Skip to main content

2022 | OriginalPaper | Buchkapitel

Energy and Fuels: Sol-Gel Synthesized Core-Shell 0.5Li2MnO3∙0.5LiNi0.5Mn0.3Co0.2O2 Material: Effect of Mixed Fuel (Citric Acid and Ammonium Acetate) on the Structural Properties

verfasst von : Samuel O. Ajayi, Cyril O. Ehi-Eromosele, Kolawole O. Ajanaku

Erschienen in: Bioenergy and Biochemical Processing Technologies

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A comprehensive study was conducted to determine the effect of fuel mixtures on the structural properties of core-shell 0.5Li2MnO3·0.5LiNi0.5Mn0.3Co0.2O2 cathode material (CS-SG-7525). The core (LiNi0.5Mn0.3Co0.08O2) was synthesized using the citric acid monohydrate and ammonium acetate fuel-rich solution combustion method in ratio 3:1. The shell (Li2MnO3) was coated on the core using sol gel method. A high (003)/(104) peak and a clearly distinctive splitting of (006)/(102) and (108)/(110) doublet peaks suggesting a good layered structure material were observed in all the XRD pattern. Two strong peaks are observed at 500 cm−1 and 600 cm−1 for Eg and A1g Raman modes, respectively, for the material. These peaks were attributed to rhombohedral phase (R3m space group) of a layered structure of core segment (LiNi0.5Co0.2Mn0.3O2). Some narrow and weak peaks were observed around 300–440 cm−1. These peaks were attributed to monoclinic symmetry (C2/m space group) of the layered structure of the shell segment (Li2MnO3). The surface morphological revealed that the material is made up of irregular particle shape with rough surfaces. The particle size of the materials ranges from 0.28 to 1.49 μm with average particle size of 0.67 μm. The ICP-OES revealed the elemental composition of the materials was close to its nominal values. The synthesized material could be used as Li-ion batteries cathode materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ates MN, Mukerjee S, Abraham KM (2015) A high rate Li-rich layered MNC cathode material for lithium-ion batteries. RSC Adv 5(35):27375-27386.CrossRef Ates MN, Mukerjee S, Abraham KM (2015) A high rate Li-rich layered MNC cathode material for lithium-ion batteries. RSC Adv 5(35):27375-27386.CrossRef
Zurück zum Zitat Deng YP, Yin ZW, Wu ZG et al (2017) Layered/spinel heterostructured and hierarchical micro/nanostructured Li-rich cathode materials with enhanced electrochemical properties for Li-ion batteries. ACS Appl Mater 9(25):21065-21070.CrossRef Deng YP, Yin ZW, Wu ZG et al (2017) Layered/spinel heterostructured and hierarchical micro/nanostructured Li-rich cathode materials with enhanced electrochemical properties for Li-ion batteries. ACS Appl Mater 9(25):21065-21070.CrossRef
Zurück zum Zitat Ehi-Eromosele CO, Ita BI, Iweala EEJ et al (2016) Structural and magnetic characterization of La0.7Sr0.3MnO3 nanoparticles obtained by the citrate-gel combustion method: Effect of fuel to oxidizer ratio. Ceram Int 42(1):636-643.CrossRef Ehi-Eromosele CO, Ita BI, Iweala EEJ et al (2016) Structural and magnetic characterization of La0.7Sr0.3MnO3 nanoparticles obtained by the citrate-gel combustion method: Effect of fuel to oxidizer ratio. Ceram Int 42(1):636-643.CrossRef
Zurück zum Zitat Ehi-Eromosele CO, Indris S, Bramnik NN et al (2020) In situ x-ray diffraction and x-ray absorption spectroscopic studies of a lithium-rich layered positive electrode material: Comparison of composite and core–shell structures. ACS Appl Mater 12(12):13852-13868.CrossRef Ehi-Eromosele CO, Indris S, Bramnik NN et al (2020) In situ x-ray diffraction and x-ray absorption spectroscopic studies of a lithium-rich layered positive electrode material: Comparison of composite and core–shell structures. ACS Appl Mater 12(12):13852-13868.CrossRef
Zurück zum Zitat Ellis BL, Lee KT, Nazar LF et al (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22(3):691-714.CrossRef Ellis BL, Lee KT, Nazar LF et al (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22(3):691-714.CrossRef
Zurück zum Zitat Huang L, Liu L, Wu H et al (2019) Optimization of synthesis parameters for uniform sphere-like Li1.2Mn0.54Ni0.13Co0.13O2 as high performance cathode material for lithium ion batteries. J Alloys Compd 775:921-930.CrossRef Huang L, Liu L, Wu H et al (2019) Optimization of synthesis parameters for uniform sphere-like Li1.2Mn0.54Ni0.13Co0.13O2 as high performance cathode material for lithium ion batteries. J Alloys Compd 775:921-930.CrossRef
Zurück zum Zitat Iftikhar M (2016) Synthesis and characterization of lithium-manganese rich cathode materials for lithium ion batteries (Doctoral dissertation, Quaid-i-Azam University Islamabad). Iftikhar M (2016) Synthesis and characterization of lithium-manganese rich cathode materials for lithium ion batteries (Doctoral dissertation, Quaid-i-Azam University Islamabad).
Zurück zum Zitat Kunjuzwa N (2017) Synthesis of cation substituted LiMn2-xMxO4 (M= A1, Ni) cathode materials for a lithium ion battery: Improving energy storage, capacity retention, and lithium transport (Doctoral dissertation). Kunjuzwa N (2017) Synthesis of cation substituted LiMn2-xMxO4 (M= A1, Ni) cathode materials for a lithium ion battery: Improving energy storage, capacity retention, and lithium transport (Doctoral dissertation).
Zurück zum Zitat Li J, Shunmugasundaram R et al (2016) In situ x-ray diffraction study of layered Li–Ni–Mn–Co oxides: effect of particle size and structural stability of core–shell materials. Chem Mater 28(1):162-171.CrossRef Li J, Shunmugasundaram R et al (2016) In situ x-ray diffraction study of layered Li–Ni–Mn–Co oxides: effect of particle size and structural stability of core–shell materials. Chem Mater 28(1):162-171.CrossRef
Zurück zum Zitat Li L, Xu M, Chen Z et al (2015) High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties. Electrochim Acta 174:446-455.CrossRef Li L, Xu M, Chen Z et al (2015) High-performance lithium-rich layered oxide materials: Effects of chelating agents on microstructure and electrochemical properties. Electrochim Acta 174:446-455.CrossRef
Zurück zum Zitat Ma Q, Li R, Zheng R et al (2016) Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen. J Power Sources 331:112-121.CrossRef Ma Q, Li R, Zheng R et al (2016) Improving rate capability and decelerating voltage decay of Li-rich layered oxide cathodes via selenium doping to stabilize oxygen. J Power Sources 331:112-121.CrossRef
Zurück zum Zitat Ma X, He H et al (2017) Synthesis of Li1.2Mn0.54Co0.13Ni0.13O2 by sol–gel method and its electrochemical properties as cathode materials for lithium-ion batteries. J Mater Sci Mater Electron 28(22):16665-16671.CrossRef Ma X, He H et al (2017) Synthesis of Li1.2Mn0.54Co0.13Ni0.13O2 by sol–gel method and its electrochemical properties as cathode materials for lithium-ion batteries. J Mater Sci Mater Electron 28(22):16665-16671.CrossRef
Zurück zum Zitat Prakasha KR, Sathish M et al (2017) Mitigating the surface degradation and voltage decay of Li1.2Ni0.13Mn0.54Co0.13O2 cathode material through surface modification using Li2ZrO3. ACS Omega 2(5):2308-2316.CrossRef Prakasha KR, Sathish M et al (2017) Mitigating the surface degradation and voltage decay of Li1.2Ni0.13Mn0.54Co0.13O2 cathode material through surface modification using Li2ZrO3. ACS Omega 2(5):2308-2316.CrossRef
Zurück zum Zitat Sathiya M, Abakumov AM et al (2015) Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater 14(2):230-238.CrossRef Sathiya M, Abakumov AM et al (2015) Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater 14(2):230-238.CrossRef
Zurück zum Zitat Shi SJ, Tu JP, Tang YY et al (2013). Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14-23.CrossRef Shi SJ, Tu JP, Tang YY et al (2013). Combustion synthesis and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with improved rate capability. J Power Sources 228:14-23.CrossRef
Zurück zum Zitat Zuo D, Tian G, Li X et al (2017). Recent progress in surface coating of cathode materials for lithium ion secondary batteries, J Alloys Compd 706:24-40.CrossRef Zuo D, Tian G, Li X et al (2017). Recent progress in surface coating of cathode materials for lithium ion secondary batteries, J Alloys Compd 706:24-40.CrossRef
Metadaten
Titel
Energy and Fuels: Sol-Gel Synthesized Core-Shell 0.5Li2MnO3∙0.5LiNi0.5Mn0.3Co0.2O2 Material: Effect of Mixed Fuel (Citric Acid and Ammonium Acetate) on the Structural Properties
verfasst von
Samuel O. Ajayi
Cyril O. Ehi-Eromosele
Kolawole O. Ajanaku
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-96721-5_5