Skip to main content
Erschienen in: Swarm Intelligence 4/2023

06.11.2023

Elitist artificial bee colony with dynamic population size for multimodal optimization problems

verfasst von: Doğan Aydın, Yunus Özcan, Muhammad Sulaiman, Gürcan Yavuz, Zahid Halim

Erschienen in: Swarm Intelligence | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Many real-world problems can be formulated as a multimodal optimization problem (MMOP), and metaheuristic algorithms used in solving MMOP have to find multiple optimal points simultaneously. The key requirement for dealing with such problems is to balance exploration capability in global space and exploitation in multiple optimal spaces. Artificial bee colony (ABC), a metaheuristic algorithm, is designed to find only a single global optimum and cannot solve the MMOP. In this paper, we propose an ABC variant named “Elitist ABC with Dynamic Population Size” to cope with multimodal optimization problems. It has a dynamic population size strategy and uses a search equation selection strategy powered by elite members. The dynamic population size strategy enhances the exploration capability of the algorithm. The search equation selection strategy determines the appropriate search behavior for a particular problem instance at runtime. Thus, exploitation and exploration behaviors can be adjusted adaptively. In addition, candidate optimum peaks, that are overlooked in the original ABC algorithm, are memorized with elite population members. The proposed algorithm has been tested on multimodal optimization problems presented at CEC 2013. The algorithm has been compared with ten state-of-the-art multimodal optimization algorithms and the top 25 algorithms participating in the CEC competition on multimodal function optimization between 2013 and 2020. Experimental results have shown that the proposed algorithm is superior to many new algorithms and can compete with top-level algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
2
Since ABCDP can find only one optimum at a time, and it is not necessary to give the results in the table.
 
Literatur
Zurück zum Zitat Alcalá-Fdez, J., Sanchez, L., Garcia, S., et al. (2009). KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Computing, 13(3), 307–318.CrossRef Alcalá-Fdez, J., Sanchez, L., Garcia, S., et al. (2009). KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Computing, 13(3), 307–318.CrossRef
Zurück zum Zitat Aydın, D. (2015). Composite artificial bee colony algorithms: From component-based analysis to high-performing algorithms. Applied Soft Computing, 32, 266–285.CrossRef Aydın, D. (2015). Composite artificial bee colony algorithms: From component-based analysis to high-performing algorithms. Applied Soft Computing, 32, 266–285.CrossRef
Zurück zum Zitat Aydın, D., Yavuz, G., & Stützle, T. (2017). ABC-X: A generalized, automatically configurable artificial bee colony framework. Swarm Intelligence, 11(1), 1–38.CrossRef Aydın, D., Yavuz, G., & Stützle, T. (2017). ABC-X: A generalized, automatically configurable artificial bee colony framework. Swarm Intelligence, 11(1), 1–38.CrossRef
Zurück zum Zitat Basak, A., Das, S., & Tan, K. C. (2012). Multimodal optimization using a biobjective differential evolution algorithm enhanced with mean distance-based selection. IEEE Transactions on Evolutionary Computation, 17(5), 666–685.CrossRef Basak, A., Das, S., & Tan, K. C. (2012). Multimodal optimization using a biobjective differential evolution algorithm enhanced with mean distance-based selection. IEEE Transactions on Evolutionary Computation, 17(5), 666–685.CrossRef
Zurück zum Zitat Birattari, M., Yuan, Z., Balaprakash, P., et al. (2010). F-Race and iterated F-Race: An overview. In Experimental methods for the analysis of optimization algorithms (pp. 311–336). Springer. Birattari, M., Yuan, Z., Balaprakash, P., et al. (2010). F-Race and iterated F-Race: An overview. In Experimental methods for the analysis of optimization algorithms (pp. 311–336). Springer.
Zurück zum Zitat Biswas, S., Kundu, S., & Das, S. (2014). An improved parent-centric mutation with normalized neighborhoods for inducing niching behavior in differential evolution. IEEE Transactions on Cybernetics, 44(10), 1726–1737.CrossRef Biswas, S., Kundu, S., & Das, S. (2014). An improved parent-centric mutation with normalized neighborhoods for inducing niching behavior in differential evolution. IEEE Transactions on Cybernetics, 44(10), 1726–1737.CrossRef
Zurück zum Zitat Biswas, S., Kundu, S., & Das, S. (2015). Inducing niching behavior in differential evolution through local information sharing. IEEE Transactions on Evolutionary Computation, 19(2), 246–263.CrossRef Biswas, S., Kundu, S., & Das, S. (2015). Inducing niching behavior in differential evolution through local information sharing. IEEE Transactions on Evolutionary Computation, 19(2), 246–263.CrossRef
Zurück zum Zitat Cheng, R., Li, M., Li, K., et al. (2017). Evolutionary multiobjective optimization-based multimodal optimization: Fitness landscape approximation and peak detection. IEEE Transactions on Evolutionary Computation, 22(5), 692–706.CrossRef Cheng, R., Li, M., Li, K., et al. (2017). Evolutionary multiobjective optimization-based multimodal optimization: Fitness landscape approximation and peak detection. IEEE Transactions on Evolutionary Computation, 22(5), 692–706.CrossRef
Zurück zum Zitat Deb, K., & Saha, A. (2012). Multimodal optimization using a bi-objective evolutionary algorithm. Evolutionary Computation, 20(1), 27–62.CrossRef Deb, K., & Saha, A. (2012). Multimodal optimization using a bi-objective evolutionary algorithm. Evolutionary Computation, 20(1), 27–62.CrossRef
Zurück zum Zitat Dong, W., & Zhou, M. (2014). Gaussian classifier-based evolutionary strategy for multimodal optimization. IEEE Transactions on Neural Networks and Learning Systems, 25(6), 1200–1216.CrossRef Dong, W., & Zhou, M. (2014). Gaussian classifier-based evolutionary strategy for multimodal optimization. IEEE Transactions on Neural Networks and Learning Systems, 25(6), 1200–1216.CrossRef
Zurück zum Zitat Epitropakis, M. G., Plagianakos, V. P., & Vrahatis, M. N. (2011). Finding multiple global optima exploiting differential evolution’s niching capability. In 2011 IEEE symposium on differential evolution (SDE) (pp. 1–8). IEEE. Epitropakis, M. G., Plagianakos, V. P., & Vrahatis, M. N. (2011). Finding multiple global optima exploiting differential evolution’s niching capability. In 2011 IEEE symposium on differential evolution (SDE) (pp. 1–8). IEEE.
Zurück zum Zitat Gao, W., Yen, G. G., & Liu, S. (2013). A cluster-based differential evolution with self-adaptive strategy for multimodal optimization. IEEE Transactions on Cybernetics, 44(8), 1314–1327.CrossRef Gao, W., Yen, G. G., & Liu, S. (2013). A cluster-based differential evolution with self-adaptive strategy for multimodal optimization. IEEE Transactions on Cybernetics, 44(8), 1314–1327.CrossRef
Zurück zum Zitat García, S., Molina, D., Lozano, M., et al. (2009). A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics, 15(6), 617–644.CrossRefMATH García, S., Molina, D., Lozano, M., et al. (2009). A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005 special session on real parameter optimization. Journal of Heuristics, 15(6), 617–644.CrossRefMATH
Zurück zum Zitat Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report, Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization. Technical Report, Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department
Zurück zum Zitat Li, L., & Tang, K. (2014). History-based topological speciation for multimodal optimization. IEEE Transactions on Evolutionary Computation, 19(1), 136–150.CrossRef Li, L., & Tang, K. (2014). History-based topological speciation for multimodal optimization. IEEE Transactions on Evolutionary Computation, 19(1), 136–150.CrossRef
Zurück zum Zitat Li, X., Engelbrecht, A., & Epitropakis, M. G. (2013). Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization. RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Technical Report. Li, X., Engelbrecht, A., & Epitropakis, M. G. (2013). Benchmark functions for CEC’2013 special session and competition on niching methods for multimodal function optimization. RMIT University, Evolutionary Computation and Machine Learning Group, Australia, Technical Report.
Zurück zum Zitat Li, X., Epitropakis, M. G., Deb, K., et al. (2016). Seeking multiple solutions: An updated survey on niching methods and their applications. IEEE Transactions on Evolutionary Computation, 21(4), 518–538.CrossRef Li, X., Epitropakis, M. G., Deb, K., et al. (2016). Seeking multiple solutions: An updated survey on niching methods and their applications. IEEE Transactions on Evolutionary Computation, 21(4), 518–538.CrossRef
Zurück zum Zitat López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., et al. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43–58.MathSciNetCrossRef López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., et al. (2016). The irace package: Iterated racing for automatic algorithm configuration. Operations Research Perspectives, 3, 43–58.MathSciNetCrossRef
Zurück zum Zitat Qu, B. Y., & Suganthan, P. N. (2010). Novel multimodal problems and differential evolution with ensemble of restricted tournament selection. In IEEE congress on evolutionary computation (pp. 1–7). IEEE. Qu, B. Y., & Suganthan, P. N. (2010). Novel multimodal problems and differential evolution with ensemble of restricted tournament selection. In IEEE congress on evolutionary computation (pp. 1–7). IEEE.
Zurück zum Zitat Qu, B. Y., Suganthan, P. N., & Das, S. (2013). A distance-based locally informed particle swarm model for multimodal optimization. IEEE Transactions on Evolutionary Computation, 17(3), 387–402.CrossRef Qu, B. Y., Suganthan, P. N., & Das, S. (2013). A distance-based locally informed particle swarm model for multimodal optimization. IEEE Transactions on Evolutionary Computation, 17(3), 387–402.CrossRef
Zurück zum Zitat Qu, B. Y., Suganthan, P. N., & Liang, J. J. (2012). Differential evolution with neighborhood mutation for multimodal optimization. IEEE Transactions on Evolutionary Computation, 16(5), 601–614.CrossRef Qu, B. Y., Suganthan, P. N., & Liang, J. J. (2012). Differential evolution with neighborhood mutation for multimodal optimization. IEEE Transactions on Evolutionary Computation, 16(5), 601–614.CrossRef
Zurück zum Zitat Thomsen, R. (2004). Multimodal optimization using crowding-based differential evolution. In Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753) (pp. 1382–1389). IEEE. Thomsen, R. (2004). Multimodal optimization using crowding-based differential evolution. In Proceedings of the 2004 congress on evolutionary computation (IEEE Cat. No. 04TH8753) (pp. 1382–1389). IEEE.
Zurück zum Zitat Wang, Y., Li, H. X., Yen, G. G., et al. (2015). MOMMOP: Multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Transactions on Cybernetics, 45(4), 830–843.CrossRef Wang, Y., Li, H. X., Yen, G. G., et al. (2015). MOMMOP: Multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems. IEEE Transactions on Cybernetics, 45(4), 830–843.CrossRef
Zurück zum Zitat Wang, Z. J., Zhan, Z. H., Lin, Y., et al. (2017). Dual-strategy differential evolution with affinity propagation clustering for multimodal optimization problems. IEEE Transactions on Evolutionary Computation, 22(6), 894–908.CrossRef Wang, Z. J., Zhan, Z. H., Lin, Y., et al. (2017). Dual-strategy differential evolution with affinity propagation clustering for multimodal optimization problems. IEEE Transactions on Evolutionary Computation, 22(6), 894–908.CrossRef
Zurück zum Zitat Wang, Z. J., Zhan, Z. H., Lin, Y., et al. (2020). Automatic niching differential evolution with contour prediction approach for multimodal optimization problems. IEEE Transactions on Evolutionary Computation, 24(1), 114–128.CrossRef Wang, Z. J., Zhan, Z. H., Lin, Y., et al. (2020). Automatic niching differential evolution with contour prediction approach for multimodal optimization problems. IEEE Transactions on Evolutionary Computation, 24(1), 114–128.CrossRef
Zurück zum Zitat Wang, Z. J., Zhou, Y. R., & Zhang, J. (2022). Adaptive estimation distribution distributed differential evolution for multimodal optimization problems. IEEE Transactions on Cybernetics, 52(7), 6059–6070.CrossRef Wang, Z. J., Zhou, Y. R., & Zhang, J. (2022). Adaptive estimation distribution distributed differential evolution for multimodal optimization problems. IEEE Transactions on Cybernetics, 52(7), 6059–6070.CrossRef
Zurück zum Zitat Wei, Z., Gao, W., Li, G., et al. (2022). A penalty-based differential evolution for multimodal optimization. IEEE Transactions on Cybernetics, 55(7), 6024–6033.CrossRef Wei, Z., Gao, W., Li, G., et al. (2022). A penalty-based differential evolution for multimodal optimization. IEEE Transactions on Cybernetics, 55(7), 6024–6033.CrossRef
Zurück zum Zitat Woolson, R. F. (2007). Wilcoxon signed-rank test. In Wiley encyclopedia of clinical trials (pp. 1–3) Woolson, R. F. (2007). Wilcoxon signed-rank test. In Wiley encyclopedia of clinical trials (pp. 1–3)
Zurück zum Zitat Yang, Q., Chen, W. N., Li, Y., et al. (2016). Multimodal estimation of distribution algorithms. IEEE Transactions on Cybernetics, 47(3), 636–650.MathSciNetCrossRef Yang, Q., Chen, W. N., Li, Y., et al. (2016). Multimodal estimation of distribution algorithms. IEEE Transactions on Cybernetics, 47(3), 636–650.MathSciNetCrossRef
Zurück zum Zitat Yang, Q., Chen, W. N., Yu, Z., et al. (2017). Adaptive multimodal continuous ant colony optimization. IEEE Transactions on Evolutionary Computation, 21(2), 191–205.MathSciNetCrossRef Yang, Q., Chen, W. N., Yu, Z., et al. (2017). Adaptive multimodal continuous ant colony optimization. IEEE Transactions on Evolutionary Computation, 21(2), 191–205.MathSciNetCrossRef
Zurück zum Zitat Yao, J., Kharma, N., & Grogono, P. (2010). Bi-objective multipopulation genetic algorithm for multimodal function optimization. IEEE Transactions on Evolutionary Computation, 14(1), 80–102.CrossRef Yao, J., Kharma, N., & Grogono, P. (2010). Bi-objective multipopulation genetic algorithm for multimodal function optimization. IEEE Transactions on Evolutionary Computation, 14(1), 80–102.CrossRef
Zurück zum Zitat Zhang, Y. H., Gong, Y. J., Yuan, H. Q., et al. (2019). A tree-structured random walking swarm optimizer for multimodal optimization. Applied Soft Computing, 78, 94–108.CrossRef Zhang, Y. H., Gong, Y. J., Yuan, H. Q., et al. (2019). A tree-structured random walking swarm optimizer for multimodal optimization. Applied Soft Computing, 78, 94–108.CrossRef
Zurück zum Zitat Zhang, Y. H., Gong, Y. J., Gao, Y., et al. (2020). Parameter-free Voronoi neighborhood for evolutionary multimodal optimization. IEEE Transactions on Evolutionary Computation, 24(2), 335–349.CrossRef Zhang, Y. H., Gong, Y. J., Gao, Y., et al. (2020). Parameter-free Voronoi neighborhood for evolutionary multimodal optimization. IEEE Transactions on Evolutionary Computation, 24(2), 335–349.CrossRef
Zurück zum Zitat Zhao, H., Zhan, Z. H., Lin, Y., et al. (2019). Local binary pattern-based adaptive differential evolution for multimodal optimization problems. IEEE Transactions on Cybernetics, 50(7), 3343–3357.CrossRef Zhao, H., Zhan, Z. H., Lin, Y., et al. (2019). Local binary pattern-based adaptive differential evolution for multimodal optimization problems. IEEE Transactions on Cybernetics, 50(7), 3343–3357.CrossRef
Zurück zum Zitat Zou, J., Deng, Q., Zheng, J., et al. (2020). A close neighbor mobility method using particle swarm optimizer for solving multimodal optimization problems. Information Sciences, 519, 332–347.MathSciNetCrossRef Zou, J., Deng, Q., Zheng, J., et al. (2020). A close neighbor mobility method using particle swarm optimizer for solving multimodal optimization problems. Information Sciences, 519, 332–347.MathSciNetCrossRef
Metadaten
Titel
Elitist artificial bee colony with dynamic population size for multimodal optimization problems
verfasst von
Doğan Aydın
Yunus Özcan
Muhammad Sulaiman
Gürcan Yavuz
Zahid Halim
Publikationsdatum
06.11.2023
Verlag
Springer US
Erschienen in
Swarm Intelligence / Ausgabe 4/2023
Print ISSN: 1935-3812
Elektronische ISSN: 1935-3820
DOI
https://doi.org/10.1007/s11721-023-00228-1

Premium Partner