Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Embodied Carbon of Wood and Reinforced Concrete Structures Under Chronic and Acute Hazards

verfasst von : A. Souto-Martinez, E. J. Sutley, A. B. Liel, W. V. Srubar III

Erschienen in: Embodied Carbon in Buildings

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantifying the total life cycle embodied carbon of wood and reinforced concrete structures necessitates calculation of use-phase impacts, including expected in-service damage and replacement due to chronic and acute environmental hazards. Such prediction is difficult and often omitted in whole-building life cycle assessment (WBLCA).
To address this challenge, this chapter provides readers an overview of simple service-life prediction models that can be implemented to estimate expected in-service lifetime of wood and reinforced concrete materials and components exposed to chronic hazards (e.g., chloride, carbon dioxide).
In addition, it provides a review of models and methodologies for estimating contributions to WBLCA from damage to structural and nonstructural components caused by acute hazard events (e.g., earthquakes, floods). Using case studies, this chapter discusses how results from these analyses can be incorporated into a holistic LCA methodology for estimating total embodied carbon of wood and reinforced concrete structures that are prone to chronic and acute hazard events.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat ACI (American Concrete Institute). (2011). Building code requirements for structural concrete (ACI 318-11) and commentary (ACI 318R-11). Farmington Hills: American Concrete Institute. ACI (American Concrete Institute). (2011). Building code requirements for structural concrete (ACI 318-11) and commentary (ACI 318R-11). Farmington Hills: American Concrete Institute.
Zurück zum Zitat Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review. Cement and Concrete Composites, 25(4–5), 459–471.CrossRef Ahmad, S. (2003). Reinforcement corrosion in concrete structures, its monitoring and service life prediction-a review. Cement and Concrete Composites, 25(4–5), 459–471.CrossRef
Zurück zum Zitat Ann, K. Y., Pack, S. W., Hwang, J. P., Song, H. W., & Kim, S. H. (2010). Service life prediction of a concrete bridge structure subjected to carbonation. Construction and Building Materials, 24(8), 1494–1501.CrossRef Ann, K. Y., Pack, S. W., Hwang, J. P., Song, H. W., & Kim, S. H. (2010). Service life prediction of a concrete bridge structure subjected to carbonation. Construction and Building Materials, 24(8), 1494–1501.CrossRef
Zurück zum Zitat ASTM C666/C666M-15. (2015). Standard test method for resistance of concrete to rapid freezing and thawing. West Conshohocken: ASTM International. ASTM C666/C666M-15. (2015). Standard test method for resistance of concrete to rapid freezing and thawing. West Conshohocken: ASTM International.
Zurück zum Zitat ATC (Applied Technology Council). (2012). Seismic performance assessment of buildings, FEMA P-58-1. Redwood City: Applied Technology Council (ATC). ATC (Applied Technology Council). (2012). Seismic performance assessment of buildings, FEMA P-58-1. Redwood City: Applied Technology Council (ATC).
Zurück zum Zitat Attiogbe, E. K. (1996). Predicting freeze-thaw durability of concrete-a new approach. ACI Materials Journal, 93(5), 457–464. Attiogbe, E. K. (1996). Predicting freeze-thaw durability of concrete-a new approach. ACI Materials Journal, 93(5), 457–464.
Zurück zum Zitat Basbagill, J., Flager, F., Lepech, M., & Fischer, M. (2013). Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment, 60, 81–92.CrossRef Basbagill, J., Flager, F., Lepech, M., & Fischer, M. (2013). Application of life-cycle assessment to early stage building design for reduced embodied environmental impacts. Building and Environment, 60, 81–92.CrossRef
Zurück zum Zitat Bazant, Z. P., Chern, J. C., Rosenberg, A. M., & Gaidis, J. M. (1988). Mathematical model for freeze-thaw durability of concrete. Journal of the American Ceramic Society, 71, 776–783.CrossRef Bazant, Z. P., Chern, J. C., Rosenberg, A. M., & Gaidis, J. M. (1988). Mathematical model for freeze-thaw durability of concrete. Journal of the American Ceramic Society, 71, 776–783.CrossRef
Zurück zum Zitat Bribián, I., Aranda-Usón, A., & Scarpellini, S. (2009). Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Building and Environment, 44(12), 2510–2520.CrossRef Bribián, I., Aranda-Usón, A., & Scarpellini, S. (2009). Life cycle assessment in buildings: State-of-the-art and simplified LCA methodology as a complement for building certification. Building and Environment, 44(12), 2510–2520.CrossRef
Zurück zum Zitat Brischke, C., Bayerbach, R., & Rapp, A. O. (2006). Decay-influencing factors: A basis for service life prediction of wood and wood-based products. Wood Material Science and Engineering, 1(3–4), 91–107.CrossRef Brischke, C., Bayerbach, R., & Rapp, A. O. (2006). Decay-influencing factors: A basis for service life prediction of wood and wood-based products. Wood Material Science and Engineering, 1(3–4), 91–107.CrossRef
Zurück zum Zitat Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416.CrossRef Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renewable and Sustainable Energy Reviews, 29, 394–416.CrossRef
Zurück zum Zitat Carroll, C., Leichti, R., & Clauson, M. (2010). Wood materials, nails, and sheathing connections from early 20th century residential buildings. Journal of Materials in Civil Engineering, 22(11), 1122–1128.CrossRef Carroll, C., Leichti, R., & Clauson, M. (2010). Wood materials, nails, and sheathing connections from early 20th century residential buildings. Journal of Materials in Civil Engineering, 22(11), 1122–1128.CrossRef
Zurück zum Zitat Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Applied Energy, 143, 395–413.CrossRef Chau, C. K., Leung, T. M., & Ng, W. Y. (2015). A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Applied Energy, 143, 395–413.CrossRef
Zurück zum Zitat Cho, T. (2007). Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method. Construction and Building Materials, 21(12), 2031–2040.CrossRef Cho, T. (2007). Prediction of cyclic freeze-thaw damage in concrete structures based on response surface method. Construction and Building Materials, 21(12), 2031–2040.CrossRef
Zurück zum Zitat Clarke, J. A., Johnstone, C. M., Kelly, N. J., McLean, R. C., & Nakhi, A. E. (1997). Development of a simulation tool for mould growth prediction in buildings. Proceedings of the Fifth International IBPSA Conference, 2, 343–349. Clarke, J. A., Johnstone, C. M., Kelly, N. J., McLean, R. C., & Nakhi, A. E. (1997). Development of a simulation tool for mould growth prediction in buildings. Proceedings of the Fifth International IBPSA Conference, 2, 343–349.
Zurück zum Zitat Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: Influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556.CrossRef Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: Influence on their carbon footprint. The International Journal of Life Cycle Assessment, 15(6), 549–556.CrossRef
Zurück zum Zitat CSN EN 15978. (2011). Sustainability of construction works – assessment of environmental performance of buildings – calculation method. European Standard 15978. CSN EN 15978. (2011). Sustainability of construction works – assessment of environmental performance of buildings – calculation method. European Standard 15978.
Zurück zum Zitat Deniz, D., Arneson, E. E., Liel, A. B., Dashti, S., & Javernick-Will, A. N. (2017). Flood loss models for residential buildings based on the 2013 Colorado floods. Natural Hazards, 85(2), 977–1003.CrossRef Deniz, D., Arneson, E. E., Liel, A. B., Dashti, S., & Javernick-Will, A. N. (2017). Flood loss models for residential buildings based on the 2013 Colorado floods. Natural Hazards, 85(2), 977–1003.CrossRef
Zurück zum Zitat DHS (Department of Homeland Security). (2003). HAZUS-MH MRI technical manual. DHS Emergency Preparedness and Response Directorate. Washington, DC: FEMA Mitigation Division. DHS (Department of Homeland Security). (2003). HAZUS-MH MRI technical manual. DHS Emergency Preparedness and Response Directorate. Washington, DC: FEMA Mitigation Division.
Zurück zum Zitat Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, 16(6), 3730–3743.CrossRef Dixit, M. K., Fernández-Solís, J. L., Lavy, S., & Culp, C. H. (2012). Need for an embodied energy measurement protocol for buildings: A review paper. Renewable and Sustainable Energy Reviews, 16(6), 3730–3743.CrossRef
Zurück zum Zitat Dong, Y., & Li, Y. (2016). Risk-based assessment of wood residential construction subjected to hurricane events considering indirect and environmental loss. Sustainable and Resilient Infrastructure, 1(1–2), 46–62.CrossRef Dong, Y., & Li, Y. (2016). Risk-based assessment of wood residential construction subjected to hurricane events considering indirect and environmental loss. Sustainable and Resilient Infrastructure, 1(1–2), 46–62.CrossRef
Zurück zum Zitat Elnashai, A. S., Elnashai, A., Hampton, S., Lee, J. S., McLaren, T., Myers, J. D., Navarro, C., Spencer, B., & Tolbert, N. (2008). Architectural overview of MAEviz-HAZTURK. Journal of Earthquake Engineering, 12, 92–99.CrossRef Elnashai, A. S., Elnashai, A., Hampton, S., Lee, J. S., McLaren, T., Myers, J. D., Navarro, C., Spencer, B., & Tolbert, N. (2008). Architectural overview of MAEviz-HAZTURK. Journal of Earthquake Engineering, 12, 92–99.CrossRef
Zurück zum Zitat Erlandsson, M., & Borg, M. (2003). Generic LCA-methodology applicable for buildings, constructions and operation services, today practice and development needs. Building and Environment, 38(7), 919–938.CrossRef Erlandsson, M., & Borg, M. (2003). Generic LCA-methodology applicable for buildings, constructions and operation services, today practice and development needs. Building and Environment, 38(7), 919–938.CrossRef
Zurück zum Zitat Folz, B., & Filiatrault, A. (2001). Cyclic analysis of wood shear walls. Journal of Structural Engineering, 127(4), 433–441.CrossRef Folz, B., & Filiatrault, A. (2001). Cyclic analysis of wood shear walls. Journal of Structural Engineering, 127(4), 433–441.CrossRef
Zurück zum Zitat Fridley, K. (2002). Wood and wood-based materials: Current status and future of a structural material. Journal of Materials in Civil Engineering, 14(2), 91–96.CrossRef Fridley, K. (2002). Wood and wood-based materials: Current status and future of a structural material. Journal of Materials in Civil Engineering, 14(2), 91–96.CrossRef
Zurück zum Zitat García-Segura, T., Yepes, V., & Alcalá, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.CrossRef García-Segura, T., Yepes, V., & Alcalá, J. (2014). Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. The International Journal of Life Cycle Assessment, 19(1), 3–12.CrossRef
Zurück zum Zitat Glasser, F. P., Marchand, J., & Samson, E. (2008). Durability of concrete—degradation phenomena involving detrimental chemical reactions. Cement and Concrete Research, 38(2), 226–246.CrossRef Glasser, F. P., Marchand, J., & Samson, E. (2008). Durability of concrete—degradation phenomena involving detrimental chemical reactions. Cement and Concrete Research, 38(2), 226–246.CrossRef
Zurück zum Zitat Goedkoop, M., Oele, M., Leijting, J., Ponsioen, T., & Meijer, E. (2013). Introduction to LCA with SimaPro. Amersfoort: PréSustainability. Goedkoop, M., Oele, M., Leijting, J., Ponsioen, T., & Meijer, E. (2013). Introduction to LCA with SimaPro. Amersfoort: PréSustainability.
Zurück zum Zitat Goel, R., Kumar, R., & Paul, D. K. (2007). Comparative study of various creep and shrinkage prediction models for concrete. Journal of Materials in Civil Engineering, 19(3), 249–260.CrossRef Goel, R., Kumar, R., & Paul, D. K. (2007). Comparative study of various creep and shrinkage prediction models for concrete. Journal of Materials in Civil Engineering, 19(3), 249–260.CrossRef
Zurück zum Zitat Grant, A., & Ries, R. (2013). Impact of building service life models on life cycle assessment. Building Research and Information, 41(2), 168–186. Grant, A., & Ries, R. (2013). Impact of building service life models on life cycle assessment. Building Research and Information, 41(2), 168–186.
Zurück zum Zitat Grant, A., Ries, R., & Kibert, C. (2014). Life cycle assessment and service life prediction. Journal of Industrial Ecology, 18(2), 187–200. Grant, A., Ries, R., & Kibert, C. (2014). Life cycle assessment and service life prediction. Journal of Industrial Ecology, 18(2), 187–200.
Zurück zum Zitat Hammel, K. E. (1997). Fungal degradation of lignin. In Driven by nature: Plant litter quality and decomposition (pp. 33–46). Wallingford: CAB International. Hammel, K. E. (1997). Fungal degradation of lignin. In Driven by nature: Plant litter quality and decomposition (pp. 33–46). Wallingford: CAB International.
Zurück zum Zitat Haselton, C. B. (2006). Assessing seismic collapse safety of modern reinforced concrete moment frame buildings (Doctoral Dissertation). Stanford University, Palo Alto. Haselton, C. B. (2006). Assessing seismic collapse safety of modern reinforced concrete moment frame buildings (Doctoral Dissertation). Stanford University, Palo Alto.
Zurück zum Zitat Hossain, K. A., & Gencturk, B. (2014). Life-cycle environmental impact assessment of reinforced concrete buildings subjected to natural hazards. Journal of Architectural Engineering, 22(4), A4014001-1-12. Hossain, K. A., & Gencturk, B. (2014). Life-cycle environmental impact assessment of reinforced concrete buildings subjected to natural hazards. Journal of Architectural Engineering, 22(4), A4014001-1-12.
Zurück zum Zitat Huang, Z., Rosowsky, D. V., & Sparks, P. R. (2001). Long-term hurricane risk assessment and expected damage to residential structures. Reliability Engineering & System Safety, 74(3), 239–249.CrossRef Huang, Z., Rosowsky, D. V., & Sparks, P. R. (2001). Long-term hurricane risk assessment and expected damage to residential structures. Reliability Engineering & System Safety, 74(3), 239–249.CrossRef
Zurück zum Zitat IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stoker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press. IPCC. (2013). Climate change 2013: The physical science basis. In T. F. Stoker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.
Zurück zum Zitat Jiang, L., Lin, B., & Cai, Y. (2000). A model for predicting carbonation of high-volume fly ash concrete. Cement and Concrete Research, 30(5), 699–702.CrossRef Jiang, L., Lin, B., & Cai, Y. (2000). A model for predicting carbonation of high-volume fly ash concrete. Cement and Concrete Research, 30(5), 699–702.CrossRef
Zurück zum Zitat Junnila, S., & Horvath, A. (2003). Life-cycle environmental effects of an office building. Journal of Infrastructure Systems, 9(4), 157–166.CrossRef Junnila, S., & Horvath, A. (2003). Life-cycle environmental effects of an office building. Journal of Infrastructure Systems, 9(4), 157–166.CrossRef
Zurück zum Zitat Kashef-Haghighi, S., Shao, Y., & Ghoshal, S. (2015). Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing. Cement and Concrete Research, 67, 1–10.CrossRef Kashef-Haghighi, S., Shao, Y., & Ghoshal, S. (2015). Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing. Cement and Concrete Research, 67, 1–10.CrossRef
Zurück zum Zitat Khasreen, M. M., Banfill, P. F., & Menzies, G. F. (2009). Life-cycle assessment and the environmental impact of buildings: A review. Sustainability, 1(3), 674–701.CrossRef Khasreen, M. M., Banfill, P. F., & Menzies, G. F. (2009). Life-cycle assessment and the environmental impact of buildings: A review. Sustainability, 1(3), 674–701.CrossRef
Zurück zum Zitat Kosmatka, S. H., Panarese, W. C., & Kerkhoff, B. (2002). Design and control of concrete mixtures. Skokie: Portland Cement Association. Kosmatka, S. H., Panarese, W. C., & Kerkhoff, B. (2002). Design and control of concrete mixtures. Skokie: Portland Cement Association.
Zurück zum Zitat Krawinkler, H., & Miranda, E. (2004). Performance-based earthquake engineering. In Earthquake engineering: From engineering seismology to performance-based engineering. Boca Raton, Florida: CRC Press. Krawinkler, H., & Miranda, E. (2004). Performance-based earthquake engineering. In Earthquake engineering: From engineering seismology to performance-based engineering. Boca Raton, Florida: CRC Press.
Zurück zum Zitat Krus, M., Sedlbauer, K., Zillig, W., & Künzel, H.M. (2001). A new model for Mould prediction and its application on a test roof. In The second internal scientific conference on the current problems of building physics in the rural building, Cracow. Krus, M., Sedlbauer, K., Zillig, W., & Künzel, H.M. (2001). A new model for Mould prediction and its application on a test roof. In The second internal scientific conference on the current problems of building physics in the rural building, Cracow.
Zurück zum Zitat Kurtis, K. E., Monteiro, P. J., & Madanat, S. M. (2000). Empirical models to predict concrete expansion caused by sulfate attack. ACI Materials Journal, 97(2), 156–161. Kurtis, K. E., Monteiro, P. J., & Madanat, S. M. (2000). Empirical models to predict concrete expansion caused by sulfate attack. ACI Materials Journal, 97(2), 156–161.
Zurück zum Zitat Lee, S., Park, W., & Lee, H. (2013). Life cycle CO2 assessment method for concrete using CO2 balance and suggestion to decrease LCCO2 of concrete in South-Korean apartment. Energy and Buildings, 58, 93–102. Lee, S., Park, W., & Lee, H. (2013). Life cycle CO2 assessment method for concrete using CO2 balance and suggestion to decrease LCCO2 of concrete in South-Korean apartment. Energy and Buildings, 58, 93–102.
Zurück zum Zitat Leicester, R. H. (2001). Engineered durability for timber construction. Progress in Structural Engineering and Materials, 3, 216–227.CrossRef Leicester, R. H. (2001). Engineered durability for timber construction. Progress in Structural Engineering and Materials, 3, 216–227.CrossRef
Zurück zum Zitat Leicester, R. H., & Foliente, G. C. (1999). Models for timber decay and termite attack. In M. A. Lacasse & D. J. Vanier (Eds.), Durability of building materials and components (pp. 756–765). Ottawa: Institute for Research in Construction. Leicester, R. H., & Foliente, G. C. (1999). Models for timber decay and termite attack. In M. A. Lacasse & D. J. Vanier (Eds.), Durability of building materials and components (pp. 756–765). Ottawa: Institute for Research in Construction.
Zurück zum Zitat Leicester, R. H., Wang, C. -H., & Cookson, L. J. (2003). A risk model for termite attack in Australia. In Proceedings of the 34th IRGWP annual meeting, Brisbane. Leicester, R. H., Wang, C. -H., & Cookson, L. J. (2003). A risk model for termite attack in Australia. In Proceedings of the 34th IRGWP annual meeting, Brisbane.
Zurück zum Zitat Leicester, R.H., Wang, C-H., Cookson, L. (2004). A probabilistic model for termite attack. Proceedings of the 8th World Conference on Timber Engineering. Lahti. Leicester, R.H., Wang, C-H., Cookson, L. (2004). A probabilistic model for termite attack. Proceedings of the 8th World Conference on Timber Engineering. Lahti.
Zurück zum Zitat Mileti, D., & Gailus, J. (2005). Sustainable development and hazards mitigation in the United States: Disasters by design revisited. Mitigation and Adaptation Strategies for Global Change, 10, 491–504.CrossRef Mileti, D., & Gailus, J. (2005). Sustainable development and hazards mitigation in the United States: Disasters by design revisited. Mitigation and Adaptation Strategies for Global Change, 10, 491–504.CrossRef
Zurück zum Zitat Mitrani-Reiser, J. (2007). An ounce of prevention: Probabilistic loss estimation for performance-based earthquake engineering (Doctoral dissertation). California Institute of Technology. Mitrani-Reiser, J. (2007). An ounce of prevention: Probabilistic loss estimation for performance-based earthquake engineering (Doctoral dissertation). California Institute of Technology.
Zurück zum Zitat Moehle, J., & Deierlein, G.G. (2004). A framework methodology for performance-based earthquake Engineering. In 13th world conference on earthquake engineering (pp. 3812–3814). Moehle, J., & Deierlein, G.G. (2004). A framework methodology for performance-based earthquake Engineering. In 13th world conference on earthquake engineering (pp. 3812–3814).
Zurück zum Zitat Monteiro, P. J. M., & Kurtis, K. E. (2003). Time to failure for concrete exposed to severe sulfate attack. Cement and Concrete Research, 33(7), 987–993.CrossRef Monteiro, P. J. M., & Kurtis, K. E. (2003). Time to failure for concrete exposed to severe sulfate attack. Cement and Concrete Research, 33(7), 987–993.CrossRef
Zurück zum Zitat Monteiro, I., Branco, I. F., De Brito, J., & Neves, R. (2012). Statistical analysis of the carbonation coefficient in open air concrete structures. Construction and Building Materials, 29, 263–269.CrossRef Monteiro, I., Branco, I. F., De Brito, J., & Neves, R. (2012). Statistical analysis of the carbonation coefficient in open air concrete structures. Construction and Building Materials, 29, 263–269.CrossRef
Zurück zum Zitat Moon, H. J., & Augenbroe, G. (2003). Evaluation of hygrothermal models for mold growth avoidance prediction. In Proceedings of the eighth international IBPSA conference, Netherlands. Moon, H. J., & Augenbroe, G. (2003). Evaluation of hygrothermal models for mold growth avoidance prediction. In Proceedings of the eighth international IBPSA conference, Netherlands.
Zurück zum Zitat Mounanga, P., Khelidj, A., Loukili, A., & Baroghel-Bouny, V. (2004). Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cement and Concrete Research, 34(2), 255–265.CrossRef Mounanga, P., Khelidj, A., Loukili, A., & Baroghel-Bouny, V. (2004). Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cement and Concrete Research, 34(2), 255–265.CrossRef
Zurück zum Zitat Ojanen, T., Peuhkuri, R., Viitanen, H., Lähdesmäki, K., Vinha, J., & Salminen, K. (2011). Classification of material sensitivity–New approach for Mould growth modeling. 9th Nordic Symposium on Building Physics, 2, 867–874. Ojanen, T., Peuhkuri, R., Viitanen, H., Lähdesmäki, K., Vinha, J., & Salminen, K. (2011). Classification of material sensitivity–New approach for Mould growth modeling. 9th Nordic Symposium on Building Physics, 2, 867–874.
Zurück zum Zitat Otieno, M. B., Beushausen, H. D., & Alexander, M. G. (2011). Modelling corrosion propagation in reinforced concrete structures–a critical review. Cement and Concrete Composites, 33(2), 240–245.CrossRef Otieno, M. B., Beushausen, H. D., & Alexander, M. G. (2011). Modelling corrosion propagation in reinforced concrete structures–a critical review. Cement and Concrete Composites, 33(2), 240–245.CrossRef
Zurück zum Zitat Pade, C., & Guimaraes, M. (2007). The CO2 uptake of concrete in a 100-year perspective. Cement and Concrete Research, 37(9), 1348–1356.CrossRef Pade, C., & Guimaraes, M. (2007). The CO2 uptake of concrete in a 100-year perspective. Cement and Concrete Research, 37(9), 1348–1356.CrossRef
Zurück zum Zitat Papadakis, V. G., Vayenas, C. G., & Fardis, M. N. (1991). Experimental investigation and mathematical modeling of the concrete carbonation problem. Chemical Engineering Science, 46(5–6), 1333–1338.CrossRef Papadakis, V. G., Vayenas, C. G., & Fardis, M. N. (1991). Experimental investigation and mathematical modeling of the concrete carbonation problem. Chemical Engineering Science, 46(5–6), 1333–1338.CrossRef
Zurück zum Zitat Pei, S., & van de Lindt, J. (2010). User’s manual for SAPWood for Windows Seismic Analysis Package for Woodframe Structures. NEEShub (http://www.nees.org). Pei, S., & van de Lindt, J. (2010). User’s manual for SAPWood for Windows Seismic Analysis Package for Woodframe Structures. NEEShub (http://​www.​nees.​org).
Zurück zum Zitat Penttala, V. (2006). Surface and internal deterioration of concrete due to saline and non-saline freeze–thaw loads. Cement and Concrete Research, 36(5), 921–928.CrossRef Penttala, V. (2006). Surface and internal deterioration of concrete due to saline and non-saline freeze–thaw loads. Cement and Concrete Research, 36(5), 921–928.CrossRef
Zurück zum Zitat Peuportier, B. L. P. (2001). Life cycle assessment applied to the comparative evaluation of single family houses in the French context. Energy and Buildings, 33(5), 443–450.CrossRef Peuportier, B. L. P. (2001). Life cycle assessment applied to the comparative evaluation of single family houses in the French context. Energy and Buildings, 33(5), 443–450.CrossRef
Zurück zum Zitat Ramirez, C. M., Liel, A. B., Mitrani-Reiser, J., Haselton, C. B., Spear, A. D., Steiner, J., Deierlein, G. G., & Miranda, E. (2012). Expected earthquake damage and repair costs in reinforced concrete frame buildings. Earthquake Engineering & Structural Dynamics, 41(11), 1455–1475.CrossRef Ramirez, C. M., Liel, A. B., Mitrani-Reiser, J., Haselton, C. B., Spear, A. D., Steiner, J., Deierlein, G. G., & Miranda, E. (2012). Expected earthquake damage and repair costs in reinforced concrete frame buildings. Earthquake Engineering & Structural Dynamics, 41(11), 1455–1475.CrossRef
Zurück zum Zitat Riding, K. A., Thomas, M. D., & Folliard, K. J. (2014). Apparent diffusivity model for concrete containing supplementary cementitious materials. ACI Materials Journal, 110(6), 705–714. Riding, K. A., Thomas, M. D., & Folliard, K. J. (2014). Apparent diffusivity model for concrete containing supplementary cementitious materials. ACI Materials Journal, 110(6), 705–714.
Zurück zum Zitat Roziare, E., Loukili, A., El Hachem, R., & Grondin, F. (2009). Durability of concrete exposed to leaching and external Sulphate attacks. Cement and Concrete Research, 39(12), 1188–1198.CrossRef Roziare, E., Loukili, A., El Hachem, R., & Grondin, F. (2009). Durability of concrete exposed to leaching and external Sulphate attacks. Cement and Concrete Research, 39(12), 1188–1198.CrossRef
Zurück zum Zitat Saetta, A. V., & Vitaliani, R. V. (2004). Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures: Part I: Theoretical formulation. Cement and Concrete Research, 34(4), 571–579.CrossRef Saetta, A. V., & Vitaliani, R. V. (2004). Experimental investigation and numerical modeling of carbonation process in reinforced concrete structures: Part I: Theoretical formulation. Cement and Concrete Research, 34(4), 571–579.CrossRef
Zurück zum Zitat Sedlbauer, K., & Krus, M. (2002). Method for predicting the formation of Mould fungi. U.S. Patent Application 10/398,046. Sedlbauer, K., & Krus, M. (2002). Method for predicting the formation of Mould fungi. U.S. Patent Application 10/398,046.
Zurück zum Zitat Sfikas, I. P., & Ingham, J. P. (2016). Service life design of concrete structures using probabilistic modelling tools: Statistical analysis of input parameters. In M. Grantham, I. Papayianni, K. Sideris (Eds.), Concrete solutions (pp. 437–446). Taylor & Francis Group, Boca Raton, Florida: CRC Press. Sfikas, I. P., & Ingham, J. P. (2016). Service life design of concrete structures using probabilistic modelling tools: Statistical analysis of input parameters. In M. Grantham, I. Papayianni, K. Sideris (Eds.), Concrete solutions (pp. 437–446). Taylor & Francis Group, Boca Raton, Florida: CRC Press.
Zurück zum Zitat Shah, S. P., Ouyang, C., Marikunte, S., Yang, W., & Becq-Giraudon, E. (1998). A method to predict shrinkage cracking of concrete. Materials Journal, 95(4), 339–346. Shah, S. P., Ouyang, C., Marikunte, S., Yang, W., & Becq-Giraudon, E. (1998). A method to predict shrinkage cracking of concrete. Materials Journal, 95(4), 339–346.
Zurück zum Zitat Sharma, A., Saxena, A., Sethi, M., & Shree, V. (2011). Life cycle assessment of buildings: A review. Renewable and Sustainable Energy Reviews, 15(1), 871–875.CrossRef Sharma, A., Saxena, A., Sethi, M., & Shree, V. (2011). Life cycle assessment of buildings: A review. Renewable and Sustainable Energy Reviews, 15(1), 871–875.CrossRef
Zurück zum Zitat Simonen, K. (2014). Life cycle assessment. Pocket Architecture: Technical Design Series. Simonen, K. (2014). Life cycle assessment. Pocket Architecture: Technical Design Series.
Zurück zum Zitat Souto-Martinez, A., Delesky, E. A., Foster, K. E. O., & Srubar, W. V., III. (2017). A mathematical model for carbon sequestration potential of ordinary Portland cement (OPC) concrete. Construction and Building Materials, 147, 417–427.CrossRef Souto-Martinez, A., Delesky, E. A., Foster, K. E. O., & Srubar, W. V., III. (2017). A mathematical model for carbon sequestration potential of ordinary Portland cement (OPC) concrete. Construction and Building Materials, 147, 417–427.CrossRef
Zurück zum Zitat Srubar, W. V., III. (2015a). Stochastic service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Cement and Concrete Composites, 55, 103–111.CrossRef Srubar, W. V., III. (2015a). Stochastic service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Cement and Concrete Composites, 55, 103–111.CrossRef
Zurück zum Zitat Srubar, III, W.V. (2015b). The future of LCAs and EPDs: Incorporating service-life in the environmental impact assessments of green building materials. In Proceedings of the 2015 Architectural Engineering Institute Conference (pp. 606–615). Milwaukee. Srubar, III, W.V. (2015b). The future of LCAs and EPDs: Incorporating service-life in the environmental impact assessments of green building materials. In Proceedings of the 2015 Architectural Engineering Institute Conference (pp. 606–615). Milwaukee.
Zurück zum Zitat Stambaugh, N. D. (2017). Numerical service-life model of chloride-induced corrosion in recycled aggregate concrete and design optimization of sustainable and durable concrete mixtures (MS Thesis). University of Colorado Boulder, Boulder. Stambaugh, N. D. (2017). Numerical service-life model of chloride-induced corrosion in recycled aggregate concrete and design optimization of sustainable and durable concrete mixtures (MS Thesis). University of Colorado Boulder, Boulder.
Zurück zum Zitat Stambaugh, N. D., Bergman, T. L., & Srubar, W. V., III. (2018). Numerical service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Construction and Building Materials, 161, 236–245. Stambaugh, N. D., Bergman, T. L., & Srubar, W. V., III. (2018). Numerical service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Construction and Building Materials, 161, 236–245.
Zurück zum Zitat Steffens, A., Dinkler, D., & Ahrens, H. (2002). Modeling carbonation for corrosion risk prediction of concrete structures. Cement and Concrete Research, 32(6), 935–941. Steffens, A., Dinkler, D., & Ahrens, H. (2002). Modeling carbonation for corrosion risk prediction of concrete structures. Cement and Concrete Research, 32(6), 935–941.
Zurück zum Zitat Strand, S. M., & Hovde, P. J. (1999). Use of service life data in LCA of building materials. In M. A. Lacasse & D. J. Vanier (Eds.), Durability of building materials and components (pp. 1948–1958). Ottawa: Institute for Research in Construction. Strand, S. M., & Hovde, P. J. (1999). Use of service life data in LCA of building materials. In M. A. Lacasse & D. J. Vanier (Eds.), Durability of building materials and components (pp. 1948–1958). Ottawa: Institute for Research in Construction.
Zurück zum Zitat Sutley, E. J., & van de Lindt, J. W. (2016). Evolution of predicted seismic performance for wood-frame buildings. Journal of Architectural Engineering, 22(3), B4016004.CrossRef Sutley, E. J., & van de Lindt, J. W. (2016). Evolution of predicted seismic performance for wood-frame buildings. Journal of Architectural Engineering, 22(3), B4016004.CrossRef
Zurück zum Zitat Sutley, E. J., van de Lindt, J. W., & Peek, L. (2016). Community-level framework for seismic resiliency. I: Coupling social vulnerability and Engineering building systems. Natural Hazards Review: 04016014. Sutley, E. J., van de Lindt, J. W., & Peek, L. (2016). Community-level framework for seismic resiliency. I: Coupling social vulnerability and Engineering building systems. Natural Hazards Review: 04016014.
Zurück zum Zitat Taggart, M., & van de Lindt, J. W. (2009). Performance-based design of residential wood-frame buildings for flood based on manageable losses. Journal of Performance of Constructed Facilities, 23(2), 56–64.CrossRef Taggart, M., & van de Lindt, J. W. (2009). Performance-based design of residential wood-frame buildings for flood based on manageable losses. Journal of Performance of Constructed Facilities, 23(2), 56–64.CrossRef
Zurück zum Zitat Takewaka, K., Yamaguchi, T., & Maeda, S. (2003). Simulation model for deterioration of concrete structures due to chloride attack. Journal of Advanced Concrete Technology, 1(2), 139–146.CrossRef Takewaka, K., Yamaguchi, T., & Maeda, S. (2003). Simulation model for deterioration of concrete structures due to chloride attack. Journal of Advanced Concrete Technology, 1(2), 139–146.CrossRef
Zurück zum Zitat Tanaka, Y., Kawano, H., Watanabe, H., & Nakajo, T. (2006). Study on cover depth for Prestressed concrete bridges in airborne-chloride environments. Prestressed Concrete Institute Journal, 51(2), 42–53. Tanaka, Y., Kawano, H., Watanabe, H., & Nakajo, T. (2006). Study on cover depth for Prestressed concrete bridges in airborne-chloride environments. Prestressed Concrete Institute Journal, 51(2), 42–53.
Zurück zum Zitat Tikalsky, P. J., Pospisil, J., & MacDonald, W. (2004). A method for assessment of the freeze–thaw resistance of preformed foam cellular concrete. Cement and Concrete Research, 34(5), 889–893.CrossRef Tikalsky, P. J., Pospisil, J., & MacDonald, W. (2004). A method for assessment of the freeze–thaw resistance of preformed foam cellular concrete. Cement and Concrete Research, 34(5), 889–893.CrossRef
Zurück zum Zitat Tixier, R., & Mobasher, B. (2003). Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation. Journal of Materials in Civil Engineering, 15(4), 305–313.CrossRef Tixier, R., & Mobasher, B. (2003). Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation. Journal of Materials in Civil Engineering, 15(4), 305–313.CrossRef
Zurück zum Zitat Tuutti, K. (1982). Corrosion of steel in concrete. Stockholm: Swedish Cement and Concrete Research Institute. Tuutti, K. (1982). Corrosion of steel in concrete. Stockholm: Swedish Cement and Concrete Research Institute.
Zurück zum Zitat Vereecken, E., & Roels, S. (2012). Review of Mould prediction models and their influence on Mould risk evaluation. Building and Environment, 51, 296–310.CrossRef Vereecken, E., & Roels, S. (2012). Review of Mould prediction models and their influence on Mould risk evaluation. Building and Environment, 51, 296–310.CrossRef
Zurück zum Zitat Viitanen, H., & Ojanen, T. (2007). Improved model to predict mold growth in building materials. In Proceedings of the Thermal Performance of the Exterior Envelopes of Whole Building X. Florida. Viitanen, H., & Ojanen, T. (2007). Improved model to predict mold growth in building materials. In Proceedings of the Thermal Performance of the Exterior Envelopes of Whole Building X. Florida.
Zurück zum Zitat Wang, X. Y., & Lee, H. S. (2009). A model for predicting the carbonation depth of concrete containing low-calcium fly ash. Construction and Building Materials, 23(2), 725–733.CrossRef Wang, X. Y., & Lee, H. S. (2009). A model for predicting the carbonation depth of concrete containing low-calcium fly ash. Construction and Building Materials, 23(2), 725–733.CrossRef
Zurück zum Zitat Wei, H., Shohet, I. M., Skibniewski, J., & Shapira, S. (2016). Assessing the lifecycle sustainability costs and benefits of seismic mitigation designs for buildings. Journal of Architectural Engineering, 22(1), 1–13.CrossRef Wei, H., Shohet, I. M., Skibniewski, J., & Shapira, S. (2016). Assessing the lifecycle sustainability costs and benefits of seismic mitigation designs for buildings. Journal of Architectural Engineering, 22(1), 1–13.CrossRef
Zurück zum Zitat Welsh-Huggins, S. J., & Liel, A. B. (2017a). A life-cycle framework for integrating green building and hazard-resistant design: Examining the seismic impacts of buildings with green roofs. Structure and Infrastructure Engineering, 13(1), 19–33.CrossRef Welsh-Huggins, S. J., & Liel, A. B. (2017a). A life-cycle framework for integrating green building and hazard-resistant design: Examining the seismic impacts of buildings with green roofs. Structure and Infrastructure Engineering, 13(1), 19–33.CrossRef
Zurück zum Zitat Welsh-Huggins, S. J., & Liel, A. B. (2017b). Is hazard resilience sustainable? Evaluating multi-objective outcomes from enhanced seismic design decisions for buildings. Journal of Structural Engineering, In press. Welsh-Huggins, S. J., & Liel, A. B. (2017b). Is hazard resilience sustainable? Evaluating multi-objective outcomes from enhanced seismic design decisions for buildings. Journal of Structural Engineering, In press.
Zurück zum Zitat Wenting, L., Pour-Ghaz, M., Castro, J., & Weiss, J. (2012). Water absorption and critical degree of saturation relating to freeze-thaw damage in concrete pavement joints. Journal of Materials in Civil Engineering, 24(3), 299–307.CrossRef Wenting, L., Pour-Ghaz, M., Castro, J., & Weiss, J. (2012). Water absorption and critical degree of saturation relating to freeze-thaw damage in concrete pavement joints. Journal of Materials in Civil Engineering, 24(3), 299–307.CrossRef
Zurück zum Zitat Williams, R. S., Jourdain, C., Daisey, G. I., & Springate, R. W. (2000). Wood properties affecting finish service life. Journal of Coatings Technology, 72(902), 35–42.CrossRef Williams, R. S., Jourdain, C., Daisey, G. I., & Springate, R. W. (2000). Wood properties affecting finish service life. Journal of Coatings Technology, 72(902), 35–42.CrossRef
Zurück zum Zitat Yang, H. H., Effland, M. J., & Kirk, T. K. (1980). Factors influencing fungal degradation of lignin in a representative lignocellulosic, thermomechanical pulp. Biotechnology and Bioengineering, 22, 65–77.CrossRef Yang, H. H., Effland, M. J., & Kirk, T. K. (1980). Factors influencing fungal degradation of lignin in a representative lignocellulosic, thermomechanical pulp. Biotechnology and Bioengineering, 22, 65–77.CrossRef
Zurück zum Zitat Yang, K.-H., Seo, E.-A., & Tae, S.-H. (2014). Carbonation and CO2 uptake of concrete. Environmental Impact Assessment Review, 46(2014), 43–52. Yang, K.-H., Seo, E.-A., & Tae, S.-H. (2014). Carbonation and CO2 uptake of concrete. Environmental Impact Assessment Review, 46(2014), 43–52.
Zurück zum Zitat Zelinka, S., & Rammer, D. (2009). Corrosion rates of fasteners in treated wood exposed to 100% relative humidity. Journal of Materials in Civil Engineering, 21(12), 758–763.CrossRef Zelinka, S., & Rammer, D. (2009). Corrosion rates of fasteners in treated wood exposed to 100% relative humidity. Journal of Materials in Civil Engineering, 21(12), 758–763.CrossRef
Metadaten
Titel
Embodied Carbon of Wood and Reinforced Concrete Structures Under Chronic and Acute Hazards
verfasst von
A. Souto-Martinez
E. J. Sutley
A. B. Liel
W. V. Srubar III
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-72796-7_4