Skip to main content
Erschienen in: Natural Computing 2/2016

01.06.2016

Emulating cellular automata in chemical reaction–diffusion networks

verfasst von: Dominic Scalise, Rebecca Schulman

Erschienen in: Natural Computing | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chemical reactions and diffusion can produce a wide variety of static or transient spatial patterns in the concentrations of chemical species. Little is known, however, about what dynamical patterns of concentrations can be reliably programmed into such reaction–diffusion systems. Here we show that given simple, periodic inputs, chemical reactions and diffusion can reliably emulate the dynamics of a deterministic cellular automaton, and can therefore be programmed to produce a wide range of complex, discrete dynamics. We describe a modular reaction–diffusion program that orchestrates each of the fundamental operations of a cellular automaton: storage of cell state, communication between neighboring cells, and calculation of cells’ subsequent states. Starting from a pattern that encodes an automaton’s initial state, the concentration of a “state” species evolves in space and time according to the automaton’s specified rules. To show that the reaction–diffusion program we describe produces the target dynamics, we simulate the reaction–diffusion network for two simple one-dimensional cellular automata using coupled partial differential equations. Reaction–diffusion based cellular automata could potentially be built in vitro using networks of DNA molecules that interact via branch migration processes and could in principle perform universal computation, storing their state as a pattern of molecular concentrations, or deliver spatiotemporal instructions encoded in concentrations to direct the behavior of intelligent materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In practice, catalysts have a fixed turnover number. Reactions that cyclically produce and degrade catalysts could enable the periodic replacement of key catalysts (and other catalysts in the system) that are no longer functional.
 
Literatur
Zurück zum Zitat Allen PB, Chen X, Ellington AD (2012) Spatial control of DNA reaction networks by DNA sequence. Molecules 17:13390–13402CrossRef Allen PB, Chen X, Ellington AD (2012) Spatial control of DNA reaction networks by DNA sequence. Molecules 17:13390–13402CrossRef
Zurück zum Zitat Baker MD, Wolanin PM, Stock JB (2006) Signal transduction in bacterial chemotaxis. Bioessays 28(1):9–22CrossRef Baker MD, Wolanin PM, Stock JB (2006) Signal transduction in bacterial chemotaxis. Bioessays 28(1):9–22CrossRef
Zurück zum Zitat Bánsági T, Vanag VK, Epstein IR (2011) Tomography of reaction–diffusion microemulsions reveals three-dimensional Turing patterns. Science 331(6022):1309–1312MathSciNetCrossRefMATH Bánsági T, Vanag VK, Epstein IR (2011) Tomography of reaction–diffusion microemulsions reveals three-dimensional Turing patterns. Science 331(6022):1309–1312MathSciNetCrossRefMATH
Zurück zum Zitat Chen Y, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik D, Seelig G (2013) Programmable chemical controllers made from DNA. Nat Nanotechnol 8(10):755–762CrossRef Chen Y, Dalchau N, Srinivas N, Phillips A, Cardelli L, Soloveichik D, Seelig G (2013) Programmable chemical controllers made from DNA. Nat Nanotechnol 8(10):755–762CrossRef
Zurück zum Zitat Chirieleison SM, Allen PB, Simpson ZB, Ellington AD, Chen X (2013) Pattern transformation with DNA circuits. Nat Chem 5:1000–1005CrossRef Chirieleison SM, Allen PB, Simpson ZB, Ellington AD, Chen X (2013) Pattern transformation with DNA circuits. Nat Chem 5:1000–1005CrossRef
Zurück zum Zitat Codd EF (1968) Cellular automata. Academic Press Inc, San DiegoMATH Codd EF (1968) Cellular automata. Academic Press Inc, San DiegoMATH
Zurück zum Zitat Codon A, Kirkpatrick B, Maňuch J (2012) Reachability bounds for chemical reaction networks and strand displacement systems. DNA Computing and Molecular Programming. Springer, Heidelberg, Berlin Codon A, Kirkpatrick B, Maňuch J (2012) Reachability bounds for chemical reaction networks and strand displacement systems. DNA Computing and Molecular Programming. Springer, Heidelberg, Berlin
Zurück zum Zitat Dalchau N, Seelig G, Phillips A (2014) Computational design of reaction–diffusion patterns using DNA-based chemical reaction networks. DNA computing and molecular programming. Springer, Heidelberg, BerlinMATH Dalchau N, Seelig G, Phillips A (2014) Computational design of reaction–diffusion patterns using DNA-based chemical reaction networks. DNA computing and molecular programming. Springer, Heidelberg, BerlinMATH
Zurück zum Zitat Danino T, Mondragn-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463(7279):326–330CrossRef Danino T, Mondragn-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463(7279):326–330CrossRef
Zurück zum Zitat Doty D (2014) Timing in chemical reaction networks. In: Proceedings of the 25th ACM-SIAM symposium on discrete algorithms, pp 772–784 Doty D (2014) Timing in chemical reaction networks. In: Proceedings of the 25th ACM-SIAM symposium on discrete algorithms, pp 772–784
Zurück zum Zitat Du Y, Lo E, Ali S, Khademhosseini A (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. In; Proceedings of the National Academy of Sciences 105(28):9522–9527 Du Y, Lo E, Ali S, Khademhosseini A (2008) Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs. In; Proceedings of the National Academy of Sciences 105(28):9522–9527
Zurück zum Zitat Fujibayashi K, Hariadi R, Park SH, Winfree E, Murata S (2007) Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett 8(7):1791–1797CrossRef Fujibayashi K, Hariadi R, Park SH, Winfree E, Murata S (2007) Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett 8(7):1791–1797CrossRef
Zurück zum Zitat Lakin M, Phillips A, Stefanovic D (2013) Modular verification of DNA strand displacement networks via serializability analysis. DNA computing and molecular programming. Springer, Heidelberg, BerlinMATH Lakin M, Phillips A, Stefanovic D (2013) Modular verification of DNA strand displacement networks via serializability analysis. DNA computing and molecular programming. Springer, Heidelberg, BerlinMATH
Zurück zum Zitat Greenfield D, McEvoy AL, Shroff H, Crooks GE, Wingreen NS, Betzig E, Liphardt J (2009) Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol. 7(6) Greenfield D, McEvoy AL, Shroff H, Crooks GE, Wingreen NS, Betzig E, Liphardt J (2009) Self-organization of the Escherichia coli chemotaxis network imaged with super-resolution light microscopy. PLoS Biol. 7(6)
Zurück zum Zitat Lindenmayer A (1968) Mathematical models for cellular interactions in development I. filaments with one-sided inputs. J Theor Biol 18(3):280–299CrossRef Lindenmayer A (1968) Mathematical models for cellular interactions in development I. filaments with one-sided inputs. J Theor Biol 18(3):280–299CrossRef
Zurück zum Zitat Lukacs G, Haggie P, Seksek O, Lechardeur D, Verkman NFA (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275(1625) Lukacs G, Haggie P, Seksek O, Lechardeur D, Verkman NFA (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275(1625)
Zurück zum Zitat Montagne K, Plasson R, Sakai Y, Fujii T, Rondelez Y (2011) Programming an in vitro DNA oscillator using a molecular networking strategy. Mol Sys Biol 7(1) Montagne K, Plasson R, Sakai Y, Fujii T, Rondelez Y (2011) Programming an in vitro DNA oscillator using a molecular networking strategy. Mol Sys Biol 7(1)
Zurück zum Zitat Murray JD (2003) Mathematical biology II: spatial models and biomedical applications, 3rd edn. Springer, New YorkMATH Murray JD (2003) Mathematical biology II: spatial models and biomedical applications, 3rd edn. Springer, New YorkMATH
Zurück zum Zitat Neary T, Woods D (2006) P-completeness of cellular automaton rule 110. LNCS 4051(132–143) Neary T, Woods D (2006) P-completeness of cellular automaton rule 110. LNCS 4051(132–143)
Zurück zum Zitat Nehaniv CL (2004) Asynchronous automata networks can emulate any synchronous automata network. Int J Algebra Comput 14(05):719–739MathSciNetCrossRefMATH Nehaniv CL (2004) Asynchronous automata networks can emulate any synchronous automata network. Int J Algebra Comput 14(05):719–739MathSciNetCrossRefMATH
Zurück zum Zitat von Neumann J, Burks AW (1966) The theory of self-reproducing automata. University of Illinois Press, Urbana von Neumann J, Burks AW (1966) The theory of self-reproducing automata. University of Illinois Press, Urbana
Zurück zum Zitat Qian L, Soloveichik D, Winfree E (2011) Efficient turing-universal computation with DNA polymers. DNA computing and molecular programming pp 123–140 Qian L, Soloveichik D, Winfree E (2011) Efficient turing-universal computation with DNA polymers. DNA computing and molecular programming pp 123–140
Zurück zum Zitat Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement. Science 332(6034):1196–1201CrossRef Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement. Science 332(6034):1196–1201CrossRef
Zurück zum Zitat Qian L, Winfree E (2011) A simple DNA gate motif for synthesizing large-scale circuits. J R Soc Interface 8(62):1281–1297CrossRef Qian L, Winfree E (2011) A simple DNA gate motif for synthesizing large-scale circuits. J R Soc Interface 8(62):1281–1297CrossRef
Zurück zum Zitat Qian L, Winfree E (2014) Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface. DNA computing and molecular programming. Springer, Heidelberg, BerlinMATH Qian L, Winfree E (2014) Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface. DNA computing and molecular programming. Springer, Heidelberg, BerlinMATH
Zurück zum Zitat Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):e424CrossRef Rothemund PWK, Papadakis N, Winfree E (2004) Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol 2(12):e424CrossRef
Zurück zum Zitat Ruiza SA, Chen CS (2007) Microcontact printing: a tool to pattern. Soft Matter 3:168–177CrossRef Ruiza SA, Chen CS (2007) Microcontact printing: a tool to pattern. Soft Matter 3:168–177CrossRef
Zurück zum Zitat Sayama H (1999) A new structurally dissolvable self-reproducing loop evolving in a simple cellular automata space. Artif Life 5(4):343–365CrossRef Sayama H (1999) A new structurally dissolvable self-reproducing loop evolving in a simple cellular automata space. Artif Life 5(4):343–365CrossRef
Zurück zum Zitat Scalise D, Schulman R (2014) Designing modular reaction–diffusion programs for complex pattern formation. Technology 2(01):55–66CrossRef Scalise D, Schulman R (2014) Designing modular reaction–diffusion programs for complex pattern formation. Technology 2(01):55–66CrossRef
Zurück zum Zitat Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588CrossRef Seelig G, Soloveichik D, Zhang DY, Winfree E (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588CrossRef
Zurück zum Zitat Smith DE, Perkins TT, Chu S (1996) Dynamical scaling of DNA diffusion coefficients. Macromolecules 29(4):1372–1373CrossRef Smith DE, Perkins TT, Chu S (1996) Dynamical scaling of DNA diffusion coefficients. Macromolecules 29(4):1372–1373CrossRef
Zurück zum Zitat Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with finite stochastic chemical reaction networks. Nat Comput 7(4):615–633MathSciNetCrossRefMATH Soloveichik D, Cook M, Winfree E, Bruck J (2008) Computation with finite stochastic chemical reaction networks. Nat Comput 7(4):615–633MathSciNetCrossRefMATH
Zurück zum Zitat Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. In: Proceedings of the National Academy of Sciences 107(12):5393–5398 Soloveichik D, Seelig G, Winfree E (2010) DNA as a universal substrate for chemical kinetics. In: Proceedings of the National Academy of Sciences 107(12):5393–5398
Zurück zum Zitat Steinbock O, Kettunen P, Showalter K (1996) Chemical wave logic gates. J Phys Chem 100(49):18970–18975CrossRef Steinbock O, Kettunen P, Showalter K (1996) Chemical wave logic gates. J Phys Chem 100(49):18970–18975CrossRef
Zurück zum Zitat Stellwagen E, Lu Y, Stellwagen N (2003) Unified description of electrophoresis and diffusion for DNA and other polyions. Biochemistry 42:11745CrossRef Stellwagen E, Lu Y, Stellwagen N (2003) Unified description of electrophoresis and diffusion for DNA and other polyions. Biochemistry 42:11745CrossRef
Zurück zum Zitat Tomita K, Kurokawa H, Murata S (2002) Graph automata: natural expression of self-reproduction. Phys D: Nonlin Phenom 171(4):197–210MathSciNetCrossRefMATH Tomita K, Kurokawa H, Murata S (2002) Graph automata: natural expression of self-reproduction. Phys D: Nonlin Phenom 171(4):197–210MathSciNetCrossRefMATH
Zurück zum Zitat Tóth Ágota, Showalter K (1995) Logic gates in excitable media. J Chem Phys 103(6):2058–2066CrossRef Tóth Ágota, Showalter K (1995) Logic gates in excitable media. J Chem Phys 103(6):2058–2066CrossRef
Zurück zum Zitat Turing AM (1952) The chemical basis of morphogenesis. Phil T R Soc B 237:37–72CrossRef Turing AM (1952) The chemical basis of morphogenesis. Phil T R Soc B 237:37–72CrossRef
Zurück zum Zitat Wu A, Rosenfeld A (1979) Cellular graph automata. I. basic concepts, graph property measurement, closure properties. Inf Control 42(3):305–329MathSciNetCrossRefMATH Wu A, Rosenfeld A (1979) Cellular graph automata. I. basic concepts, graph property measurement, closure properties. Inf Control 42(3):305–329MathSciNetCrossRefMATH
Zurück zum Zitat Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131(47):17303–17314CrossRef Zhang DY, Winfree E (2009) Control of DNA strand displacement kinetics using toehold exchange. J Am Chem Soc 131(47):17303–17314CrossRef
Metadaten
Titel
Emulating cellular automata in chemical reaction–diffusion networks
verfasst von
Dominic Scalise
Rebecca Schulman
Publikationsdatum
01.06.2016
Verlag
Springer Netherlands
Erschienen in
Natural Computing / Ausgabe 2/2016
Print ISSN: 1567-7818
Elektronische ISSN: 1572-9796
DOI
https://doi.org/10.1007/s11047-015-9503-8

Weitere Artikel der Ausgabe 2/2016

Natural Computing 2/2016 Zur Ausgabe

Premium Partner