Skip to main content

1994 | OriginalPaper | Buchkapitel

Elektrische Eigenschaften der Isolatoren

verfasst von : o. Univ.-Prof. Dipl.-Ing. Dr. techn. habil. Gerhard Fasching

Erschienen in: Werkstoffe für die Elektrotechnik

Verlag: Springer Vienna

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Die elektrischen Eigenschaften der Halbleiter und der Metalle, die wir in den beiden vorstehenden Kapiteln behandelt haben, waren hauptsächlich dadurch gekennzeichnet, daß im Werkstoff Elektronen existieren, die sich nahezu frei bewegen können. Bei der großen Stoffgruppe der Isolatoren (Dielektrika) dagegen sind die Valenzelektronen so eng und fest an die Atome gebunden, daß eine elektronische Leitfähigkeit praktisch nicht auftritt. Die Bandstruktur der Isolatoren ist der Bandstruktur der Halbleiter sehr ähnlich, nur daß die Breite der verbotenen Zone bei den Isolatoren wesentlich größer ist. Will man eine Grenzlinie zwischen Isolator und Halbleiter ziehen, so könnte man die Grenzbreite der verbotenen Zone als das Hundertfache der thermischen Energie bei Raumtemperatur (300 K) festlegen. Das entspricht einer Breite von 2, 6 eV. Stoffe mit einer verbotenen Zone, die kleiner als 2,6 eV ist, würde man hiernach zu den Halbleitern zählen, Substanzen mit einer größeren Breite wären Isolatoren. Berücksichtigt man, daß das Fermi-Niveau etwa in der Mitte der verbotenen Zone liegt, dann kann man in einer kurzen Rechnung zeigen, daß die Fermi-Funktion an den Bandkanten den verschwindend kleinen Wert von 1,4 10−22 hat, woraus sich für die Anzahl der freien Elektronen je Kubikmeter Isolator ein Wert von etwa 106 ergibt. Das ist ein Wert, der größenordnungsmäßig für gute Isolatoren auch tatsächlich zutrifft, d. h. in jedem Kubikzentimeter ist ein einziges freies Elektron zu finden, und das ist für eine Elektrizitätsleitung natürlich zu wenig. Im Vergleich dazu existieren im intrinsischen Si-Halbleiter 1016 und im Metall 1023 Elektronen je Kubikzentimeter. Wenn also ein elektrisches Feld auf das Dielektrikum einwirkt, dann kann sich kein Elektronenstrom ausbilden, sondern es werden sich höchstens die Ladungen im Atom um eine geringfügige Strecke gegenläufig im Feld verschieben, und es entsteht damit ein atomarer Dipol, weil jetzt die Ladungsschwerpunkte nicht mehr zusammenfallen. Dieser Vorgang führt zur Polarisation.

Metadaten
Titel
Elektrische Eigenschaften der Isolatoren
verfasst von
o. Univ.-Prof. Dipl.-Ing. Dr. techn. habil. Gerhard Fasching
Copyright-Jahr
1994
Verlag
Springer Vienna
DOI
https://doi.org/10.1007/978-3-7091-4194-6_13

Neuer Inhalt