Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 1/2019

17.11.2018

Enhanced crystal formation of methylammonium lead iodide via self-assembled monolayers and their solvation for perovskite solar cells

verfasst von: Kittiwut Chaisan, Duangmanee Wongratanaphisan, Supab Choopun, Takashi Sagawa, Pipat Ruankham

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The quality of a perovskite photo-absorber layer is strongly dependent on the morphology of initially deposited PbI2 precursor film. In this work, surface modification of titanium dioxide (TiO2) substrates with self-assembled monolayers (SAMs) was performed to control the quality of the PbI2 and MAPbI3 perovskite layers. Two small organic molecules, each with a different backbone, 3-aminopropanoic acid (APA) and 4-aminobenzoic acid (ABA), were selected and their solvation effects were also investigated. Small homogeneously distributed cracks were found in the PbI2 film produced from the modification with APA molecules in demethyl sulfoxide or ethanol solution, whereas films produced from modification with ABA molecules showed different effects. These small cavities act as pathway for MAI intercalation and facilate PbI2-to-MAPbI3 conversion, leading to PbI2-free perovskite film. The different morphologies were caused by different adsorption behaviors of each SAM on the TiO2 surface. APA molecules interact with the hydroxyl groups of TiO2 while ABA molecules do not. Therefore, with APA treatment, the perovskite solar cells showed improvements in power conversion efficiency in comparison to either the devices without surface modification or ones treated with ABA molecules. The reasons behind the enhancement are attributed to longer charge carrier lifetime and better charge transfer at the TiO2/APA/perovskite interface. The results imply that the choice selected for SAMs and their solvents are crucial to obtaining high quality perovskite layers and efficient perovskite solar cells.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Hou, J. Yang, Q. Jiang, W. Li, Z. Zhou, X. Li, S. Zhou, Enhancement of photovoltaic performance of perovskite solar cells by modification of the interface between the perovskite and mesoporous TiO2 film. Sol. Energy Mater. Sol. Cells 155, 101–107 (2016)CrossRef Y. Hou, J. Yang, Q. Jiang, W. Li, Z. Zhou, X. Li, S. Zhou, Enhancement of photovoltaic performance of perovskite solar cells by modification of the interface between the perovskite and mesoporous TiO2 film. Sol. Energy Mater. Sol. Cells 155, 101–107 (2016)CrossRef
2.
Zurück zum Zitat W. Hui, T. Yang, F. Bo, Y. Hui, Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells. Chin. Phys. B 26(12), 128801 (2017)CrossRef W. Hui, T. Yang, F. Bo, Y. Hui, Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells. Chin. Phys. B 26(12), 128801 (2017)CrossRef
3.
Zurück zum Zitat L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, H. Chen, Enhanced Photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137(7), 2674–2679 (2015)CrossRef L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, H. Chen, Enhanced Photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137(7), 2674–2679 (2015)CrossRef
4.
Zurück zum Zitat C. Zhang, Y. Luo, X. Chen, W. Ou-Yang, Y. Chen, Z. Sun, S. Huang, Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells. Appl. Surf. Sci. 388(Part A), 82–88 (2016) C. Zhang, Y. Luo, X. Chen, W. Ou-Yang, Y. Chen, Z. Sun, S. Huang, Influence of different TiO2 blocking films on the photovoltaic performance of perovskite solar cells. Appl. Surf. Sci. 388(Part A), 82–88 (2016)
5.
Zurück zum Zitat C. Tozlu, A. Mutlu, M. Can, A.K. Havare, S. Demic, S. Icli, Effect of TiO2 modification with amino-based self-assembled monolayer on inverted organic solar cell. Appl. Surf. Sci. 422, 1129–1138 (2017)CrossRef C. Tozlu, A. Mutlu, M. Can, A.K. Havare, S. Demic, S. Icli, Effect of TiO2 modification with amino-based self-assembled monolayer on inverted organic solar cell. Appl. Surf. Sci. 422, 1129–1138 (2017)CrossRef
6.
Zurück zum Zitat L. Zuo, Q. Chen, N. De Marco, Y.-T. Hsieh, H. Chen, P. Sun, S.-Y. Chang, H. Zhao, S. Dong, Y. Yang, Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells. Nano Lett. 17(1), 269–275 (2017)CrossRef L. Zuo, Q. Chen, N. De Marco, Y.-T. Hsieh, H. Chen, P. Sun, S.-Y. Chang, H. Zhao, S. Dong, Y. Yang, Tailoring the interfacial chemical interaction for high-efficiency perovskite solar cells. Nano Lett. 17(1), 269–275 (2017)CrossRef
7.
Zurück zum Zitat A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)CrossRef A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)CrossRef
8.
Zurück zum Zitat C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)CrossRef C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)CrossRef
9.
Zurück zum Zitat W. Li, J. Fan, J. Li, Y. Mai, L. Wang, Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc. 137, 10399–10405 (2015)CrossRef W. Li, J. Fan, J. Li, Y. Mai, L. Wang, Controllable grain morphology of perovskite absorber film by molecular self-assembly toward efficient solar cell exceeding 17%. J. Am. Chem. Soc. 137, 10399–10405 (2015)CrossRef
10.
Zurück zum Zitat L. Huang, Z. Hu, J. Xu, X. Sun, Y. Du, J. Ni, H. Cai, J. Li, J. Zhang, Efficient electron-transport layer-free planar perovskite solar cells via recycling the FTO/glass substrates from degraded devices. Sol. Energy Mater. Sol. Cells 152, 118–124 (2016)CrossRef L. Huang, Z. Hu, J. Xu, X. Sun, Y. Du, J. Ni, H. Cai, J. Li, J. Zhang, Efficient electron-transport layer-free planar perovskite solar cells via recycling the FTO/glass substrates from degraded devices. Sol. Energy Mater. Sol. Cells 152, 118–124 (2016)CrossRef
11.
Zurück zum Zitat W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)CrossRef W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)CrossRef
12.
Zurück zum Zitat J. Haruyama, K. Sodeyama, L. Han, Y. Tateyama, Surface properties of CH3NH3PbI3 for perovskite solar cells. ACC Chem. Res. 49(3), 554–561 (2016)CrossRef J. Haruyama, K. Sodeyama, L. Han, Y. Tateyama, Surface properties of CH3NH3PbI3 for perovskite solar cells. ACC Chem. Res. 49(3), 554–561 (2016)CrossRef
13.
Zurück zum Zitat P. Ruankham, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, S. Choopun, T. Sagawa, Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells. Appl. Surf. Sci. 410, 393–400 (2017)CrossRef P. Ruankham, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, S. Choopun, T. Sagawa, Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells. Appl. Surf. Sci. 410, 393–400 (2017)CrossRef
14.
Zurück zum Zitat M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, F. Haque, M. Wright, C. Xu, A. Uddin, Controlled nucleation assisted restricted volume solvent annealing for stable perovskite solar cells. Sol. Energy Mater. Sol. Cells 167, 70–86 (2017)CrossRef M.A. Mahmud, N.K. Elumalai, M.B. Upama, D. Wang, F. Haque, M. Wright, C. Xu, A. Uddin, Controlled nucleation assisted restricted volume solvent annealing for stable perovskite solar cells. Sol. Energy Mater. Sol. Cells 167, 70–86 (2017)CrossRef
15.
Zurück zum Zitat Y. Wu, W. Chen, Y. Yue, J. Liu, E. Bi, X. Yang, A. Islam, L. Han, Consecutive morphology controlling operations for highly reproducible mesostructured perovskite solar cells. ACS Appl. Mater. Interfaces 7(37), 20707–20713 (2015)CrossRef Y. Wu, W. Chen, Y. Yue, J. Liu, E. Bi, X. Yang, A. Islam, L. Han, Consecutive morphology controlling operations for highly reproducible mesostructured perovskite solar cells. ACS Appl. Mater. Interfaces 7(37), 20707–20713 (2015)CrossRef
16.
Zurück zum Zitat J.-W. Lee, N.-G. Park, Two-step deposition method for high-efficiency perovskite solar cells. MRS Bull. 40(8), 654–659 (2015)CrossRef J.-W. Lee, N.-G. Park, Two-step deposition method for high-efficiency perovskite solar cells. MRS Bull. 40(8), 654–659 (2015)CrossRef
17.
Zurück zum Zitat G. Li, T. Zhang, Y. Zhao, Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance. J. Mater. Chem. A 3(39), 19674–19678 (2015)CrossRef G. Li, T. Zhang, Y. Zhao, Hydrochloric acid accelerated formation of planar CH3NH3PbI3 perovskite with high humidity tolerance. J. Mater. Chem. A 3(39), 19674–19678 (2015)CrossRef
18.
Zurück zum Zitat Y. Huang, J. Wu, D. Gao, High-efficiency perovskite solar cells based on anatase TiO2 nanotube arrays. Thin Solid Films 598, 1–5 (2016)CrossRef Y. Huang, J. Wu, D. Gao, High-efficiency perovskite solar cells based on anatase TiO2 nanotube arrays. Thin Solid Films 598, 1–5 (2016)CrossRef
19.
Zurück zum Zitat Y. Zhao, K. Zhu, Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite. J. Mater. Chem. A. 3(17), 9086–9091 (2015)CrossRef Y. Zhao, K. Zhu, Three-step sequential solution deposition of PbI2-free CH3NH3PbI3 perovskite. J. Mater. Chem. A. 3(17), 9086–9091 (2015)CrossRef
20.
Zurück zum Zitat Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7(9), 2934–2938 (2014)CrossRef Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7(9), 2934–2938 (2014)CrossRef
21.
Zurück zum Zitat H. Zhang, J. Mao, H. He, D. Zhang, H.L. Zhu, F. Xie, K.S. Wong, M. Grätzel, W.C.H. Choy, A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Adv. Energy Mater. 5(23), 1501354–1501354 (2015)CrossRef H. Zhang, J. Mao, H. He, D. Zhang, H.L. Zhu, F. Xie, K.S. Wong, M. Grätzel, W.C.H. Choy, A smooth CH3NH3PbI3 film via a new approach for forming the PbI2 nanostructure together with strategically high CH3NH3I concentration for high efficient planar-heterojunction solar cells. Adv. Energy Mater. 5(23), 1501354–1501354 (2015)CrossRef
22.
Zurück zum Zitat A. Nawaz, A.K. Erdinc, B. Gultekin, M. Tayyib, C. Zafer, K. Wang, M.N. Akram, K.K. Wong, S. Hussain, L. Schmidt-Mende, A. Fakharuddin, Insights into optoelectronic properties of anti-solvent treated perovskite films. J. Mater. Sci. Mater. Electron. 28(20), 15630–15636 (2017)CrossRef A. Nawaz, A.K. Erdinc, B. Gultekin, M. Tayyib, C. Zafer, K. Wang, M.N. Akram, K.K. Wong, S. Hussain, L. Schmidt-Mende, A. Fakharuddin, Insights into optoelectronic properties of anti-solvent treated perovskite films. J. Mater. Sci. Mater. Electron. 28(20), 15630–15636 (2017)CrossRef
23.
Zurück zum Zitat M. Li, X. Yan, Z. Kang, X. Liao, Y. Li, X. Zheng, P. Lin, J. Meng, Y. Zhang, Enhanced efficiency and stability of perovskite solar cells via anti-solvent treatment in two-step deposition method. ACS Appl. Mater. Interfaces 9(8), 7224–7231 (2017)CrossRef M. Li, X. Yan, Z. Kang, X. Liao, Y. Li, X. Zheng, P. Lin, J. Meng, Y. Zhang, Enhanced efficiency and stability of perovskite solar cells via anti-solvent treatment in two-step deposition method. ACS Appl. Mater. Interfaces 9(8), 7224–7231 (2017)CrossRef
24.
Zurück zum Zitat C. Liu, W. Ding, X. Zhou, J. Gao, C. Cheng, X. Zhao, B. Xu, Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer. J. Phys. Chem. C 121(12), 6546–6553 (2017)CrossRef C. Liu, W. Ding, X. Zhou, J. Gao, C. Cheng, X. Zhao, B. Xu, Efficient and stable perovskite solar cells prepared in ambient air based on surface-modified perovskite layer. J. Phys. Chem. C 121(12), 6546–6553 (2017)CrossRef
25.
Zurück zum Zitat L. Liu, A. Mei, T. Liu, P. Jiang, Y. Sheng, L. Zhang, H. Han, Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137(5), 1790–1793 (2015)CrossRef L. Liu, A. Mei, T. Liu, P. Jiang, Y. Sheng, L. Zhang, H. Han, Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. J. Am. Chem. Soc. 137(5), 1790–1793 (2015)CrossRef
26.
Zurück zum Zitat W. Wang, Z. Zhang, Y. Cai, J. Chen, J. Wang, R. Huang, X. Lu, X. Gao, L. Shui, S. Wu, J.-M. Liu, Enhanced performance of CH3NH3PbI3−xClx perovskite solar cells by CH3NH3I modification of TiO2-perovskite layer interface. Nanoscale Res. Lett. 11(1), 316 (2016)CrossRef W. Wang, Z. Zhang, Y. Cai, J. Chen, J. Wang, R. Huang, X. Lu, X. Gao, L. Shui, S. Wu, J.-M. Liu, Enhanced performance of CH3NH3PbI3−xClx perovskite solar cells by CH3NH3I modification of TiO2-perovskite layer interface. Nanoscale Res. Lett. 11(1), 316 (2016)CrossRef
27.
Zurück zum Zitat Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, All-solid perovskite solar cells with HOCO-R-NH3 +I− anchor-group inserted between porous titania and perovskite. J. Phys. Chem. C 118(30), 16651–16659 (2014)CrossRef Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, All-solid perovskite solar cells with HOCO-R-NH3 +I anchor-group inserted between porous titania and perovskite. J. Phys. Chem. C 118(30), 16651–16659 (2014)CrossRef
28.
Zurück zum Zitat K.E. Lee, M.A. Gomez, S. Elouatik, G.P. Demopoulos, Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal raman imaging. Langmuir 26(12), 9575–9583 (2010)CrossRef K.E. Lee, M.A. Gomez, S. Elouatik, G.P. Demopoulos, Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal raman imaging. Langmuir 26(12), 9575–9583 (2010)CrossRef
29.
Zurück zum Zitat Y. Liang, B. Peng, J. Chen, Correlating dye adsorption behavior with the open-circuit voltage of triphenylamine-based dye-sensitized solar cells. J. Phys. Chem. C 114(24), 10992–10998 (2010)CrossRef Y. Liang, B. Peng, J. Chen, Correlating dye adsorption behavior with the open-circuit voltage of triphenylamine-based dye-sensitized solar cells. J. Phys. Chem. C 114(24), 10992–10998 (2010)CrossRef
30.
Zurück zum Zitat V. Tizjang, M. Montazeri-Pour, M. Rajabi, M. Kari, S. Moghadas, Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity. J. Mater. Sci. Mater. Electron. 26(5), 3008–3019 (2015)CrossRef V. Tizjang, M. Montazeri-Pour, M. Rajabi, M. Kari, S. Moghadas, Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity. J. Mater. Sci. Mater. Electron. 26(5), 3008–3019 (2015)CrossRef
31.
Zurück zum Zitat J.A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds (Butterworths, London, 1975) J.A. Gadsden, Infrared Spectra of Minerals and Related Inorganic Compounds (Butterworths, London, 1975)
32.
Zurück zum Zitat A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P. Orihuela, FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 7(1), 49 (2017)CrossRef A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P. Orihuela, FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 7(1), 49 (2017)CrossRef
33.
Zurück zum Zitat M.T.S. Rosado, M.L.R.S. Duarte, R. Fausto, Vibrational spectra (FT-IR, Raman and MI-IR) of α- and β-alanine. J. Mol. Struct. 410–411, 343–348 (1997) M.T.S. Rosado, M.L.R.S. Duarte, R. Fausto, Vibrational spectra (FT-IR, Raman and MI-IR) of α- and β-alanine. J. Mol. Struct. 410–411, 343–348 (1997)
34.
Zurück zum Zitat I.T. Papadas, K.S. Subrahmanyam, M.G. Kanatzidis, G.S. Armatas, Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications. Nanoscale 7(13), 5737–5743 (2015)CrossRef I.T. Papadas, K.S. Subrahmanyam, M.G. Kanatzidis, G.S. Armatas, Templated assembly of BiFeO3 nanocrystals into 3D mesoporous networks for catalytic applications. Nanoscale 7(13), 5737–5743 (2015)CrossRef
35.
Zurück zum Zitat O.A. Andreeva, L.A. Burkova, I.V. Podeshvo, Fourier transform IR spectroscopic study of substituent effect in aromatic amino acids on the zwitterion–neutral molecule tautomeric equilibrium. Russ. J. Phys. Chem. B 9(6), 869–875 (2015)CrossRef O.A. Andreeva, L.A. Burkova, I.V. Podeshvo, Fourier transform IR spectroscopic study of substituent effect in aromatic amino acids on the zwitterion–neutral molecule tautomeric equilibrium. Russ. J. Phys. Chem. B 9(6), 869–875 (2015)CrossRef
36.
Zurück zum Zitat D.A. Perry, J.S. Cordova, L.G. Smith, H.-J. Son, E.M. Schiefer, E. Dervishi, F. Watanabe, A.S. Biris, Study of adsorption of aminobenzoic acid isomers on silver nanostructures by surface-enhanced infrared spectroscopy. J. Phys. Chem. C 113(42), 18304–18311 (2009)CrossRef D.A. Perry, J.S. Cordova, L.G. Smith, H.-J. Son, E.M. Schiefer, E. Dervishi, F. Watanabe, A.S. Biris, Study of adsorption of aminobenzoic acid isomers on silver nanostructures by surface-enhanced infrared spectroscopy. J. Phys. Chem. C 113(42), 18304–18311 (2009)CrossRef
37.
Zurück zum Zitat M. Samsonowicz, T. Hrynaszkiewicz, R. Świsłocka, E. Regulska, W. Lewandowski, Experimental and theoretical IR, Raman, NMR spectra of 2-, 3- and 4-aminobenzoic acids. J. Mol. Struct. 744–747, 345–352 (2005)CrossRef M. Samsonowicz, T. Hrynaszkiewicz, R. Świsłocka, E. Regulska, W. Lewandowski, Experimental and theoretical IR, Raman, NMR spectra of 2-, 3- and 4-aminobenzoic acids. J. Mol. Struct. 744–747, 345–352 (2005)CrossRef
38.
Zurück zum Zitat L. Liu, K. Li, X. Chen, X. Liang, Y. Zheng, L. Li, Amino acid adsorption on anatase (101) surface at vacuum and aqueous solution: a density functional study. J. Mol. Model. 24(4), 107 (2018)CrossRef L. Liu, K. Li, X. Chen, X. Liang, Y. Zheng, L. Li, Amino acid adsorption on anatase (101) surface at vacuum and aqueous solution: a density functional study. J. Mol. Model. 24(4), 107 (2018)CrossRef
39.
Zurück zum Zitat T.H. Tran, A.Y. Nosaka, Y. Nosaka, Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. J. Phys. Chem. B 110(50), 25525–25531 (2006)CrossRef T.H. Tran, A.Y. Nosaka, Y. Nosaka, Adsorption and photocatalytic decomposition of amino acids in TiO2 photocatalytic systems. J. Phys. Chem. B 110(50), 25525–25531 (2006)CrossRef
40.
Zurück zum Zitat H.K. Adli, T. Harada, W. Septina, S. Hozan, S. Ito, S. Ikeda, Effects of porosity and amount of surface hydroxyl groups of a porous TiO2 layer on the performance of a CH3NH3PbI3 perovskite photovoltaic cell. J. Phys. Chem. C 119(39), 22304–22309 (2015)CrossRef H.K. Adli, T. Harada, W. Septina, S. Hozan, S. Ito, S. Ikeda, Effects of porosity and amount of surface hydroxyl groups of a porous TiO2 layer on the performance of a CH3NH3PbI3 perovskite photovoltaic cell. J. Phys. Chem. C 119(39), 22304–22309 (2015)CrossRef
41.
Zurück zum Zitat B.R. Sutherland, S. Hoogland, M.M. Adachi, P. Kanjanaboos, C.T.O. Wong, J.J. McDowell, J. Xu, O. Voznyy, Z. Ning, A.J. Houtepen, E.H. Sargent, Perovskite thin films via atomic layer deposition. Adv. Mater. 27(1), 53–58 (2015)CrossRef B.R. Sutherland, S. Hoogland, M.M. Adachi, P. Kanjanaboos, C.T.O. Wong, J.J. McDowell, J. Xu, O. Voznyy, Z. Ning, A.J. Houtepen, E.H. Sargent, Perovskite thin films via atomic layer deposition. Adv. Mater. 27(1), 53–58 (2015)CrossRef
42.
Zurück zum Zitat I. Hwang, M. Baek, K. Yong, Core/shell structured TiO2/CdS electrode to enhance the light stability of perovskite solar cells. ACS Appl. Mater. Interfaces 7(50), 27863–27870 (2015)CrossRef I. Hwang, M. Baek, K. Yong, Core/shell structured TiO2/CdS electrode to enhance the light stability of perovskite solar cells. ACS Appl. Mater. Interfaces 7(50), 27863–27870 (2015)CrossRef
43.
Zurück zum Zitat Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014)CrossRef Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang, Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 14(7), 4158–4163 (2014)CrossRef
44.
Zurück zum Zitat D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2(1), e1501170 (2016)CrossRef D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2(1), e1501170 (2016)CrossRef
45.
Zurück zum Zitat V. D’Innocenzo, A.R. Srimath Kandada, M. De Bastiani, M. Gandini, A. Petrozza, Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136(51), 17730–17733 (2014)CrossRef V. D’Innocenzo, A.R. Srimath Kandada, M. De Bastiani, M. Gandini, A. Petrozza, Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136(51), 17730–17733 (2014)CrossRef
46.
Zurück zum Zitat P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, G. Shao, Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016)CrossRef P. Li, C. Liang, Y. Zhang, F. Li, Y. Song, G. Shao, Polyethyleneimine high-energy hydrophilic surface interfacial treatment toward efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 8(47), 32574–32580 (2016)CrossRef
47.
Zurück zum Zitat J. Zhou, X. Meng, X. Zhang, X. Tao, Z. Zhang, J. Hu, C. Wang, Y. Li, S. Yang, Low-temperature aqueous solution processed ZnO as an electron transporting layer for efficient perovskite solar cells. Mater. Chem. Front. 1(5), 802–806 (2017)CrossRef J. Zhou, X. Meng, X. Zhang, X. Tao, Z. Zhang, J. Hu, C. Wang, Y. Li, S. Yang, Low-temperature aqueous solution processed ZnO as an electron transporting layer for efficient perovskite solar cells. Mater. Chem. Front. 1(5), 802–806 (2017)CrossRef
48.
Zurück zum Zitat Q. Wang, Fast voltage decay in perovskite solar cells caused by depolarization of perovskite layer. J. Phys. Chem. C 122(9), 4822–4827 (2018)CrossRef Q. Wang, Fast voltage decay in perovskite solar cells caused by depolarization of perovskite layer. J. Phys. Chem. C 122(9), 4822–4827 (2018)CrossRef
Metadaten
Titel
Enhanced crystal formation of methylammonium lead iodide via self-assembled monolayers and their solvation for perovskite solar cells
verfasst von
Kittiwut Chaisan
Duangmanee Wongratanaphisan
Supab Choopun
Takashi Sagawa
Pipat Ruankham
Publikationsdatum
17.11.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 1/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0365-6

Weitere Artikel der Ausgabe 1/2019

Journal of Materials Science: Materials in Electronics 1/2019 Zur Ausgabe

Neuer Inhalt