Skip to main content
Erschienen in: Journal of Coatings Technology and Research 2/2013

01.03.2013

Electrophoretic deposition of nanocrystalline hydroxyapatite on Ti6Al4V/TiO2 substrate

verfasst von: Prateek Jain, Tapendu Mandal, Prem Prakash, Ashish Garg, Kantesh Balani

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydroxyapatite is a bioactive material that is the main inorganic constituent of human hard tissue (Ca/P ratio of 1.67) whose coatings provide requisite surface bioactivity to the bone implants. In the current work, the characteristics of nanocrystalline hydroxyapatite (HA) coatings, electrophoretically deposited on Ti6Al4V substrate, have been investigated. To enhance the coating’s compatibility, a 0.75 μm thick TiO2 layer was thermally grown as a diffusion barrier prior to electrophoretic deposition of HA. Subsequently, HA was electrophoretically deposited (EPD) at different deposition voltages (100–250 V) while keeping the deposition time as 10 s. Both anodic oxidation during EPD for 10 s and thermal oxidation during sintering at 1000°C for 2 h resulted in the growth of a TiO2 layer thickness of more than 25 μm. Enhancement of voltage also has shown significant influence on the mechanism of the evolution of biphasic microstructures, attributed to the simultaneous growth of TiO2 and HA phases. Optimized distribution of HA and TiO2 phases was evidenced at 200 V, with explicit HA retention as observed via transmission electron microscopy. An empirical relationship is developed to relate the voltage with the suppression of cracking in the deposited coatings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Santavirta, S, et al., “Biocompatibility of Hydroxyapatite-Coated Hip Prostheses.” Arch. Orthop. Trauma Surg., 110 288–292 (1991)CrossRef Santavirta, S, et al., “Biocompatibility of Hydroxyapatite-Coated Hip Prostheses.” Arch. Orthop. Trauma Surg., 110 288–292 (1991)CrossRef
2.
Zurück zum Zitat Labella, R, Braden, M, Debt, S, “Novel Hydroxyapatite-Based Dental Composites.” Biomaterials, 15 (15) 1197–1200 (1994)CrossRef Labella, R, Braden, M, Debt, S, “Novel Hydroxyapatite-Based Dental Composites.” Biomaterials, 15 (15) 1197–1200 (1994)CrossRef
3.
Zurück zum Zitat Paital, SR, Dahotre, NB, “Calcium Phosphate Coatings for Bio-implant Applications: Materials, Performance Factors, and Methodologies.” Mater. Sci. Eng., R, 66 1–70 (2009)CrossRef Paital, SR, Dahotre, NB, “Calcium Phosphate Coatings for Bio-implant Applications: Materials, Performance Factors, and Methodologies.” Mater. Sci. Eng., R, 66 1–70 (2009)CrossRef
4.
Zurück zum Zitat Aksakal, B, Hanyaloglu, C, “Bioceramic Dip Coating on Ti-6Al-4V and 316L SS Implant Materials.” J. Mater. Sci. Mater. Med., 19 (5) 2097–2104 (2008)CrossRef Aksakal, B, Hanyaloglu, C, “Bioceramic Dip Coating on Ti-6Al-4V and 316L SS Implant Materials.” J. Mater. Sci. Mater. Med., 19 (5) 2097–2104 (2008)CrossRef
5.
Zurück zum Zitat Haslauer, CM, et al., “In Vitro Biocompatibility of Titanium Alloy Discs made Using Direct Metal Fabrication.” Med. Eng. Phys., 32 645–652 (2010)CrossRef Haslauer, CM, et al., “In Vitro Biocompatibility of Titanium Alloy Discs made Using Direct Metal Fabrication.” Med. Eng. Phys., 32 645–652 (2010)CrossRef
6.
Zurück zum Zitat Hayashi, K, et al., “Evaluation of Metal Implants Coated with Several Types of Ceramics As Biomaterials.” J. Biomed. Mater. Res., 23 (11) 1247–1259 (1989)CrossRef Hayashi, K, et al., “Evaluation of Metal Implants Coated with Several Types of Ceramics As Biomaterials.” J. Biomed. Mater. Res., 23 (11) 1247–1259 (1989)CrossRef
7.
Zurück zum Zitat Grecu, M, et al., “Enhancing the Performance of Titanium Surface Via Elaboration of a Nanostructure and a Bioactive Coating.” Universitatea Politehnica Bucuresti Scientific Bulletin Series B, 74 (2) 113–127 (2012) Grecu, M, et al., “Enhancing the Performance of Titanium Surface Via Elaboration of a Nanostructure and a Bioactive Coating.” Universitatea Politehnica Bucuresti Scientific Bulletin Series B, 74 (2) 113–127 (2012)
8.
Zurück zum Zitat Kalmodia, S, et al., “Microstructure, Mechanical Properties and In Vitro Biocompatibility of Spark Plasma Sintered Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Composite.” Mater. Sci. Eng., C, 30 (8) 1162–1169 (2010)CrossRef Kalmodia, S, et al., “Microstructure, Mechanical Properties and In Vitro Biocompatibility of Spark Plasma Sintered Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Composite.” Mater. Sci. Eng., C, 30 (8) 1162–1169 (2010)CrossRef
9.
Zurück zum Zitat Balani, K, et al., “Plasma-Sprayed Carbon Nanotube Reinforced Hydroxyapatite Coatings and their Interaction with Human Osteoblasts In Vitro.” Biomaterials, 28 618–624 (2007)CrossRef Balani, K, et al., “Plasma-Sprayed Carbon Nanotube Reinforced Hydroxyapatite Coatings and their Interaction with Human Osteoblasts In Vitro.” Biomaterials, 28 618–624 (2007)CrossRef
10.
Zurück zum Zitat Balani, K, et al., “Tribological Behavior of Plasma Sprayed Carbon Nanotube Reinforced Hydroxyapatite-Coating in Physiological Solution.” Acta Biomater., 3 (6) 944–951 (2007)CrossRef Balani, K, et al., “Tribological Behavior of Plasma Sprayed Carbon Nanotube Reinforced Hydroxyapatite-Coating in Physiological Solution.” Acta Biomater., 3 (6) 944–951 (2007)CrossRef
11.
Zurück zum Zitat de Sena, L, et al., “Hydroxypatite Deposition by Electrophoresis on Titanium Sheets with Different Surface Finishing.” J. Biomed. Mater. Res., 60 1–7 (2002)CrossRef de Sena, L, et al., “Hydroxypatite Deposition by Electrophoresis on Titanium Sheets with Different Surface Finishing.” J. Biomed. Mater. Res., 60 1–7 (2002)CrossRef
12.
Zurück zum Zitat Ma, J, Wang, C, Peng, KW, “Electrophoretic Deposition of Porous Hydroxyapatite Scaffold.” Biomaterials, 24 3505–3510 (2003)CrossRef Ma, J, Wang, C, Peng, KW, “Electrophoretic Deposition of Porous Hydroxyapatite Scaffold.” Biomaterials, 24 3505–3510 (2003)CrossRef
13.
Zurück zum Zitat Nie, X, Leyland, A, Matthews, A, “Deposition of Layered Bioceramic Hydroxyapatite/TiO2 Coatings on Titanium Alloys Using a Hybrid Technique of Micro-arc Oxidation and Electrophoresis.” Surf. Coat. Technol., 125 407–414 (2000)CrossRef Nie, X, Leyland, A, Matthews, A, “Deposition of Layered Bioceramic Hydroxyapatite/TiO2 Coatings on Titanium Alloys Using a Hybrid Technique of Micro-arc Oxidation and Electrophoresis.” Surf. Coat. Technol., 125 407–414 (2000)CrossRef
14.
Zurück zum Zitat Ducheyne, P, et al., “Calcium Phosphate Ceramic Coatings on Porous Titanium: Effect of Structure and Composition on Electrophoretic Deposition, Vacuum Sintering and In Vitro Dissolution.” Biomaterials, 11 244–254 (1990)CrossRef Ducheyne, P, et al., “Calcium Phosphate Ceramic Coatings on Porous Titanium: Effect of Structure and Composition on Electrophoretic Deposition, Vacuum Sintering and In Vitro Dissolution.” Biomaterials, 11 244–254 (1990)CrossRef
15.
Zurück zum Zitat Manso, M, et al., “Electrodeposition of Hydroxyapatite Coatings in Basic Conditions.” Biomaterials, 21 1755–1761 (2000)CrossRef Manso, M, et al., “Electrodeposition of Hydroxyapatite Coatings in Basic Conditions.” Biomaterials, 21 1755–1761 (2000)CrossRef
16.
Zurück zum Zitat Mavis, B, Tas, AC, “Dip Coating of Calcium Hydroxyapatite on Ti-6Al-4V Substrates.” J. Am. Ceram. Soc., 83 989–991 (2000)CrossRef Mavis, B, Tas, AC, “Dip Coating of Calcium Hydroxyapatite on Ti-6Al-4V Substrates.” J. Am. Ceram. Soc., 83 989–991 (2000)CrossRef
17.
Zurück zum Zitat García-Sanz, FJ, et al., “Hydroxyapatite Coatings: A Comparative Study Between Plasma-Spray and Pulsed Laser Deposition Techniques.” J. Mater. Sci. Mater. Med., 8 861–865 (1997)CrossRef García-Sanz, FJ, et al., “Hydroxyapatite Coatings: A Comparative Study Between Plasma-Spray and Pulsed Laser Deposition Techniques.” J. Mater. Sci. Mater. Med., 8 861–865 (1997)CrossRef
18.
Zurück zum Zitat Tercero, JE, et al., “Effect of Carbon Nanotube and Aluminum Oxide Addition on Plasma-Sprayed Hydroxyapatite Coating’s Mechanical Properties and Biocompatibility.” Mater. Sci. Eng., C, 29 2195–2202 (2009)CrossRef Tercero, JE, et al., “Effect of Carbon Nanotube and Aluminum Oxide Addition on Plasma-Sprayed Hydroxyapatite Coating’s Mechanical Properties and Biocompatibility.” Mater. Sci. Eng., C, 29 2195–2202 (2009)CrossRef
19.
Zurück zum Zitat Montenero, A, et al., “Sol–Gel Derived Hydroxyapatite Coatings on Titanium Substrate.” J. Mater. Sci., 35 (11) 2791–2797 (2000)CrossRef Montenero, A, et al., “Sol–Gel Derived Hydroxyapatite Coatings on Titanium Substrate.” J. Mater. Sci., 35 (11) 2791–2797 (2000)CrossRef
20.
Zurück zum Zitat Li, P, Groot, Kd, Kokubo, T, “Bioactive Ca10(PO4)6(OH)2-TiO2 Composite Coating Prepared by Sol–Gel Process.” J. Sol-Gel Sci. Technol., 7 27–34 (1996)CrossRef Li, P, Groot, Kd, Kokubo, T, “Bioactive Ca10(PO4)6(OH)2-TiO2 Composite Coating Prepared by Sol–Gel Process.” J. Sol-Gel Sci. Technol., 7 27–34 (1996)CrossRef
21.
Zurück zum Zitat Oshida, Y, Bioscience and Bioengineering of Titanium Materials. Elsevier, Amsterdam, 2007 Oshida, Y, Bioscience and Bioengineering of Titanium Materials. Elsevier, Amsterdam, 2007
22.
Zurück zum Zitat Leon, B, Jansen, J, Thin Calcium Phosphate Coatings for Medical Implants, p. 356. Springer-Verlag, New York, 2009CrossRef Leon, B, Jansen, J, Thin Calcium Phosphate Coatings for Medical Implants, p. 356. Springer-Verlag, New York, 2009CrossRef
23.
Zurück zum Zitat Basu, RN, Randall, CA, Mayo, MJ, “Fabrication of Dense Zirconia Electrolyte Films for Tubular Solid Oxide Fuel Cells by Electrophoretic Deposition.” J. Am. Ceram. Soc., 84 (1) 33–40 (2001)CrossRef Basu, RN, Randall, CA, Mayo, MJ, “Fabrication of Dense Zirconia Electrolyte Films for Tubular Solid Oxide Fuel Cells by Electrophoretic Deposition.” J. Am. Ceram. Soc., 84 (1) 33–40 (2001)CrossRef
24.
Zurück zum Zitat Zhang, YY, et al., “Electrochemical Deposition of Hydroxyapatite Coatings on Titanium.” Trans. Nonferrous Met. Soc. China, 16 (3) 633–637 (2006)CrossRef Zhang, YY, et al., “Electrochemical Deposition of Hydroxyapatite Coatings on Titanium.” Trans. Nonferrous Met. Soc. China, 16 (3) 633–637 (2006)CrossRef
25.
Zurück zum Zitat Wang, YC, Leu, IC, Hon, MH, “Kinetics of Electrophoretic Deposition for Nanocrystalline Zinc Oxide Coatings.” J. Am. Ceram. Soc., 87 84–88 (2004)CrossRef Wang, YC, Leu, IC, Hon, MH, “Kinetics of Electrophoretic Deposition for Nanocrystalline Zinc Oxide Coatings.” J. Am. Ceram. Soc., 87 84–88 (2004)CrossRef
26.
Zurück zum Zitat Ruys, AJ, et al., “Sintering Effects on the Strength Hydroxyapatite.” Biomaterials, 16 409–415 (1995)CrossRef Ruys, AJ, et al., “Sintering Effects on the Strength Hydroxyapatite.” Biomaterials, 16 409–415 (1995)CrossRef
27.
Zurück zum Zitat Wei, M, Evans, JH, Wentrup-Byrne, E, “Decomposition of Dual Hydroxyapatite/Fluorapatite Coatings on Metal Substrates.” J. Aust. Ceram. Soc., 36 (1) 47–52 (2000) Wei, M, Evans, JH, Wentrup-Byrne, E, “Decomposition of Dual Hydroxyapatite/Fluorapatite Coatings on Metal Substrates.” J. Aust. Ceram. Soc., 36 (1) 47–52 (2000)
28.
Zurück zum Zitat Wei, M, et al., “Hydroxyapatite-Coated Metals: Interfacial Reactions During Sintering.” J. Mater. Sci. Mater. Med., 16 101–106 (2005)CrossRef Wei, M, et al., “Hydroxyapatite-Coated Metals: Interfacial Reactions During Sintering.” J. Mater. Sci. Mater. Med., 16 101–106 (2005)CrossRef
29.
Zurück zum Zitat Wei, M, et al., “Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual-Coating Approach.” J. Sol-Gel Sci. Technol., 21 (1/2) 39–48 (2001)CrossRef Wei, M, et al., “Electrophoretic Deposition of Hydroxyapatite Coatings on Metal Substrates: A Nanoparticulate Dual-Coating Approach.” J. Sol-Gel Sci. Technol., 21 (1/2) 39–48 (2001)CrossRef
30.
Zurück zum Zitat Albayraka, O, El-Atwani, O, Altintas, S, “Hydroxyapatite Coating on Titanium Substrate by Electrophoretic Deposition Method: Effects of Titanium Dioxide Inner Layer on Adhesion Strength and Hydroxyapatite Decomposition.” Surf. Coat. Technol., 202 2482–2487 (2007)CrossRef Albayraka, O, El-Atwani, O, Altintas, S, “Hydroxyapatite Coating on Titanium Substrate by Electrophoretic Deposition Method: Effects of Titanium Dioxide Inner Layer on Adhesion Strength and Hydroxyapatite Decomposition.” Surf. Coat. Technol., 202 2482–2487 (2007)CrossRef
31.
Zurück zum Zitat Nie, X, et al., “Effects of Solution pH and Electrical Parameters on Hydroxyapatite Coatings Deposited by a Plasma-Assisted Electrophoresis Technique.” J. Biomed. Mater. Res., 57 612–618 (2001)CrossRef Nie, X, et al., “Effects of Solution pH and Electrical Parameters on Hydroxyapatite Coatings Deposited by a Plasma-Assisted Electrophoresis Technique.” J. Biomed. Mater. Res., 57 612–618 (2001)CrossRef
32.
Zurück zum Zitat Kumar, RR, Wang, M, “Functionally Graded Bioactive Coatings of Hydroxyapatite/Titanium Oxide Composite System.” Mater. Lett., 55 133–137 (2002)CrossRef Kumar, RR, Wang, M, “Functionally Graded Bioactive Coatings of Hydroxyapatite/Titanium Oxide Composite System.” Mater. Lett., 55 133–137 (2002)CrossRef
33.
Zurück zum Zitat Karpagavalli, R, et al., “Corrosion Behavior and Biocompatibility of Nanostructured TiO2 Film on Ti6Al4V.” J. Biomed. Mater. Res., Part A, 83A (4) 1087–1095 (2007)CrossRef Karpagavalli, R, et al., “Corrosion Behavior and Biocompatibility of Nanostructured TiO2 Film on Ti6Al4V.” J. Biomed. Mater. Res., Part A, 83A (4) 1087–1095 (2007)CrossRef
34.
Zurück zum Zitat Cui, C, et al., “Fabrication and Biocompatibility of Nano-TiO2/Titanium Alloys Biomaterials.” Mater. Lett., 59 3144–3148 (2005)CrossRef Cui, C, et al., “Fabrication and Biocompatibility of Nano-TiO2/Titanium Alloys Biomaterials.” Mater. Lett., 59 3144–3148 (2005)CrossRef
35.
Zurück zum Zitat Mondragon-Cortez, P, Vargas-Gutierrez, G, “Electrophoretic Deposition of Hydroxyapatite Submicron Particles at High Voltages.” Mater. Lett., 58 1336–1339 (2004)CrossRef Mondragon-Cortez, P, Vargas-Gutierrez, G, “Electrophoretic Deposition of Hydroxyapatite Submicron Particles at High Voltages.” Mater. Lett., 58 1336–1339 (2004)CrossRef
36.
Zurück zum Zitat Meng, X, et al., “Effects of Applied Voltages on Hydroxyapatite Coating of Titanium by Electrophoretic Deposition.” J. Biomed. Mater. Res. B Appl. Biomater., 78 373–377 (2006) Meng, X, et al., “Effects of Applied Voltages on Hydroxyapatite Coating of Titanium by Electrophoretic Deposition.” J. Biomed. Mater. Res. B Appl. Biomater., 78 373–377 (2006)
37.
Zurück zum Zitat Dubey, M, et al., “TiO2 Nanotube Membranes on Transparent Conducting Glass For High Efficiency Dye-Sensitized Solar Cells.” Nanotechnology, 22 (28) 285201.1–285201.9 (2011)CrossRef Dubey, M, et al., “TiO2 Nanotube Membranes on Transparent Conducting Glass For High Efficiency Dye-Sensitized Solar Cells.” Nanotechnology, 22 (28) 285201.1–285201.9 (2011)CrossRef
38.
Zurück zum Zitat Wang, N, et al., “Evaluation of Bias Potential Enhanced Photocatalytic Degradation of 4-Chlorophenol with TiO2 Nanotube Fabricated by Anodic Oxidation Method.” Chem. Eng. J., 146 30–35 (2009)CrossRef Wang, N, et al., “Evaluation of Bias Potential Enhanced Photocatalytic Degradation of 4-Chlorophenol with TiO2 Nanotube Fabricated by Anodic Oxidation Method.” Chem. Eng. J., 146 30–35 (2009)CrossRef
39.
Zurück zum Zitat Yue-qin, W, et al., “HA Coating on Titanium with Nanotubular Anodized TiO2 Intermediate Layer via Electrochemical Deposition.” Trans. Nonferrous Met. Soc. China, 18 631–635 (2008)CrossRef Yue-qin, W, et al., “HA Coating on Titanium with Nanotubular Anodized TiO2 Intermediate Layer via Electrochemical Deposition.” Trans. Nonferrous Met. Soc. China, 18 631–635 (2008)CrossRef
40.
Zurück zum Zitat Park, HH, et al., “Bioactive and Electrochemical Characterization of TiO2 Nanotubes on Titanium via Anodic Oxidation.” Electrochim. Acta, 55 (20) 6109–6114 (2010)CrossRef Park, HH, et al., “Bioactive and Electrochemical Characterization of TiO2 Nanotubes on Titanium via Anodic Oxidation.” Electrochim. Acta, 55 (20) 6109–6114 (2010)CrossRef
41.
Zurück zum Zitat Azad, AM, “Gas Phase Nanofication: A Strategy to Impart Fast Response in Sensors.” In: Ahmed, W, Jackson, MJ (eds.) Emerging Nanotechnologies for Manufacturing, pp. 17–57. William Andrew Publishers/Academic Press, New York, 2009 Azad, AM, “Gas Phase Nanofication: A Strategy to Impart Fast Response in Sensors.” In: Ahmed, W, Jackson, MJ (eds.) Emerging Nanotechnologies for Manufacturing, pp. 17–57. William Andrew Publishers/Academic Press, New York, 2009
42.
Zurück zum Zitat Ciou, S-J, Fung, K-Z, Chiang, K-W, “The Mathematical Expression for Kinetics of Electrophoretic Deposition and the Effects of Applied Voltage.” J. Power Sources, 172 358–362 (2007)CrossRef Ciou, S-J, Fung, K-Z, Chiang, K-W, “The Mathematical Expression for Kinetics of Electrophoretic Deposition and the Effects of Applied Voltage.” J. Power Sources, 172 358–362 (2007)CrossRef
Metadaten
Titel
Electrophoretic deposition of nanocrystalline hydroxyapatite on Ti6Al4V/TiO2 substrate
verfasst von
Prateek Jain
Tapendu Mandal
Prem Prakash
Ashish Garg
Kantesh Balani
Publikationsdatum
01.03.2013
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 2/2013
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-012-9438-2

Weitere Artikel der Ausgabe 2/2013

Journal of Coatings Technology and Research 2/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.