, J. Yin, J. Wang, D. Cao, One-step synthesis of copper compounds on copper foil and their supercapacitive performance. RSC Adv. 5, 36656–36664 (2015)CrossRef
35.
Zurück zum Zitat J. Chen, J. Xu, S. Zhou, N. Zhao, C. Wong, Facile and scalable fabrication of three-dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors. J. Mater. Chem. A 3, 17385–17391 (2015)CrossRef J. Chen, J. Xu, S. Zhou, N. Zhao, C. Wong, Facile and scalable fabrication of three-dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors. J. Mater. Chem. A 3, 17385–17391 (2015)CrossRef
36.
Zurück zum Zitat J. Ding, B. Li, Y. Liu, X. Yan, S. Zeng, X. Zhang, J. Zhang, Fabrication of Fe3O4@ reduced graphene oxide composite via novel colloid electrostatic self-assembly process for removal of contaminants from water. J. Mater. Chem. A 3, 832–839 (2015)CrossRef J. Ding, B. Li, Y. Liu, X. Yan, S. Zeng, X. Zhang, J. Zhang, Fabrication of Fe3O4@ reduced graphene oxide composite via novel colloid electrostatic self-assembly process for removal of contaminants from water. J. Mater. Chem. A 3, 832–839 (2015)CrossRef
37.
Zurück zum Zitat V.D. Patake, S.S. Joshi, C.D. Lokhande, O.S. Joo, Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Mater. Chem. Phys. 114, 6–9 (2009)CrossRef V.D. Patake, S.S. Joshi, C.D. Lokhande, O.S. Joo, Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Mater. Chem. Phys. 114, 6–9 (2009)CrossRef
38.
Zurück zum Zitat D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, C.D. Lokhande, Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J. Alloys Compd. 492, 26–30 (2010)CrossRef D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, V.S. Jamdade, C.D. Lokhande, Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J. Alloys Compd. 492, 26–30 (2010)CrossRef
39.
Zurück zum Zitat H. Jiang, T. Sun, C. Li, J. Ma, Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances. J. Mater. Chem. 22, 2751–2756 (2012)CrossRef H. Jiang, T. Sun, C. Li, J. Ma, Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances. J. Mater. Chem. 22, 2751–2756 (2012)CrossRef
40.
Zurück zum Zitat D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, Enhancement in supercapacitive properties of CuO thin films due to the surfactant mediated morphological modulation. J. Electroanal. Chem. 712, 40–46 (2014)CrossRef D.P. Dubal, G.S. Gund, R. Holze, C.D. Lokhande, Enhancement in supercapacitive properties of CuO thin films due to the surfactant mediated morphological modulation. J. Electroanal. Chem. 712, 40–46 (2014)CrossRef
41.
Zurück zum Zitat K.P. Prasad, D.S. Dhawale, S. Joseph, C. Anand, M.A. Wahab, A. Mano, A. Vinu, Post-synthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor application. Microporous Mesoporous Mater. 172, 77–78 (2013)CrossRef K.P. Prasad, D.S. Dhawale, S. Joseph, C. Anand, M.A. Wahab, A. Mano, A. Vinu, Post-synthetic functionalization of mesoporous carbon electrodes with copper oxide nanoparticles for supercapacitor application. Microporous Mesoporous Mater. 172, 77–78 (2013)CrossRef
42.
Zurück zum Zitat S.K. Shinde, D.P. Dubal, G.S. Ghodake, D.Y. Kim, V.J. Fulari, Nanoflower-like CuO/Cu(OH)2 hybrid thin films: synthesis and electrochemical supercapacitive properties. J. Electroanal. Chem. 73, 280–285 (2014) S.K. Shinde, D.P. Dubal, G.S. Ghodake, D.Y. Kim, V.J. Fulari, Nanoflower-like CuO/Cu(OH)2 hybrid thin films: synthesis and electrochemical supercapacitive properties. J. Electroanal. Chem. 73, 280–285 (2014)
43.
Zurück zum Zitat Z. Endut, M. Hamdi, W.J. Basirun, Pseudocapacitive performance of vertical copper oxide nanoflakes. Thin Solid Films 528, 213–216 (2013)CrossRef Z. Endut, M. Hamdi, W.J. Basirun, Pseudocapacitive performance of vertical copper oxide nanoflakes. Thin Solid Films 528, 213–216 (2013)CrossRef
44.
Zurück zum Zitat M.M. Momeni, Z. Nazari, A. Kazempour, M. Hakimiyan, S.M. Mirhoseini, Preparation of CuO nanostructures coating on copper as supercapacitor materials. Surf. Eng. 30, 775–778 (2014)CrossRef M.M. Momeni, Z. Nazari, A. Kazempour, M. Hakimiyan, S.M. Mirhoseini, Preparation of CuO nanostructures coating on copper as supercapacitor materials. Surf. Eng. 30, 775–778 (2014)CrossRef
45.
Zurück zum Zitat K. Fic, G. Lota, E. Frackowiak, Effect of surfactants on capacitance properties of carbon electrodes. Electrochim. Acta 60, 206–212 (2012)CrossRef K. Fic, G. Lota, E. Frackowiak, Effect of surfactants on capacitance properties of carbon electrodes. Electrochim. Acta 60, 206–212 (2012)CrossRef
46.
Zurück zum Zitat H. Xie, Y. Zhu, Y. Wu, Z. Wu, E. Liu, The effect of hydroquinone as an electrolyte additive on electrochemical performance of the polyaniline supercapacitor. Mater. Res. Bull. 50, 303–306 (2014)CrossRef H. Xie, Y. Zhu, Y. Wu, Z. Wu, E. Liu, The effect of hydroquinone as an electrolyte additive on electrochemical performance of the polyaniline supercapacitor. Mater. Res. Bull. 50, 303–306 (2014)CrossRef
47.
Zurück zum Zitat S. Roldán, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. J. Phys. Chem. C 115, 17606–17611 (2011)CrossRef S. Roldán, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, Mechanisms of energy storage in carbon-based supercapacitors modified with a quinoid redox-active electrolyte. J. Phys. Chem. C 115, 17606–17611 (2011)CrossRef
48.
Zurück zum Zitat S. Roldán, Z. González, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. Electrochim. Acta 56, 3401–3405 (2011)CrossRef S. Roldán, Z. González, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. Electrochim. Acta 56, 3401–3405 (2011)CrossRef
49.
Zurück zum Zitat S. Roldán, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, Supercapacitor modified with methylene blue as redox active electrolyte. Electrochim. Acta 83, 241–246 (2012)CrossRef S. Roldán, M. Granda, R. Menéndez, R. Santamaría, C. Blanco, Supercapacitor modified with methylene blue as redox active electrolyte. Electrochim. Acta 83, 241–246 (2012)CrossRef
50.
Zurück zum Zitat W. Chen, R.B. Rakhi, H.N. Alshareef, Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte. Nanoscale 5, 4134–4138 (2013)CrossRef W. Chen, R.B. Rakhi, H.N. Alshareef, Capacitance enhancement of polyaniline coated curved-graphene supercapacitors in a redox-active electrolyte. Nanoscale 5, 4134–4138 (2013)CrossRef
51.
Zurück zum Zitat S. Ghasemi, F. Ahmadi, Effect of surfactant on the electrochemical performance of graphene/iron oxide electrode for supercapacitor. J. Power Sources 289, 129–137 (2015)CrossRef S. Ghasemi, F. Ahmadi, Effect of surfactant on the electrochemical performance of graphene/iron oxide electrode for supercapacitor. J. Power Sources 289, 129–137 (2015)CrossRef
Metadaten
Titel
Electrophoretic deposition of copper–copper hydroxide/graphene oxide nanocomposite for supercapacitor
verfasst von
Fatemeh Ahmadi
Shahram Ghasemi
Publikationsdatum
17.03.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 11/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-8933-3

Weitere Artikel der Ausgabe 11/2018

Journal of Materials Science: Materials in Electronics 11/2018 Zur Ausgabe

Neuer Inhalt