Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Emulating the Raman Physics in the Spatial Domain with the Help of the Zakharov’s Systems

verfasst von : Evgeny M. Gromov, Boris A. Malomed

Erschienen in: Generalized Models and Non-classical Approaches in Complex Materials 2

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamics of solitons is considered in the framework of the extended nonlinear Schrödinger equation (NLSE), which is derived from a system of the Zakharov’s type for the interaction between high- and low-frequency (HF and LF) waves, in which the LF field is subject to diffusive damping. The model may apply to the propagation of HF waves in plasmas. The resulting NLSE includes a pseudo-stimulated-Raman-scattering (pseudo-SRS) term, i.e., a spatial-domain counterpart of the SRS term which is well known as an ingredient of the temporal-domain NLSE in optics. Also included is inhomogeneity of the spatial second-order diffraction (SOD). It is shown that the wavenumber downshift of solitons, caused by the pseudo-SRS, may be compensated by an upshift provided by the SOD whose coefficient is a linear function of the coordinate. An analytical solution for solitons is obtained in an approximate form. Analytical and numerical results agree well, including the predicted balance between the pseudo-SRS and the linearly inhomogeneous SOD.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons, and Chaos. Cambridge University Press, Cambridge (2000)CrossRef Infeld, E., Rowlands, G.: Nonlinear Waves, Solitons, and Chaos. Cambridge University Press, Cambridge (2000)CrossRef
2.
Zurück zum Zitat Agrawal, G.P.: Nonlinear Fiber Optic. Academic Press, San Diego (2001) Agrawal, G.P.: Nonlinear Fiber Optic. Academic Press, San Diego (2001)
3.
Zurück zum Zitat Yang, J.: Solitons in Field Theory and Nonlinear Analysis. Springer, New York (2001)CrossRef Yang, J.: Solitons in Field Theory and Nonlinear Analysis. Springer, New York (2001)CrossRef
4.
Zurück zum Zitat Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic, San Diego (2003) Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic, San Diego (2003)
5.
Zurück zum Zitat Dickey, L.A.: Soliton Equation and Hamiltonian Systems. World Scientific, New York (2005) Dickey, L.A.: Soliton Equation and Hamiltonian Systems. World Scientific, New York (2005)
6.
Zurück zum Zitat Malomed, B.A.: Soliton Management in Periodic Systems. Springer, New York (2006)MATH Malomed, B.A.: Soliton Management in Periodic Systems. Springer, New York (2006)MATH
7.
Zurück zum Zitat Dauxois, T., Peyrard, M.: Physics of Solitons. Cambridge University Press, Cambridge (2006)MATH Dauxois, T., Peyrard, M.: Physics of Solitons. Cambridge University Press, Cambridge (2006)MATH
8.
Zurück zum Zitat Sich, M., Krizhanovskii, D.N., Skolnick, M.S., Gorbach, A.V., Hartley, R., Skryabin, D.V., Cerda-Méndez, E.A., Biermann, K., Hey, R., Santos, P.V.: Observation of bright solitons in a semiconductor microcavity. Santos Nature Phot. 6, 50–55 (2012) Sich, M., Krizhanovskii, D.N., Skolnick, M.S., Gorbach, A.V., Hartley, R., Skryabin, D.V., Cerda-Méndez, E.A., Biermann, K., Hey, R., Santos, P.V.: Observation of bright solitons in a semiconductor microcavity. Santos Nature Phot. 6, 50–55 (2012)
9.
Zurück zum Zitat Kauranen, M., Zayats, A.V.: Nonlinear plasmonics. Nature Phot. 6, 737–748 (2012)CrossRef Kauranen, M., Zayats, A.V.: Nonlinear plasmonics. Nature Phot. 6, 737–748 (2012)CrossRef
10.
Zurück zum Zitat Cerda-Ménde, E.A., Sarkar, D., Krizhanovskii, D.N., Gavrilov, S.S., Biermann, K., Skolnick, M.S., Santos, P.V.: Polaritonic two-dimensional nonlinear crystals. Phys. Rev. Lett. 111, 146401 (2013)CrossRef Cerda-Ménde, E.A., Sarkar, D., Krizhanovskii, D.N., Gavrilov, S.S., Biermann, K., Skolnick, M.S., Santos, P.V.: Polaritonic two-dimensional nonlinear crystals. Phys. Rev. Lett. 111, 146401 (2013)CrossRef
11.
Zurück zum Zitat Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)MathSciNet Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)MathSciNet
12.
Zurück zum Zitat Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical physics in dispersive dielectric fibers I: anomalous dispersion Appl. Phys. Lett. 23, 142–144 (1973) Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical physics in dispersive dielectric fibers I: anomalous dispersion Appl. Phys. Lett. 23, 142–144 (1973)
13.
Zurück zum Zitat Tajima, K.: Compensation of soliton broadening in nonlinear optical fibers with loss. Opt. Lett. 12, 54–56 (1987)CrossRef Tajima, K.: Compensation of soliton broadening in nonlinear optical fibers with loss. Opt. Lett. 12, 54–56 (1987)CrossRef
14.
Zurück zum Zitat Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974) Manakov, S.V.: On the theory of two-dimensional stationary self-focusing of electromagnetic waves. Sov. Phys. JETP 38, 248–253 (1974)
15.
16.
Zurück zum Zitat Menyuk, C.R., Josa, B.: Nonlinear Schrödinger equations and simple Lie algebras 5, 392–402 (1988) Menyuk, C.R., Josa, B.: Nonlinear Schrödinger equations and simple Lie algebras 5, 392–402 (1988)
17.
Zurück zum Zitat Lazarides, N., Tsironis, G.P.: Coupled nonlinear Schrödinger equations for electromagnetic wave propagation in nonlinear left-handed materials. Phys. Rev. E 71, 036614 (2005)CrossRef Lazarides, N., Tsironis, G.P.: Coupled nonlinear Schrödinger equations for electromagnetic wave propagation in nonlinear left-handed materials. Phys. Rev. E 71, 036614 (2005)CrossRef
18.
Zurück zum Zitat Yang, J.: Interactions of vector solitons. Phys. Rev. E 64, 026607 (2001)CrossRef Yang, J.: Interactions of vector solitons. Phys. Rev. E 64, 026607 (2001)CrossRef
19.
Zurück zum Zitat Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Soliton interactions in the vector NLS equation. Invers. Probl. 20, 1217–1237 (2004)MathSciNetCrossRef Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Soliton interactions in the vector NLS equation. Invers. Probl. 20, 1217–1237 (2004)MathSciNetCrossRef
20.
Zurück zum Zitat Vahala, G., Yepes, L.V.: Inelastic vector soliton collisions: a quantum lattice gas representation. J. Phil. Trans. Roy. Soc. L A 362, 1677–1690 (2004)CrossRef Vahala, G., Yepes, L.V.: Inelastic vector soliton collisions: a quantum lattice gas representation. J. Phil. Trans. Roy. Soc. L A 362, 1677–1690 (2004)CrossRef
21.
Zurück zum Zitat Oliviera, J.R., Moura, M.A.: Analytical solution for the modified nonlinear Schrödinger equation describing optical shock formation. Phys. Rev. E 57, 4751–4755 (1998)MathSciNetCrossRef Oliviera, J.R., Moura, M.A.: Analytical solution for the modified nonlinear Schrödinger equation describing optical shock formation. Phys. Rev. E 57, 4751–4755 (1998)MathSciNetCrossRef
22.
Zurück zum Zitat Mitschke, F.M., Mollenauer, L.F.: Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661 (1986)CrossRef Mitschke, F.M., Mollenauer, L.F.: Discovery of the soliton self-frequency shift. Opt. Lett. 11, 659–661 (1986)CrossRef
23.
Zurück zum Zitat Gordon, J.P.: Theory of the soliton self-frequency shift. Opt. Lett. 11, 662–664 (1986)CrossRef Gordon, J.P.: Theory of the soliton self-frequency shift. Opt. Lett. 11, 662–664 (1986)CrossRef
25.
Zurück zum Zitat Malomed, B.A., Tasgal, R.S.: Matching intrapulse self-frequency shift to sliding-frequency filters for transmission of narrow solitons. J. Opt. Soc. Am. B 15, 162–170 (1998)CrossRef Malomed, B.A., Tasgal, R.S.: Matching intrapulse self-frequency shift to sliding-frequency filters for transmission of narrow solitons. J. Opt. Soc. Am. B 15, 162–170 (1998)CrossRef
26.
Zurück zum Zitat Biancalama, F., Skrybin, D.V., Yulin, A.V.: Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers. Phys. Rev. E 70, 011615 (2004) Biancalama, F., Skrybin, D.V., Yulin, A.V.: Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers. Phys. Rev. E 70, 011615 (2004)
27.
Zurück zum Zitat Essiambre, R.-J., Agraval, G.P.: Timing jitter of ultra short solitons in high-speed communication systems. I. General formulation and application to dispersion-decreasing fibers. J. Opt. Soc. Am. B 14, 314–322 (1997)CrossRef Essiambre, R.-J., Agraval, G.P.: Timing jitter of ultra short solitons in high-speed communication systems. I. General formulation and application to dispersion-decreasing fibers. J. Opt. Soc. Am. B 14, 314–322 (1997)CrossRef
28.
Zurück zum Zitat Essiambre, R.-J., Agrawal, G.P.: Timing jitter of ultra short solitons in high-speed communication systems. II. Control of jitter by periodic optical phase conjugation. J. Opt. Soc. Am. B 14, 323–330 (1997)CrossRef Essiambre, R.-J., Agrawal, G.P.: Timing jitter of ultra short solitons in high-speed communication systems. II. Control of jitter by periodic optical phase conjugation. J. Opt. Soc. Am. B 14, 323–330 (1997)CrossRef
29.
Zurück zum Zitat Andrianov, A., Muraviev, S., Kim, A., Sysoliatin, A.: DDF-based all-fiber optical source of femtosecond pulses smoothly tuned in the telecommunication range. Laser Phys. 17, 1296–1302 (2007)CrossRef Andrianov, A., Muraviev, S., Kim, A., Sysoliatin, A.: DDF-based all-fiber optical source of femtosecond pulses smoothly tuned in the telecommunication range. Laser Phys. 17, 1296–1302 (2007)CrossRef
30.
Zurück zum Zitat Chernikov, S., Dianov, E., Richardson, D., Payne, D.: Soliton pulse compression in dispersion-decreasing fiber. Opt. Lett. 18, 476–478 (1993)CrossRef Chernikov, S., Dianov, E., Richardson, D., Payne, D.: Soliton pulse compression in dispersion-decreasing fiber. Opt. Lett. 18, 476–478 (1993)CrossRef
31.
Zurück zum Zitat Kim, J.: A coupled higher-order nonlinear Schrodinger equation including higher-order bright and dark solitons. ETRI J. 23, 9–15 (2001)CrossRef Kim, J.: A coupled higher-order nonlinear Schrodinger equation including higher-order bright and dark solitons. ETRI J. 23, 9–15 (2001)CrossRef
32.
Zurück zum Zitat Lu, F., Lin, W.H., Knox, W.H., Agrawal, G.P.: Vector soliton fission. Phys. Rev. Lett. 93, 183901 (2004)CrossRef Lu, F., Lin, W.H., Knox, W.H., Agrawal, G.P.: Vector soliton fission. Phys. Rev. Lett. 93, 183901 (2004)CrossRef
33.
Zurück zum Zitat Gromov, E.M., Piskunova, L.V., Tyutin, V.V., Vorontzov, D.E.: Short vector solitons. Phys. Lett. A 287, 233–239 (2001)MathSciNetCrossRef Gromov, E.M., Piskunova, L.V., Tyutin, V.V., Vorontzov, D.E.: Short vector solitons. Phys. Lett. A 287, 233–239 (2001)MathSciNetCrossRef
34.
Zurück zum Zitat Wen, S.C., et al.: Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials. Phys. Rev. A 75, 033815 (2007)CrossRef Wen, S.C., et al.: Theoretical models for ultrashort electromagnetic pulse propagation in nonlinear metamaterials. Phys. Rev. A 75, 033815 (2007)CrossRef
35.
Zurück zum Zitat Aseeva, N.V., Gromov, E.M., Tyutin, V.V.: Phase interaction of short vector solitons. Phys. Lett. A 376, 718–722 (2012)CrossRef Aseeva, N.V., Gromov, E.M., Tyutin, V.V.: Phase interaction of short vector solitons. Phys. Lett. A 376, 718–722 (2012)CrossRef
36.
Zurück zum Zitat Gromov, E.M., Malomed, B.A.: Soliton dynamics in an extended nonlinear Schrödinger equation with a spatial counterpart of the stimulated Raman scattering. J. Plasma Phys. 79, 1057–1062 (2013)CrossRef Gromov, E.M., Malomed, B.A.: Soliton dynamics in an extended nonlinear Schrödinger equation with a spatial counterpart of the stimulated Raman scattering. J. Plasma Phys. 79, 1057–1062 (2013)CrossRef
37.
Zurück zum Zitat Zakharov, V.E.: Hamiltonian formalism for hydrodynamic plasma model. Sov. Phys. JETP 33, 927–932 (1971) Zakharov, V.E.: Hamiltonian formalism for hydrodynamic plasma model. Sov. Phys. JETP 33, 927–932 (1971)
38.
Zurück zum Zitat Zakharov, V.E.: The Hamiltonian formalism for waves in nonlinear media having dispersion. Radiophys. Quant. Electr. 17, 326–343 (1974)CrossRef Zakharov, V.E.: The Hamiltonian formalism for waves in nonlinear media having dispersion. Radiophys. Quant. Electr. 17, 326–343 (1974)CrossRef
39.
Zurück zum Zitat Gromov, E.M., Malomed, B.A.: Damped solitons in an extended nonlinear Schrödinger equation with a spatial stimulated Raman scattering and decreasing dispersion. Opt. Comm. 320, 88–93 (2014)CrossRef Gromov, E.M., Malomed, B.A.: Damped solitons in an extended nonlinear Schrödinger equation with a spatial stimulated Raman scattering and decreasing dispersion. Opt. Comm. 320, 88–93 (2014)CrossRef
40.
Zurück zum Zitat Aseeva, N.V., Gromov, E.M., Onosova, I.V., Tyutin, V.V.: Soliton in a higher-order nonlinear Schrödinger equation with spatial stimulated scattering and spatially inhomogeneous second-order dispersion. JETP Lett. 103, 736–741 (2016)CrossRef Aseeva, N.V., Gromov, E.M., Onosova, I.V., Tyutin, V.V.: Soliton in a higher-order nonlinear Schrödinger equation with spatial stimulated scattering and spatially inhomogeneous second-order dispersion. JETP Lett. 103, 736–741 (2016)CrossRef
41.
Zurück zum Zitat Gromov, E.M., Malomed, B.A., Tyutin, V.V.: Vector solitons in coupled nonlinear Schrödinger equations with spatial stimulated scattering and inhomogeneous dispersion. Commun. Nonlinear Sci. Numer. Simulat. 54, 13–20 (2018)CrossRef Gromov, E.M., Malomed, B.A., Tyutin, V.V.: Vector solitons in coupled nonlinear Schrödinger equations with spatial stimulated scattering and inhomogeneous dispersion. Commun. Nonlinear Sci. Numer. Simulat. 54, 13–20 (2018)CrossRef
42.
Zurück zum Zitat Gromov, E.M., Malomed, B.A.: Solitons in a forced nonlinear Schrödinger equation with the pseudo-Raman effect. Phys. Rev. E 92, 062926 (2015)MathSciNetCrossRef Gromov, E.M., Malomed, B.A.: Solitons in a forced nonlinear Schrödinger equation with the pseudo-Raman effect. Phys. Rev. E 92, 062926 (2015)MathSciNetCrossRef
43.
Zurück zum Zitat Blit, R., Malomed, B.A.: Propagation and collisions of semidiscrete solitons in arrayed and stacked waveguides. Phys. Rev. A 86, 043841 (2012)CrossRef Blit, R., Malomed, B.A.: Propagation and collisions of semidiscrete solitons in arrayed and stacked waveguides. Phys. Rev. A 86, 043841 (2012)CrossRef
44.
Zurück zum Zitat Bogatyrev, V.A., et al.: Single-mode fiber with chromatic dispersion varying along the length. J. Lightwave Tech. 9, 561–566 (1991)CrossRef Bogatyrev, V.A., et al.: Single-mode fiber with chromatic dispersion varying along the length. J. Lightwave Tech. 9, 561–566 (1991)CrossRef
45.
Zurück zum Zitat Janssen, P.: The Interaction of Ocean Waves and Wind. Cambridge University Press, Cambridge (2009) Janssen, P.: The Interaction of Ocean Waves and Wind. Cambridge University Press, Cambridge (2009)
46.
Zurück zum Zitat Colin, T., Lannes, D.: Long-wave short-wave resonance for nonlinear geometric optics. Duke Math. J. 107, 351–419 (2001)MathSciNetCrossRef Colin, T., Lannes, D.: Long-wave short-wave resonance for nonlinear geometric optics. Duke Math. J. 107, 351–419 (2001)MathSciNetCrossRef
47.
Zurück zum Zitat Duchȇne, V.: Asymptotic shallow water models for internal waves in a two-uid system with a free surface. SIAM J. Math. Anal. 42, 2229–2260 (2010)MathSciNetCrossRef Duchȇne, V.: Asymptotic shallow water models for internal waves in a two-uid system with a free surface. SIAM J. Math. Anal. 42, 2229–2260 (2010)MathSciNetCrossRef
48.
Zurück zum Zitat Craig, W., Guyenne, P., Sulem, C.: Coupling between internal and surface waves. Nat. Hazards 57, 617–642 (2011)CrossRef Craig, W., Guyenne, P., Sulem, C.: Coupling between internal and surface waves. Nat. Hazards 57, 617–642 (2011)CrossRef
49.
Zurück zum Zitat Brunetti, M., Marchiando, N., Berti, N., Kasparian, J.: Nonlinear fast growth of surface gravity waves under the action of wind. Phys. Lett. A 378, 1025–1030 (2014)MathSciNetCrossRef Brunetti, M., Marchiando, N., Berti, N., Kasparian, J.: Nonlinear fast growth of surface gravity waves under the action of wind. Phys. Lett. A 378, 1025–1030 (2014)MathSciNetCrossRef
50.
Zurück zum Zitat Kharif, C., Kraenkel, R.A., Manna, M.A., Thomas, R.: The modulational instability in deep water under the action of wind and dissipation. J. Fluid Mech. 664, 138–149 (2010)MathSciNetCrossRef Kharif, C., Kraenkel, R.A., Manna, M.A., Thomas, R.: The modulational instability in deep water under the action of wind and dissipation. J. Fluid Mech. 664, 138–149 (2010)MathSciNetCrossRef
51.
Zurück zum Zitat Wahl, R.J., Teague, W.J.: Estimation of Brunt-Väisälä frequency from temperature profiles. J. Phys. Oceanogr. 13, 2236–2245 (1983)CrossRef Wahl, R.J., Teague, W.J.: Estimation of Brunt-Väisälä frequency from temperature profiles. J. Phys. Oceanogr. 13, 2236–2245 (1983)CrossRef
52.
Zurück zum Zitat Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Nauka Publishers, Moscow (1979) Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Nauka Publishers, Moscow (1979)
53.
Zurück zum Zitat Turitsyn, S.K., Schaefer, T., Mezentsev, V.K.: Dispersion-managed solitons. Phys. Rev. E 58, R5264 (1998)CrossRef Turitsyn, S.K., Schaefer, T., Mezentsev, V.K.: Dispersion-managed solitons. Phys. Rev. E 58, R5264 (1998)CrossRef
54.
Zurück zum Zitat Belanger, P.A., Pare, C.: Dispersion management in optical fiber links: self-consistent solution for the RMS pulse parameters. J. Lightwave Tech. 17, 445–458 (1999)CrossRef Belanger, P.A., Pare, C.: Dispersion management in optical fiber links: self-consistent solution for the RMS pulse parameters. J. Lightwave Tech. 17, 445–458 (1999)CrossRef
55.
Zurück zum Zitat Pérez-García, V.M., Torres, P.J., Montesinos, G.D.: The method of moments for nonlinear Schrodinger equations: theory and applications. SIAM J. Appl. Math. 67, 990–1115 (2007)MathSciNetCrossRef Pérez-García, V.M., Torres, P.J., Montesinos, G.D.: The method of moments for nonlinear Schrodinger equations: theory and applications. SIAM J. Appl. Math. 67, 990–1115 (2007)MathSciNetCrossRef
56.
Zurück zum Zitat Chen, Z., Taylor, A.J., Efimov, A.: Soliton dynamics in non-uniform fiber tapers: analytical description through an improved moment method. J. Opt. Soc. Am. B 27, 1022–1030 (2010)CrossRef Chen, Z., Taylor, A.J., Efimov, A.: Soliton dynamics in non-uniform fiber tapers: analytical description through an improved moment method. J. Opt. Soc. Am. B 27, 1022–1030 (2010)CrossRef
Metadaten
Titel
Emulating the Raman Physics in the Spatial Domain with the Help of the Zakharov’s Systems
verfasst von
Evgeny M. Gromov
Boris A. Malomed
Copyright-Jahr
2018
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-77504-3_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.