Skip to main content

2018 | OriginalPaper | Buchkapitel

5. Embodied Carbon of Surfaces: Inclusion of Surface Albedo Accounting in Life-Cycle Assessment

verfasst von : Tiziana Susca

Erschienen in: Embodied Carbon in Buildings

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Albedo is an optical property of surfaces. The higher is the surface albedo, the higher is the amount of solar radiation that a surface scatters back to space.
During the last centuries, urbanization, deforestation, afforestation, and all the modifications of extended areas on Earth have produced a variation in local albedo giving rise to an alteration of the Earth’s energy balance. In the urban environment, the use of low-albedo building materials in the building envelope can exert an effect at different scales. Specifically, it can contribute to a higher request of energy for cooling the indoor building spaces in summer, since low-albedo surfaces absorb a higher amount of solar energy compared to high-albedo ones and it can also contribute to the urban heat island effect (i.e., an increase in urban temperature compared to the surrounding rural areas). In turn, the urban heat island might affect the building energy use for summer cooling and contribute to an energy imbalance that has an impact on climate change. While, in the last years, a growing number of studies have explored the effect of the employment of low-albedo materials in building envelopes on the cooling energy budget and on the urban heat island, the evaluation of the effect of urban surface albedo on climate change belongs to a recent and a still exiguous strand of research. Climate science teaches us that surface albedo can exert an effect on climate change; such effect can be translated in terms of carbon dioxide equivalents and included in the accounting of the embodied carbon of the use phase of a building. However, traditionally, the contribution of albedo of materials or components for the building envelope is often disregarded in life-cycle assessment (LCA).
In this chapter, published literature concerning the inclusion of the effect of the variation in surface albedo in LCA has been investigated. First, the state of the art about the evaluation of the variation of surface albedo on climate has been showcased. Then, an overview of the published studies about the evaluation of the variation of surface albedo in the built environment and, in particular, of building components has followed. Notwithstanding the findings are not comparable due to the heterogeneity of the studies, the case studies examined show the importance of including the evaluation of the variation in surface albedo in LCA studies. In particular, the inclusion of the effect of surface albedo in LCA studies related to building materials and components can provide an important source of information for decision makers in the field of urban sustainability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
According to definition provided by the Intergovernmental Panel on Climate Change (IPCC) (2001): “The RF of the surface-troposphere system due to the perturbation in or the introduction of an agent is the change in net irradiance at the tropopause after allowing for stratospheric temperatures to readjust to radiative equilibrium, but with the surface and tropospheric temperatures and state held fixed at the unperturbed values.”
 
2
Albedo is defined as “The ratio of the light reflected by a body to the light received by it. Albedo values range from 0 (pitch black) to 1 (perfect reflector)” (National Aeronautics and Space Administration n.d.).
 
3
Of the articles responding to such criteria, a number have been excluded from the review because they are not fitting to the topic, because they contain literature review, or because they were not published in scientific international journals.
 
4
Meaning that its production has a zero net impact on climate change considering the carbon uptakes and carbon release related to biomass growth and combustion, respectively.
 
5
It has been evaluated that the global value for T a is 0.854 (Lenton and Vaughan 2009).
 
6
In general, another source of uncertainties is the climate sensitivity (e.g., Holtsmark 2015; Roe and Baker 2007; Caldeira et al. 2003).
 
7
Hansen et al. (2005) define the efficacy of a climate forcing as “[…] the global mean temperature change per unit forcing produced by the forcing agent relative to the response produced by a standard CO2 forcing from the same initial climate state.” The climate efficacy (E) of surface albedo can range from 1.5 to 5 depending on the model considered (Hansen et al. 2005; Hansen and Nazarenko 2004; Bellouin and Boucher 2010).
 
8
The cradle-to-grave approach includes the product stage, the construction product stage, the use phase, and the end-of-life stage (BS EN 15978:2011 n.d.).
 
9
In a further research, Santero et al. (2013) evaluated, among other strategies to decrease the GWP related to pavements, the increase in surface albedo. In particular, the authors included the effect of the increase in pavements’ albedo from 0.33 to 0.41 on the energy use for lighting. The analyses showed that the increase in albedo for local roads and collectors entails a decrease in the energy for lighting that corresponds to a decrease in GWP by 20%.
 
10
The latter value has been assessed by Akbari et al. using an alternative methodology based on (Matthews and Caldeira 2008) which calculates the RF from CO2 on a decadal to century timescale.
 
11
This value has been used by Akbari et al. (2009).
 
12
The incidence of the decrease in embodied carbon related to the accounting of the effect of surface albedo on RF on the total embodied carbon (i.e., 50%) has been calculated considering the manufacture and the replacement phase of the materials and omitting the embodied carbon related to the end of life of the roofing system.
 
13
The value was calculated as mean value of previous research: −1.27 W/m2, −1.63 W/m2 (Menon et al. 2010), −1.12 W/m2 (Barnes et al. 2013) −2.14 W/m2 (Hatzianastassiou et al. 2004).
 
14
Considering the variability of the RF in the range −1.12–−2.14 W/m2, a Monte Carlo analysis shows that the corresponding offset of CO2 eq has a standard deviation of about 30 and 160% for hot mixture asphalt and gray Portland cement concrete, respectively.
 
15
Such possibility is however remote, since in winter the amount of solar radiation reaching the Earth is much lower than in summer.
 
Literatur
Zurück zum Zitat Akbari, H., & Konopacki, S. (2005). Calculating energy-saving potentials of heat-island reduction strategies. Energy Policy, 33(6), 721–756.CrossRef Akbari, H., & Konopacki, S. (2005). Calculating energy-saving potentials of heat-island reduction strategies. Energy Policy, 33(6), 721–756.CrossRef
Zurück zum Zitat Akbari, H., Menon, S., & Rosenfeld, A. (2009). Global cooling: Increasing world-wide urban albedos to offset CO2. Climatic Change, 94(3–4), 275–286.CrossRef Akbari, H., Menon, S., & Rosenfeld, A. (2009). Global cooling: Increasing world-wide urban albedos to offset CO2. Climatic Change, 94(3–4), 275–286.CrossRef
Zurück zum Zitat AzariJafari, H., Yahia, A., & Ben Amor, M. (2016). Life cycle assessment of pavements: Reviewing research challenges and opportunities. Journal of Cleaner Production, 112(Part 4), 2187–2197.CrossRef AzariJafari, H., Yahia, A., & Ben Amor, M. (2016). Life cycle assessment of pavements: Reviewing research challenges and opportunities. Journal of Cleaner Production, 112(Part 4), 2187–2197.CrossRef
Zurück zum Zitat Bala, G., et al. (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences, 104(16), 6550–6555.CrossRef Bala, G., et al. (2007). Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of the National Academy of Sciences, 104(16), 6550–6555.CrossRef
Zurück zum Zitat Barnes, C. A., Roy, D. P., & Loveland, T. R. (2013). Projected surface radiative forcing due to 2000–2050 land-cover land-use albedo change over the eastern United States. Journal of Land Use Science, 8(4), 369–382.CrossRef Barnes, C. A., Roy, D. P., & Loveland, T. R. (2013). Projected surface radiative forcing due to 2000–2050 land-cover land-use albedo change over the eastern United States. Journal of Land Use Science, 8(4), 369–382.CrossRef
Zurück zum Zitat Bellouin, N., & Boucher, O. (2010). Climate response and efficacy of snow albedo forcing in the HadGEM2-AML climate model. UK: Met Office Hadley Centre. Bellouin, N., & Boucher, O. (2010). Climate response and efficacy of snow albedo forcing in the HadGEM2-AML climate model. UK: Met Office Hadley Centre.
Zurück zum Zitat Belussi, L., & Barozzi, B. (2015). Mitigation measures to contain the environmental impact of urban areas: A bibliographic review moving from the life cycle approach. Environmental Monitoring and Assessment, 187(12), 745.CrossRef Belussi, L., & Barozzi, B. (2015). Mitigation measures to contain the environmental impact of urban areas: A bibliographic review moving from the life cycle approach. Environmental Monitoring and Assessment, 187(12), 745.CrossRef
Zurück zum Zitat Betts, R. A. (2001). Biogeophysical impacts of land use on present-day climate: Near-surface temperature change and radiative forcing. Atmospheric Science Letters, 2(1–4), 39–51.CrossRef Betts, R. A. (2001). Biogeophysical impacts of land use on present-day climate: Near-surface temperature change and radiative forcing. Atmospheric Science Letters, 2(1–4), 39–51.CrossRef
Zurück zum Zitat Bird, D. N., Kunda, M., Mayer, A., Schlamadinger, B., Canella, L., & Johnston, M. (2008). Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects. Biogeosciences Discussions, 2008, 1511–1543.CrossRef Bird, D. N., Kunda, M., Mayer, A., Schlamadinger, B., Canella, L., & Johnston, M. (2008). Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects. Biogeosciences Discussions, 2008, 1511–1543.CrossRef
Zurück zum Zitat Bright, R. M. (2015). Metrics for biogeophysical climate forcings from land use and land cover changes and their inclusion in life cycle assessment: A critical review. Environmental Science & Technology, 49(6), 3291–3303.CrossRef Bright, R. M. (2015). Metrics for biogeophysical climate forcings from land use and land cover changes and their inclusion in life cycle assessment: A critical review. Environmental Science & Technology, 49(6), 3291–3303.CrossRef
Zurück zum Zitat Bright, R. M., Strømman, A. H., & Peters, G. P. (2011). Radiative forcing impacts of boreal forest biofuels: A scenario study for Norway in light of albedo. Environmental Science & Technology, 45(17), 7570–7580.CrossRef Bright, R. M., Strømman, A. H., & Peters, G. P. (2011). Radiative forcing impacts of boreal forest biofuels: A scenario study for Norway in light of albedo. Environmental Science & Technology, 45(17), 7570–7580.CrossRef
Zurück zum Zitat Bright, R. M., Cherubini, F., & Strømman, A. H. (2012). Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment. Environmental Impact Assessment Review, 37, 2–11.CrossRef Bright, R. M., Cherubini, F., & Strømman, A. H. (2012). Climate impacts of bioenergy: Inclusion of carbon cycle and albedo dynamics in life cycle impact assessment. Environmental Impact Assessment Review, 37, 2–11.CrossRef
Zurück zum Zitat Bright, R. M., Zhao, K., Jackson, R. B., & Cherubini, F. (2015). Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Global Change Biology, 21(9), 3246–3266.CrossRef Bright, R. M., Zhao, K., Jackson, R. B., & Cherubini, F. (2015). Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Global Change Biology, 21(9), 3246–3266.CrossRef
Zurück zum Zitat Caiazzo, F., Malina, R., Staples, M. D., Wolfe, P. J., Yim, S. H. L., & Barrett, S. R. H. (2014). Quantifying the climate impacts of albedo changes due to biofuel production: A comparison with biogeochemical effects. Environmental Research Letters, 9(2), 024015.CrossRef Caiazzo, F., Malina, R., Staples, M. D., Wolfe, P. J., Yim, S. H. L., & Barrett, S. R. H. (2014). Quantifying the climate impacts of albedo changes due to biofuel production: A comparison with biogeochemical effects. Environmental Research Letters, 9(2), 024015.CrossRef
Zurück zum Zitat Caldeira, K., Jain, A. K., & Hoffert, M. I. (2003). Climate sensitivity uncertainty and the need for energy without CO2 emission. Science, 299(5615), 2052–2054.CrossRef Caldeira, K., Jain, A. K., & Hoffert, M. I. (2003). Climate sensitivity uncertainty and the need for energy without CO2 emission. Science, 299(5615), 2052–2054.CrossRef
Zurück zum Zitat Cess, R. D. (1978). Biosphere-albedo feedback and climate modeling. American Meteorological Society, 35(9), 1765–1768. Cess, R. D. (1978). Biosphere-albedo feedback and climate modeling. American Meteorological Society, 35(9), 1765–1768.
Zurück zum Zitat Cherubini, F., & Strømman, A. H. (2013). Bioenergy vs. natural gas for production of district heat in Norway: Climate implications. Energy Procedia, 40, 137–145.CrossRef Cherubini, F., & Strømman, A. H. (2013). Bioenergy vs. natural gas for production of district heat in Norway: Climate implications. Energy Procedia, 40, 137–145.CrossRef
Zurück zum Zitat Cherubini, F., Bright, R. M., & Strømman, A. H. (2012). Site-specific global warming potentials of biogenic CO 2 for bioenergy: Contributions from carbon fluxes and albedo dynamics. Environmental Research Letters, 7(4), 045902.CrossRef Cherubini, F., Bright, R. M., & Strømman, A. H. (2012). Site-specific global warming potentials of biogenic CO 2 for bioenergy: Contributions from carbon fluxes and albedo dynamics. Environmental Research Letters, 7(4), 045902.CrossRef
Zurück zum Zitat Cubi, E., Zibin, N. F., Thompson, S. J., & Bergerson, J. (2016). Sustainability of rooftop technologies in cold climates: Comparative life cycle assessment of white roofs, green roofs, and photovoltaic panels. Journal of Industrial Ecology, 20(2), 249–262.CrossRef Cubi, E., Zibin, N. F., Thompson, S. J., & Bergerson, J. (2016). Sustainability of rooftop technologies in cold climates: Comparative life cycle assessment of white roofs, green roofs, and photovoltaic panels. Journal of Industrial Ecology, 20(2), 249–262.CrossRef
Zurück zum Zitat Davin, E. L., & de Noblet-Ducoudré, N. (2010). Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. Journal of Climate, 23(1), 97–112.CrossRef Davin, E. L., & de Noblet-Ducoudré, N. (2010). Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. Journal of Climate, 23(1), 97–112.CrossRef
Zurück zum Zitat Davin, E. L., de Noblet-Ducoudré, N., & Friedlingstein, P. (2007). Impact of land cover change on surface climate: Relevance of the radiative forcing concept. Geophysical Research Letters, 34(13), L13702.CrossRef Davin, E. L., de Noblet-Ducoudré, N., & Friedlingstein, P. (2007). Impact of land cover change on surface climate: Relevance of the radiative forcing concept. Geophysical Research Letters, 34(13), L13702.CrossRef
Zurück zum Zitat De Wolf, C., Pomponi, F., & Moncaster, A. (2017). Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice. Energy and Buildings, 140, 68–80.CrossRef De Wolf, C., Pomponi, F., & Moncaster, A. (2017). Measuring embodied carbon dioxide equivalent of buildings: A review and critique of current industry practice. Energy and Buildings, 140, 68–80.CrossRef
Zurück zum Zitat Friedland, A. J., & Gillingham, K. T. (2010). Carbon accounting a tricky business. Science, 327(5964), 411–412.CrossRef Friedland, A. J., & Gillingham, K. T. (2010). Carbon accounting a tricky business. Science, 327(5964), 411–412.CrossRef
Zurück zum Zitat Giuntoli, J., Caserini, S., Marelli, L., Baxter, D., & Agostini, A. (2015). Domestic heating from forest logging residues: Environmental risks and benefits. Journal of Cleaner Production, 99, 206–216.CrossRef Giuntoli, J., Caserini, S., Marelli, L., Baxter, D., & Agostini, A. (2015). Domestic heating from forest logging residues: Environmental risks and benefits. Journal of Cleaner Production, 99, 206–216.CrossRef
Zurück zum Zitat Goldewijk, K. K. (2001). Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochemical Cycles, 15(2), 417–433.CrossRef Goldewijk, K. K. (2001). Estimating global land use change over the past 300 years: The HYDE database. Global Biogeochemical Cycles, 15(2), 417–433.CrossRef
Zurück zum Zitat Haberl, H. (2013). Net land-atmosphere flows of biogenic carbon related to bioenergy: Towards an understanding of systemic feedbacks. GCB Bioenergy, 5(4), 351–357.CrossRef Haberl, H. (2013). Net land-atmosphere flows of biogenic carbon related to bioenergy: Towards an understanding of systemic feedbacks. GCB Bioenergy, 5(4), 351–357.CrossRef
Zurück zum Zitat Hansen, J., & Nazarenko, L. (2004). Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 423–428.CrossRef Hansen, J., & Nazarenko, L. (2004). Soot climate forcing via snow and ice albedos. Proceedings of the National Academy of Sciences of the United States of America, 101(2), 423–428.CrossRef
Zurück zum Zitat Hansen, J., et al. (1981). Climate impact of increasing atmospheric carbon dioxide. Science, 213(4511), 957–966.CrossRef Hansen, J., et al. (1981). Climate impact of increasing atmospheric carbon dioxide. Science, 213(4511), 957–966.CrossRef
Zurück zum Zitat Hansen, J., et al. (2005). Efficacy of climate forcings. Journal of Geophysical Research-Atmospheres, 110(D18), D18104.CrossRef Hansen, J., et al. (2005). Efficacy of climate forcings. Journal of Geophysical Research-Atmospheres, 110(D18), D18104.CrossRef
Zurück zum Zitat Hatzianastassiou, N., Katsoulis, B., & Vardavas, I. (2004). Global distribution of aerosol direct radiative forcing in the ultraviolet and visible arising under clear skies. Tellus B, 56(1), 51–71.CrossRef Hatzianastassiou, N., Katsoulis, B., & Vardavas, I. (2004). Global distribution of aerosol direct radiative forcing in the ultraviolet and visible arising under clear skies. Tellus B, 56(1), 51–71.CrossRef
Zurück zum Zitat Helin, T., Sokka, L., Soimakallio, S., Pingoud, K., & Pajula, T. (2013). Approaches for inclusion of forest carbon cycle in life cycle assessment – A review. GCB Bioenergy, 5(5), 475–486.CrossRef Helin, T., Sokka, L., Soimakallio, S., Pingoud, K., & Pajula, T. (2013). Approaches for inclusion of forest carbon cycle in life cycle assessment – A review. GCB Bioenergy, 5(5), 475–486.CrossRef
Zurück zum Zitat Holtsmark, B. (2015). A comparison of the global warming effects of wood fuels and fossil fuels taking albedo into account. GCB Bioenergy, 7(5), 984–997.CrossRef Holtsmark, B. (2015). A comparison of the global warming effects of wood fuels and fossil fuels taking albedo into account. GCB Bioenergy, 7(5), 984–997.CrossRef
Zurück zum Zitat IPCC. (2001). Climate change 2001: The scientific basis. Cambridge, UK: Cambridge University Press. IPCC. (2001). Climate change 2001: The scientific basis. Cambridge, UK: Cambridge University Press.
Zurück zum Zitat IPCC – Intergovernmental Panel on Climate Change. (2007). IPCC fourth assessment report: Climate change 2007. Working group I: The physical science basis. IPCC – Intergovernmental Panel on Climate Change. (2007). IPCC fourth assessment report: Climate change 2007. Working group I: The physical science basis.
Zurück zum Zitat IPCC. (2013). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535). Cambridge\New York: Cambridge University Press. https://doi.org/10.1017/CBO9781107415324. IPCC. (2013). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535). Cambridge\New York: Cambridge University Press. https://​doi.​org/​10.​1017/​CBO9781107415324​.
Zurück zum Zitat Jin, M., Dickinson, R. E., & Zhang, D. (2005). The footprint of urban areas on global climate as characterized by MODIS. Journal of Climate, 18(10), 1551–1565.CrossRef Jin, M., Dickinson, R. E., & Zhang, D. (2005). The footprint of urban areas on global climate as characterized by MODIS. Journal of Climate, 18(10), 1551–1565.CrossRef
Zurück zum Zitat Jørgensen, S. V., Cherubini, F., & Michelsen, O. (2014). Biogenic CO2 fluxes, changes in surface albedo and biodiversity impacts from establishment of a miscanthus plantation. Journal of Environmental Management, 146, 346–354.CrossRef Jørgensen, S. V., Cherubini, F., & Michelsen, O. (2014). Biogenic CO2 fluxes, changes in surface albedo and biodiversity impacts from establishment of a miscanthus plantation. Journal of Environmental Management, 146, 346–354.CrossRef
Zurück zum Zitat Kabat, P., et al. (2004). Vegetation, water, humans and the climate: A new perspective on an interactive system. Springer Science & Business Media, Berlin. Kabat, P., et al. (2004). Vegetation, water, humans and the climate: A new perspective on an interactive system. Springer Science & Business Media, Berlin.
Zurück zum Zitat Kiehl, J. T., & Trenberth, K. E. (1997). Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society, 78(2), 197–208.CrossRef Kiehl, J. T., & Trenberth, K. E. (1997). Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society, 78(2), 197–208.CrossRef
Zurück zum Zitat Köhler, P., et al. (2010). What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews, 29(1), 129–145.CrossRef Köhler, P., et al. (2010). What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quaternary Science Reviews, 29(1), 129–145.CrossRef
Zurück zum Zitat Lenton, T. M., & Vaughan, N. E. (2009). The radiative forcing potential of different climate geoengineering options. Atmospheric Chemistry and Physics, 9(15), 5539–5561.CrossRef Lenton, T. M., & Vaughan, N. E. (2009). The radiative forcing potential of different climate geoengineering options. Atmospheric Chemistry and Physics, 9(15), 5539–5561.CrossRef
Zurück zum Zitat Lo, C. P., & Quattrocchi, D. A. (2003). Land-use and land-cover change, urban heat island phenomenon, and health implications: A remote sensing approach. Photogrammetric Engineering and Remote Sensing, 69(9), 1053–1063.CrossRef Lo, C. P., & Quattrocchi, D. A. (2003). Land-use and land-cover change, urban heat island phenomenon, and health implications: A remote sensing approach. Photogrammetric Engineering and Remote Sensing, 69(9), 1053–1063.CrossRef
Zurück zum Zitat Local laws of the City of New York for the year 2011 No. 21 (n.d.). Local laws of the City of New York for the year 2011 No. 21 (n.d.).
Zurück zum Zitat Lohila, A., et al. (2010). Forestation of boreal peatlands: Impacts of changing albedo and greenhouse gas fluxes on radiative forcing. Journal of Geophysical Research – Biogeosciences, 115(G4), G04011.CrossRef Lohila, A., et al. (2010). Forestation of boreal peatlands: Impacts of changing albedo and greenhouse gas fluxes on radiative forcing. Journal of Geophysical Research – Biogeosciences, 115(G4), G04011.CrossRef
Zurück zum Zitat Matthews, H. D., & Caldeira, K. (2008). Stabilizing climate requires near-zero emissions. Geophysical Research Letters, 35(4), L04705.CrossRef Matthews, H. D., & Caldeira, K. (2008). Stabilizing climate requires near-zero emissions. Geophysical Research Letters, 35(4), L04705.CrossRef
Zurück zum Zitat McKechnie, J., Colombo, S., & MacLean, H. L. (2014). Forest carbon accounting methods and the consequences of forest bioenergy for national greenhouse gas emissions inventories. Environmental Science & Policy, 44, 164–173.CrossRef McKechnie, J., Colombo, S., & MacLean, H. L. (2014). Forest carbon accounting methods and the consequences of forest bioenergy for national greenhouse gas emissions inventories. Environmental Science & Policy, 44, 164–173.CrossRef
Zurück zum Zitat Menon, S., Akbari, H., Mahanama, S., Sednev, I., & Levinson, R. (2010). Radiative forcing and temperature response to changes in urban albedos and associated CO offsets. Environmental Research Letters, 5(1), 014005. Menon, S., Akbari, H., Mahanama, S., Sednev, I., & Levinson, R. (2010). Radiative forcing and temperature response to changes in urban albedos and associated CO offsets. Environmental Research Letters, 5(1), 014005.
Zurück zum Zitat Muñoz, I., Campra, P., & Fernández-Alba, A. R. (2010). Including CO2-emission equivalence of changes in land surface albedo in life cycle assessment. Methodology and case study on greenhouse agriculture. International Journal of Life Cycle Assessment, 15(7), 672–681.CrossRef Muñoz, I., Campra, P., & Fernández-Alba, A. R. (2010). Including CO2-emission equivalence of changes in land surface albedo in life cycle assessment. Methodology and case study on greenhouse agriculture. International Journal of Life Cycle Assessment, 15(7), 672–681.CrossRef
Zurück zum Zitat Otterman, J. (1977). Anthropogenic impact on the albedo of the earth. Climatic Change, 1(2), 137–155.CrossRef Otterman, J. (1977). Anthropogenic impact on the albedo of the earth. Climatic Change, 1(2), 137–155.CrossRef
Zurück zum Zitat Pitman, A. J. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23(5), 479–510.CrossRef Pitman, A. J. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23(5), 479–510.CrossRef
Zurück zum Zitat Pomponi, F., & Moncaster, A. (2016). Embodied carbon mitigation and reduction in the built environment – What does the evidence say? Journal of Environmental Management, 181, 687–700.CrossRef Pomponi, F., & Moncaster, A. (2016). Embodied carbon mitigation and reduction in the built environment – What does the evidence say? Journal of Environmental Management, 181, 687–700.CrossRef
Zurück zum Zitat Pongratz, J., Reick, C. H., Raddatz, T., & Claussen, M. (2010). Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophysical Research Letters, 37(8), L08702.CrossRef Pongratz, J., Reick, C. H., Raddatz, T., & Claussen, M. (2010). Biogeophysical versus biogeochemical climate response to historical anthropogenic land cover change. Geophysical Research Letters, 37(8), L08702.CrossRef
Zurück zum Zitat Randerson, J. T., et al. (2006). The impact of boreal forest fire on climate warming. Science, 314(5802), 1130–1132.CrossRef Randerson, J. T., et al. (2006). The impact of boreal forest fire on climate warming. Science, 314(5802), 1130–1132.CrossRef
Zurück zum Zitat Roe, G. H., & Baker, M. B. (2007). Why is climate sensitivity so unpredictable? Science, 318(5850), 629–632.CrossRef Roe, G. H., & Baker, M. B. (2007). Why is climate sensitivity so unpredictable? Science, 318(5850), 629–632.CrossRef
Zurück zum Zitat Rosenzweig, C., Solecki, W. D., Parshall, L., Chopping, M., Pope, G., & Goldberg, R. (2005). Characterizing the urban heat island in current and future climates in New Jersey. Global Environmental Change Part B Environmental Hazards, 6(1), 51–62. Rosenzweig, C., Solecki, W. D., Parshall, L., Chopping, M., Pope, G., & Goldberg, R. (2005). Characterizing the urban heat island in current and future climates in New Jersey. Global Environmental Change Part B Environmental Hazards, 6(1), 51–62.
Zurück zum Zitat Røyne, F., Peñaloza, D., Sandin, G., Berlin, J., & Svanström, M. (2016). Climate impact assessment in life cycle assessments of forest products: Implications of method choice for results and decision-making. Journal of Cleaner Production, 116, 90–99.CrossRef Røyne, F., Peñaloza, D., Sandin, G., Berlin, J., & Svanström, M. (2016). Climate impact assessment in life cycle assessments of forest products: Implications of method choice for results and decision-making. Journal of Cleaner Production, 116, 90–99.CrossRef
Zurück zum Zitat Santero, N. J., & Horvath, A. (2009). Global warming potential of pavements. Environmental Research Letters, 4(3), 034011.CrossRef Santero, N. J., & Horvath, A. (2009). Global warming potential of pavements. Environmental Research Letters, 4(3), 034011.CrossRef
Zurück zum Zitat Santero, N. J., Masanet, E., & Horvath, A. (2011). Life-cycle assessment of pavements part II: Filling the research gaps. Resources, Conservation and Recycling, 55(9–10), 810–818.CrossRef Santero, N. J., Masanet, E., & Horvath, A. (2011). Life-cycle assessment of pavements part II: Filling the research gaps. Resources, Conservation and Recycling, 55(9–10), 810–818.CrossRef
Zurück zum Zitat Santero, N., Loijos, A., & Ochsendorf, J. (2013). Greenhouse gas emissions reduction opportunities for concrete pavements. Journal of Industrial Ecology, 17(6), 859–868.CrossRef Santero, N., Loijos, A., & Ochsendorf, J. (2013). Greenhouse gas emissions reduction opportunities for concrete pavements. Journal of Industrial Ecology, 17(6), 859–868.CrossRef
Zurück zum Zitat Schwaiger, H. P., & Bird, D. N. (2010). Integration of albedo effects caused by land use change into the climate balance: Should we still account in greenhouse gas units? Forest Ecology and Management, 260(3), 278–286.CrossRef Schwaiger, H. P., & Bird, D. N. (2010). Integration of albedo effects caused by land use change into the climate balance: Should we still account in greenhouse gas units? Forest Ecology and Management, 260(3), 278–286.CrossRef
Zurück zum Zitat Sen, S., & Roesler, J. (2016). Aging albedo model for asphalt pavement surfaces. Journal of Cleaner Production, 117, 169–175.CrossRef Sen, S., & Roesler, J. (2016). Aging albedo model for asphalt pavement surfaces. Journal of Cleaner Production, 117, 169–175.CrossRef
Zurück zum Zitat Singh, B., Guest, G., Bright, R. M., & Strømman, A. H. (2014). Life cycle assessment of electric and fuel cell vehicle transport based on forest biomass. Journal of Industrial Ecology, 18(2), 176–186.CrossRef Singh, B., Guest, G., Bright, R. M., & Strømman, A. H. (2014). Life cycle assessment of electric and fuel cell vehicle transport based on forest biomass. Journal of Industrial Ecology, 18(2), 176–186.CrossRef
Zurück zum Zitat Susca, T. (2012). Multiscale approach to life cycle assessment. Journal of Industrial Ecology, 16(6), 951–962.CrossRef Susca, T. (2012). Multiscale approach to life cycle assessment. Journal of Industrial Ecology, 16(6), 951–962.CrossRef
Zurück zum Zitat Susca, T. (2012a). Enhancement of life cycle assessment (LCA) methodology to include the effect of surface albedo on climate change: Comparing black and white roofs. Environmental Pollution, 163, 48–54.CrossRef Susca, T. (2012a). Enhancement of life cycle assessment (LCA) methodology to include the effect of surface albedo on climate change: Comparing black and white roofs. Environmental Pollution, 163, 48–54.CrossRef
Zurück zum Zitat Susca, T., Gaffin, S. R., & Dell’Osso, G. R. (2011). Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution, 159(8–9), 2119–2126.CrossRef Susca, T., Gaffin, S. R., & Dell’Osso, G. R. (2011). Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution, 159(8–9), 2119–2126.CrossRef
Zurück zum Zitat Taha, H. (1997). Urban climates and heat islands; albedo, evapotranpiration, and anthropogenic heat. Energy and Buildings, 25, 99–103.CrossRef Taha, H. (1997). Urban climates and heat islands; albedo, evapotranpiration, and anthropogenic heat. Energy and Buildings, 25, 99–103.CrossRef
Zurück zum Zitat Taha, H., Akbari, H., Rosenfeld, A., & Huang, J. (1988). Residential cooling loads and the urban heat island—the effects of albedo. Building and Environment, 23(4), 271–283.CrossRef Taha, H., Akbari, H., Rosenfeld, A., & Huang, J. (1988). Residential cooling loads and the urban heat island—the effects of albedo. Building and Environment, 23(4), 271–283.CrossRef
Zurück zum Zitat Tan, J., et al. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), 75–84.CrossRef Tan, J., et al. (2010). The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1), 75–84.CrossRef
Zurück zum Zitat Yang, J., Wang, Z.-H., & Kaloush, K. E. (2015). Environmental impacts of reflective materials: Is high albedo a “silver bullet” for mitigating urban heat island? Renewable and Sustainable Energy Reviews, 47, 830–843.CrossRef Yang, J., Wang, Z.-H., & Kaloush, K. E. (2015). Environmental impacts of reflective materials: Is high albedo a “silver bullet” for mitigating urban heat island? Renewable and Sustainable Energy Reviews, 47, 830–843.CrossRef
Zurück zum Zitat Yu, B., & Lu, Q. (2014). Estimation of albedo effect in pavement life cycle assessment. Journal of Cleaner Production, 64, 306–309.CrossRef Yu, B., & Lu, Q. (2014). Estimation of albedo effect in pavement life cycle assessment. Journal of Cleaner Production, 64, 306–309.CrossRef
Zurück zum Zitat Zhang, Y., et al. (2010). Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada. Environmental Science & Technology, 44(1), 538–544.CrossRef Zhang, Y., et al. (2010). Life cycle emissions and cost of producing electricity from coal, natural gas, and wood pellets in Ontario, Canada. Environmental Science & Technology, 44(1), 538–544.CrossRef
Metadaten
Titel
Embodied Carbon of Surfaces: Inclusion of Surface Albedo Accounting in Life-Cycle Assessment
verfasst von
Tiziana Susca
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-72796-7_5