Skip to main content

2017 | OriginalPaper | Buchkapitel

8. Energy Matrices of Solar-Distillation Systems

verfasst von : G. N. Tiwari, Lovedeep Sahota

Erschienen in: Advanced Solar-Distillation Systems

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantity exergy is based on the concept of the second law of thermodynamics, and it measures the potential to convert energy into work; this potential to produce work is called “exergy” (i.e., maximum useful work). Exergy analysis of any system incorporates all of the irreversibilities and inefficiencies that lead to the destruction of exergy. Exergy analysis plays an important role in measuring the important parameters, e.g., energy matrices (energy-payback time, energy-production factor, and life cycle–conversion efficiency) and CO2 mitigation of the renewable-energy system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E.A. Alsema, E. Niluwlaar, Energy viability of photovoltaic systems. Energy Policy 28, 999 (2000)CrossRef E.A. Alsema, E. Niluwlaar, Energy viability of photovoltaic systems. Energy Policy 28, 999 (2000)CrossRef
2.
Zurück zum Zitat S. Krauter, R. Ruther, Considerations for the calculations of green house gas reduction by photovoltaic solar energy. Renewable Energy 29, 345–355 (2004)CrossRef S. Krauter, R. Ruther, Considerations for the calculations of green house gas reduction by photovoltaic solar energy. Renewable Energy 29, 345–355 (2004)CrossRef
3.
Zurück zum Zitat P. Frankl, A. Masini, M. Gamberale, D. Toccaceli, Simplified life cycle analysis of PV system in buildings present situations and future trends. Prog. Photovoltaics Res. Appl. 2, 137 (1998)CrossRef P. Frankl, A. Masini, M. Gamberale, D. Toccaceli, Simplified life cycle analysis of PV system in buildings present situations and future trends. Prog. Photovoltaics Res. Appl. 2, 137 (1998)CrossRef
4.
Zurück zum Zitat G.J. Treloar, Energy Analysis of the Construction of Office Buildings. Master of Architecture Thesis, Deakin University, Geelong (1994) G.J. Treloar, Energy Analysis of the Construction of Office Buildings. Master of Architecture Thesis, Deakin University, Geelong (1994)
5.
Zurück zum Zitat I. Boustead, G.F. Hancock, Handbook of Industrial Energy Analysis, vol. 309 (Ellis Horwood Publishers, 1979) I. Boustead, G.F. Hancock, Handbook of Industrial Energy Analysis, vol. 309 (Ellis Horwood Publishers, 1979)
6.
Zurück zum Zitat L.P. Hunt, IEEE PV Specialists Conference (Piscataway, NJ, 1986), pp. 347–352 L.P. Hunt, IEEE PV Specialists Conference (Piscataway, NJ, 1986), pp. 347–352
7.
Zurück zum Zitat K. Kato, A. Murata, K. Sakuta, Progress in Photovoltaic Research Applications, vol. 6 (1998), pp. 105–115 K. Kato, A. Murata, K. Sakuta, Progress in Photovoltaic Research Applications, vol. 6 (1998), pp. 105–115
8.
Zurück zum Zitat H.A. Aulich, F.W. Schulz, B. Strake, IEEE PV Specialist Conference (Piscataway, NJ, 1986), pp. 1213–1218 H.A. Aulich, F.W. Schulz, B. Strake, IEEE PV Specialist Conference (Piscataway, NJ, 1986), pp. 1213–1218
9.
10.
Zurück zum Zitat G. Lewis, G. Keoleian, National Pollution Prevention Center, School of Natural Resources and Environment. University of Michigan (1996) G. Lewis, G. Keoleian, National Pollution Prevention Center, School of Natural Resources and Environment. University of Michigan (1996)
11.
Zurück zum Zitat K.S. Srinivas, M. Vuknic, A.V. Shah, R. Tscharner, 6th International Photovoltaic Science and Engineering Conference (PVSEC-6) (New Delhi, India, 1992), pp. 403–413 K.S. Srinivas, M. Vuknic, A.V. Shah, R. Tscharner, 6th International Photovoltaic Science and Engineering Conference (PVSEC-6) (New Delhi, India, 1992), pp. 403–413
12.
Zurück zum Zitat R. Battisti, A. Corrado, Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology. Energy 30, 952–967 (2005)CrossRef R. Battisti, A. Corrado, Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology. Energy 30, 952–967 (2005)CrossRef
13.
Zurück zum Zitat R. Dones, R. Frischknecht, Life-cycle assessment of photovoltaic systems: results of swiss studies on energy chains. Prog. Photovoltaics Res. Appl. 6, 117–125 (1998)CrossRef R. Dones, R. Frischknecht, Life-cycle assessment of photovoltaic systems: results of swiss studies on energy chains. Prog. Photovoltaics Res. Appl. 6, 117–125 (1998)CrossRef
14.
Zurück zum Zitat R. Kalshian, Energy Versus Emissions: The Big Challenge of the New Millennium. By Info Change News R. Kalshian, Energy Versus Emissions: The Big Challenge of the New Millennium. By Info Change News
15.
Zurück zum Zitat M.E. Watt, A.J. Johnson, M. Ellis, H.R. Outhred, Life-cycle air emissions from PV power systems. Prog. Photovoltaics Res. Appl. 6, 127–136 (1998)CrossRef M.E. Watt, A.J. Johnson, M. Ellis, H.R. Outhred, Life-cycle air emissions from PV power systems. Prog. Photovoltaics Res. Appl. 6, 127–136 (1998)CrossRef
16.
Zurück zum Zitat D.B. Singh, G.N. Tiwari, I.M. Al-Helal, V.K. Dwivedi, J.K. Yadav, Effect of energy matrices on life cycle cost analysis of passive solar stills. Sol. Energy 134, 9–22 (2016)CrossRef D.B. Singh, G.N. Tiwari, I.M. Al-Helal, V.K. Dwivedi, J.K. Yadav, Effect of energy matrices on life cycle cost analysis of passive solar stills. Sol. Energy 134, 9–22 (2016)CrossRef
17.
Zurück zum Zitat D.B. Singh, G.N. Tiwari, Effect of energy matrices on life cycle cost analysis of partially covered photovoltaic compound parabolic concentrator collector active solar distillation system. Desalination 397, 75–91 (2016)CrossRef D.B. Singh, G.N. Tiwari, Effect of energy matrices on life cycle cost analysis of partially covered photovoltaic compound parabolic concentrator collector active solar distillation system. Desalination 397, 75–91 (2016)CrossRef
Metadaten
Titel
Energy Matrices of Solar-Distillation Systems
verfasst von
G. N. Tiwari
Lovedeep Sahota
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-4672-8_8