Skip to main content
Erschienen in: Journal of Materials Science 10/2018

12.02.2018 | Chemical routes to materials

Enhanced non-enzymatic glucose sensing of Cu–BTC-derived porous copper@carbon agglomerate

verfasst von: Qianyi Gong, Li-Ping Sun, Zhouling Wu, Li-Hua Huo, Hui Zhao

Erschienen in: Journal of Materials Science | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Porous copper@carbon agglomerate (PCCA) is prepared by pyrolysis of Cu3(BTC)2·3H2O (Cu–BTC, BTC = 1,3,5-benzenetricarboxylic acid) in 5% H2–N2 mixture atmosphere. The phase and morphology evolution are thoroughly examined by XRD, Raman, BET, TG, XPS, SEM and TEM, respectively. The results show that PCCA is formed at 400 °C and maintains the cubic morphology of the original Cu–BTC crystal. PCCA is composed by round-shaped copper nanoparticles that covered outside by thin layer of carbon. The non-enzymatic glucose sensing properties of PCCA-modified glassy carbon electrode (Cu/GCE) are characterized by cyclic voltammetry. The sensor shows high sensitivity of 614.3 µA mM−1 to glucose oxidation and negligible responses toward interference from uric acid, ascorbic acid, dopamine and l-cysteine at the level of their physiological concentrations. The sensor also exhibits rapid response (< 6 s), wide linear range (up to 3.33 mM) and low detection limit (0.29 µM at signal/noise ratio (S/N) = 3). Finally, the good stability, reproducibility and repeatability to glucose detection make PCCA a promising catalyst for non-enzymatic glucose sensor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Prasad R, Gorjizadeh N, Rajarao R, Sahajwalla V, Bhat BR (2015) Plant root nodule like nickel-oxide-multi-walled carbon nanotube composites for non-enzymatic glucose sensors. RSC Adv 5:44792–44799CrossRef Prasad R, Gorjizadeh N, Rajarao R, Sahajwalla V, Bhat BR (2015) Plant root nodule like nickel-oxide-multi-walled carbon nanotube composites for non-enzymatic glucose sensors. RSC Adv 5:44792–44799CrossRef
3.
Zurück zum Zitat Wang GF, He XP, Wang LL, Gu AX, Huang Y, Fang B, Geng BY, Zhang XJ (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186CrossRef Wang GF, He XP, Wang LL, Gu AX, Huang Y, Fang B, Geng BY, Zhang XJ (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186CrossRef
4.
Zurück zum Zitat Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45CrossRef Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann NY Acad Sci 102:29–45CrossRef
6.
Zurück zum Zitat Yazid SNAM, Isa IM, Hashim N (2016) Novel alkaline-reduced cuprous oxide/graphene nanocomposites for non-enzymatic amperometric glucose sensor application. Mater Sci Eng, C 68:465–473CrossRef Yazid SNAM, Isa IM, Hashim N (2016) Novel alkaline-reduced cuprous oxide/graphene nanocomposites for non-enzymatic amperometric glucose sensor application. Mater Sci Eng, C 68:465–473CrossRef
7.
Zurück zum Zitat Dayakar T, Rao V, Bikshalu K, Rajendar V, Park SH (2017) Novel synthesis and characterization of pristine Cu nanoparticles for the non-enzymatic glucose biosensor. J Mater Sci Mater Med 28:109CrossRef Dayakar T, Rao V, Bikshalu K, Rajendar V, Park SH (2017) Novel synthesis and characterization of pristine Cu nanoparticles for the non-enzymatic glucose biosensor. J Mater Sci Mater Med 28:109CrossRef
8.
Zurück zum Zitat Huang JF (2008) 3-D nanoporous Pt electrode prepared by a 2-D UPD monolayer process. Electroanalysis 20:2229–2234CrossRef Huang JF (2008) 3-D nanoporous Pt electrode prepared by a 2-D UPD monolayer process. Electroanalysis 20:2229–2234CrossRef
9.
Zurück zum Zitat Xia Y, Huang W, Zheng JF, Niu ZJ, Li ZL (2011) Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens Bioelectron 26:3555–3561CrossRef Xia Y, Huang W, Zheng JF, Niu ZJ, Li ZL (2011) Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens Bioelectron 26:3555–3561CrossRef
10.
Zurück zum Zitat Iwu KO, Lombardo A, Sanz R, Scire S, Mirabella S (2016) Facile synthesis of Ni nanofoam for flexible and low-cost non-enzymatic glucose sensing. Sens Actuators, B 224:764–771CrossRef Iwu KO, Lombardo A, Sanz R, Scire S, Mirabella S (2016) Facile synthesis of Ni nanofoam for flexible and low-cost non-enzymatic glucose sensing. Sens Actuators, B 224:764–771CrossRef
11.
Zurück zum Zitat Salazar P, Rico V, Rodriguez-Amaro R, Espinos JP, Gonzalez-Elipe AR (2015) New copper wide range nanosensor electrode prepared by physical vapor deposition at oblique angles for the non-enzimatic determination of glucose. Electrochim Acta 169:195–201CrossRef Salazar P, Rico V, Rodriguez-Amaro R, Espinos JP, Gonzalez-Elipe AR (2015) New copper wide range nanosensor electrode prepared by physical vapor deposition at oblique angles for the non-enzimatic determination of glucose. Electrochim Acta 169:195–201CrossRef
12.
Zurück zum Zitat Huang JW, Dong ZP, Li YD, Li J, Wang J, Yang HD, Li SW, Guo SJ, Jin J, Li R (2013) High performance non-enzymatic glucose biosensor based on copper nanowires-carbon nanotubes hybrid for intracellular glucose study. Sens Actuators, B 182:618–624CrossRef Huang JW, Dong ZP, Li YD, Li J, Wang J, Yang HD, Li SW, Guo SJ, Jin J, Li R (2013) High performance non-enzymatic glucose biosensor based on copper nanowires-carbon nanotubes hybrid for intracellular glucose study. Sens Actuators, B 182:618–624CrossRef
13.
Zurück zum Zitat Wang B, Wu YY, Chen YF, Weng B, Li CM (2017) Flexible paper sensor fabricated via in situ growth of Cu nanoflower on RGO sheets towards amperometrically non-enzymatic detection of glucose. Sens Actuators, B 238:802–808CrossRef Wang B, Wu YY, Chen YF, Weng B, Li CM (2017) Flexible paper sensor fabricated via in situ growth of Cu nanoflower on RGO sheets towards amperometrically non-enzymatic detection of glucose. Sens Actuators, B 238:802–808CrossRef
14.
Zurück zum Zitat Zhang YC, Su L, Manuzzi D, Monteros HVE, Jia WZ, Huo DQ (2012) Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron 31:426–432CrossRef Zhang YC, Su L, Manuzzi D, Monteros HVE, Jia WZ, Huo DQ (2012) Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens Bioelectron 31:426–432CrossRef
15.
Zurück zum Zitat Yang J, Zhang WD, Gunasekaran S (2010) An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens Bioelectron 26:279–284CrossRef Yang J, Zhang WD, Gunasekaran S (2010) An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens Bioelectron 26:279–284CrossRef
16.
Zurück zum Zitat Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster_multiwall/carbon nanotube-modified glassy carbon electrode. Anal Biochem 363:143–150CrossRef Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster_multiwall/carbon nanotube-modified glassy carbon electrode. Anal Biochem 363:143–150CrossRef
17.
Zurück zum Zitat Huang TK, Lin KW, Tung SP, Cheng TM, Chang IC, Hsieh YZ, Lee CY, Chiu HT (2009) Glucose sensing by electrochemically grown copper nanobelt electrode. J Electroanal Chem 636:123–127CrossRef Huang TK, Lin KW, Tung SP, Cheng TM, Chang IC, Hsieh YZ, Lee CY, Chiu HT (2009) Glucose sensing by electrochemically grown copper nanobelt electrode. J Electroanal Chem 636:123–127CrossRef
18.
Zurück zum Zitat Liu XJ, Yang WX, Chen LL, Jia JB (2016) Synthesis of copper nanorods for non-enzymatic amperometric sensing of glucose. Microchim Acta 183:2269–2375 Liu XJ, Yang WX, Chen LL, Jia JB (2016) Synthesis of copper nanorods for non-enzymatic amperometric sensing of glucose. Microchim Acta 183:2269–2375
19.
Zurück zum Zitat Mao JJ, Yang LF, Yu P, Wei XW, Mao LQ (2012) Electrocatalytic four-electron reduction of oxygen with Copper(II)-based metal-organic frameworks. Electrochem Commun 19:29–31CrossRef Mao JJ, Yang LF, Yu P, Wei XW, Mao LQ (2012) Electrocatalytic four-electron reduction of oxygen with Copper(II)-based metal-organic frameworks. Electrochem Commun 19:29–31CrossRef
20.
Zurück zum Zitat Nozaki A, Tanihara Y, Kuwahara Y, Mori K, Yamashita H (2016) Deposition of metal organic framework layers on skeletal Cu prepared from Cu–Ti amorphous alloy and their enhanced catalytic activities. Chem Lett 45:976–978CrossRef Nozaki A, Tanihara Y, Kuwahara Y, Mori K, Yamashita H (2016) Deposition of metal organic framework layers on skeletal Cu prepared from Cu–Ti amorphous alloy and their enhanced catalytic activities. Chem Lett 45:976–978CrossRef
21.
Zurück zum Zitat Xu F, Yu Y, Yan J, Xia QB, Wang HH, Li J, Li Z (2016) Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO2 adsorption capacity and CO2/N2 adsorption selectivity. Chem Eng J 303:231–237CrossRef Xu F, Yu Y, Yan J, Xia QB, Wang HH, Li J, Li Z (2016) Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO2 adsorption capacity and CO2/N2 adsorption selectivity. Chem Eng J 303:231–237CrossRef
22.
Zurück zum Zitat Wang Y, Sang SY, Zhu W, Gao LJ, Xiao GM (2016) CuNi@C catalysts with high activity derived from metal–organic frameworks precursor for conversion of furfural to cyclopentanone. Chem Eng J 299:104–111CrossRef Wang Y, Sang SY, Zhu W, Gao LJ, Xiao GM (2016) CuNi@C catalysts with high activity derived from metal–organic frameworks precursor for conversion of furfural to cyclopentanone. Chem Eng J 299:104–111CrossRef
23.
Zurück zum Zitat Niu HY, Liu SL, Cai YQ, Wu FC, Zhao XL (2016) MOF derived porous carbon supported Cu/Cu2O composite as high performance non-noble catalyst. Microporous Mesoporous Mater 219:48–53CrossRef Niu HY, Liu SL, Cai YQ, Wu FC, Zhao XL (2016) MOF derived porous carbon supported Cu/Cu2O composite as high performance non-noble catalyst. Microporous Mesoporous Mater 219:48–53CrossRef
24.
Zurück zum Zitat Raoof JB, Hosseini SR, Ojani R, Mandegarzad S (2015) MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction. Energy 90:1075–1081CrossRef Raoof JB, Hosseini SR, Ojani R, Mandegarzad S (2015) MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction. Energy 90:1075–1081CrossRef
25.
Zurück zum Zitat Khan IA, Badshah A, Nadeem MA, Haider N, Nadeem MA (2014) A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications. Int J Hydrogen Energy 39:19609–19620CrossRef Khan IA, Badshah A, Nadeem MA, Haider N, Nadeem MA (2014) A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications. Int J Hydrogen Energy 39:19609–19620CrossRef
26.
Zurück zum Zitat Wei CT, Li X, Xu FG, Tan HL, Li Z, Sun LL, Song YH (2014) Metal organic framework-derived anthill-like Cu@carbon nanocomposites for nonenzymatic glucose sensor. Anal Methods 6:1550–1557CrossRef Wei CT, Li X, Xu FG, Tan HL, Li Z, Sun LL, Song YH (2014) Metal organic framework-derived anthill-like Cu@carbon nanocomposites for nonenzymatic glucose sensor. Anal Methods 6:1550–1557CrossRef
27.
Zurück zum Zitat Zhang SY, Liu H, Sun CC, Liu PF, Li LC, Yang ZH, Feng X, Huo FW, Lu XH (2015) CuO/Cu2O porous composites: shape and composition controllable fabrication inherited from metal organic frameworks and further application in CO oxidation. J Mater Chem A 3:5294–5298CrossRef Zhang SY, Liu H, Sun CC, Liu PF, Li LC, Yang ZH, Feng X, Huo FW, Lu XH (2015) CuO/Cu2O porous composites: shape and composition controllable fabrication inherited from metal organic frameworks and further application in CO oxidation. J Mater Chem A 3:5294–5298CrossRef
28.
Zurück zum Zitat Yuan T, Marshall WD (2007) Catalytic hydrogenation of polyaromatic hydrocarbon(PAH) compounds in supercritical carbon dioxide over supported palladium. J Environ Monit 9:1344–1351CrossRef Yuan T, Marshall WD (2007) Catalytic hydrogenation of polyaromatic hydrocarbon(PAH) compounds in supercritical carbon dioxide over supported palladium. J Environ Monit 9:1344–1351CrossRef
29.
Zurück zum Zitat Stephen SYC, Samuel MFL, Jonathan PHC, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150CrossRef Stephen SYC, Samuel MFL, Jonathan PHC, Orpen AG, Williams ID (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283:1148–1150CrossRef
30.
Zurück zum Zitat Tan HL, Ma CJ, Gao L, Li Q, Song YH, Xu FG, Wang T, Wang L (2014) Metal–organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chem Eur J 20:16377–16383CrossRef Tan HL, Ma CJ, Gao L, Li Q, Song YH, Xu FG, Wang T, Wang L (2014) Metal–organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chem Eur J 20:16377–16383CrossRef
31.
Zurück zum Zitat Li ZX, Zou KY, Zhang X, Han T, Yang Y (2016) Hierarchically flower-like N-doped porous carbon materials derived from an explosive 3-fold interpenetrating diamondoid copper metal-organic framework for a supercapacitor. Inorg Chem 55:6552–6562CrossRef Li ZX, Zou KY, Zhang X, Han T, Yang Y (2016) Hierarchically flower-like N-doped porous carbon materials derived from an explosive 3-fold interpenetrating diamondoid copper metal-organic framework for a supercapacitor. Inorg Chem 55:6552–6562CrossRef
32.
Zurück zum Zitat Liang CD, Li ZJ, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717CrossRef Liang CD, Li ZJ, Dai S (2008) Mesoporous carbon materials: synthesis and modification. Angew Chem Int Ed 47:3696–3717CrossRef
33.
Zurück zum Zitat Park JY, Jung YS, Cho J, Choi WK (2006) Chemical reaction of sputtered Cu film with PI modified by low energy reactive atomic beam. Appl Surf Sci 252:5877–5891CrossRef Park JY, Jung YS, Cho J, Choi WK (2006) Chemical reaction of sputtered Cu film with PI modified by low energy reactive atomic beam. Appl Surf Sci 252:5877–5891CrossRef
34.
Zurück zum Zitat Torto N, Ruzgas T, Gorton L (1999) Electrochemical oxidation of mono- and disaccharides at fresh as well as oxidized copper electrodes in alkaline media. J Electroanal Chem 464:252–258CrossRef Torto N, Ruzgas T, Gorton L (1999) Electrochemical oxidation of mono- and disaccharides at fresh as well as oxidized copper electrodes in alkaline media. J Electroanal Chem 464:252–258CrossRef
35.
Zurück zum Zitat Farrell ST, Breslin CB (2004) Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles. Electrochim Acta 49:4497–4503CrossRef Farrell ST, Breslin CB (2004) Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles. Electrochim Acta 49:4497–4503CrossRef
36.
Zurück zum Zitat Zhao J, Wang F, Yu JJ, Hu SS (2006) Electro-oxidation of glucose at self-assembled monolayers incorporated by copper particles. Talanta 70:449–454CrossRef Zhao J, Wang F, Yu JJ, Hu SS (2006) Electro-oxidation of glucose at self-assembled monolayers incorporated by copper particles. Talanta 70:449–454CrossRef
37.
Zurück zum Zitat Babu TGS, Ramachandran T, Nair B (2010) Single step modification of copper electrode for the highly sensitive and selective non-enzymatic determination of glucose. Microchim Acta 169:49–55CrossRef Babu TGS, Ramachandran T, Nair B (2010) Single step modification of copper electrode for the highly sensitive and selective non-enzymatic determination of glucose. Microchim Acta 169:49–55CrossRef
38.
Zurück zum Zitat Ye DX, Liang GH, Li HX, Luo J, Zhang S, Chen H, Kong JL (2013) A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116:223–230CrossRef Ye DX, Liang GH, Li HX, Luo J, Zhang S, Chen H, Kong JL (2013) A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116:223–230CrossRef
39.
Zurück zum Zitat Marioli JM, Kuwana T (1992) Electrochemical characterization of carbohydrate oxidation at copper electrodes. Electrochim Acta 37:1187–1197CrossRef Marioli JM, Kuwana T (1992) Electrochemical characterization of carbohydrate oxidation at copper electrodes. Electrochim Acta 37:1187–1197CrossRef
40.
Zurück zum Zitat Lu HT, Cao XH, Yang ZJ, Chen S, Fan Y (2015) Electrochemical determination of glucose in human serum utilizing a novel nanocomposite composed of copper nanoparticles in a hollow carbon shell. Anal Lett 48:137–146CrossRef Lu HT, Cao XH, Yang ZJ, Chen S, Fan Y (2015) Electrochemical determination of glucose in human serum utilizing a novel nanocomposite composed of copper nanoparticles in a hollow carbon shell. Anal Lett 48:137–146CrossRef
41.
Zurück zum Zitat Rodrigues TS, Silva AGMD, Alves RS, Freitas ICD, Oliveira DC, Camargo PHC (2017) Controlling reduction kinetics in the galvanic replacement involving metal oxides templates: elucidating the formation of bimetallic bowls, rattles, and dendrites from Cu2O spheres. Part Part Syst Charact. https://doi.org/10.1002/ppsc.201700175 Rodrigues TS, Silva AGMD, Alves RS, Freitas ICD, Oliveira DC, Camargo PHC (2017) Controlling reduction kinetics in the galvanic replacement involving metal oxides templates: elucidating the formation of bimetallic bowls, rattles, and dendrites from Cu2O spheres. Part Part Syst Charact. https://​doi.​org/​10.​1002/​ppsc.​201700175
42.
Zurück zum Zitat Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA (2015) Aggregation, dissolution and transformation of copper nanoparticles in natural waters. Environ Sci Technol 49:2749–2756CrossRef Conway JR, Adeleye AS, Gardea-Torresdey J, Keller AA (2015) Aggregation, dissolution and transformation of copper nanoparticles in natural waters. Environ Sci Technol 49:2749–2756CrossRef
43.
Zurück zum Zitat Zhou XL, Yan ZG, Han XD (2014) In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties. Mater Res Bull 50:118–127CrossRef Zhou XL, Yan ZG, Han XD (2014) In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties. Mater Res Bull 50:118–127CrossRef
44.
Zurück zum Zitat Zhao Y, Zhao JZ, Ma DC, Li YL, Hao XL, Li LZ, Yu CZ, Zhang L, Lu Y, Wang ZC (2012) Synthesis, growth mechanism of different Cu nanostructures and their application for non-enzymatic glucose sensing. Colloids Surf A 409:105–111CrossRef Zhao Y, Zhao JZ, Ma DC, Li YL, Hao XL, Li LZ, Yu CZ, Zhang L, Lu Y, Wang ZC (2012) Synthesis, growth mechanism of different Cu nanostructures and their application for non-enzymatic glucose sensing. Colloids Surf A 409:105–111CrossRef
45.
Zurück zum Zitat Male KB, Hrapovic S, Liu YL, Wang DS, Luong JHT (2004) Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta 516:35–41CrossRef Male KB, Hrapovic S, Liu YL, Wang DS, Luong JHT (2004) Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta 516:35–41CrossRef
46.
Zurück zum Zitat Liao XJ, Lu SB, Huang SW (2012) Preparation of copper/carbon sphere composites with excellent electrocatalytic activity toward glucose. Int J Electrochem Soc 7:11274–11280 Liao XJ, Lu SB, Huang SW (2012) Preparation of copper/carbon sphere composites with excellent electrocatalytic activity toward glucose. Int J Electrochem Soc 7:11274–11280
47.
Zurück zum Zitat Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53CrossRef Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53CrossRef
48.
Zurück zum Zitat Luo J, Zhang HY, Jiang SS, Jiang JQ, Liu XY (2012) Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Microchim Acta 177:485–490CrossRef Luo J, Zhang HY, Jiang SS, Jiang JQ, Liu XY (2012) Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Microchim Acta 177:485–490CrossRef
49.
Zurück zum Zitat Jiang D, Liu Q, Wang K, Qian J, Dong XY, Yang ZT, Du XJ, Qiu BJ (2014) Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens Bioelectron 54:273–278CrossRef Jiang D, Liu Q, Wang K, Qian J, Dong XY, Yang ZT, Du XJ, Qiu BJ (2014) Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens Bioelectron 54:273–278CrossRef
50.
Zurück zum Zitat Jiang JY, Zhang P, Liu Y, Luo HX (2017) A novel non-enzymatic glucose sensor based on a Cu-nanoparticle-modified graphene edge nanoelectrode. Anal Methods 9:2205–2210CrossRef Jiang JY, Zhang P, Liu Y, Luo HX (2017) A novel non-enzymatic glucose sensor based on a Cu-nanoparticle-modified graphene edge nanoelectrode. Anal Methods 9:2205–2210CrossRef
51.
Zurück zum Zitat Shabnam L, Faisal SN, Roy AK, Haque E, Minett AI, Gomes VG (2017) Doped graphene/Cu nanocomposite: a high sensitivity non-enzymatic glucose sensor for food. Food Chem 221:751–759CrossRef Shabnam L, Faisal SN, Roy AK, Haque E, Minett AI, Gomes VG (2017) Doped graphene/Cu nanocomposite: a high sensitivity non-enzymatic glucose sensor for food. Food Chem 221:751–759CrossRef
52.
Zurück zum Zitat Pranati N, Santhosh PN, Sundara R (2016) Enzyme-less and low-potential sensing of glucose using a glassy carbon electrode modified with palladium nanoparticles deposited on graphene-wrapped carbon nanotubes. Microchim Acta 183:1055–1062CrossRef Pranati N, Santhosh PN, Sundara R (2016) Enzyme-less and low-potential sensing of glucose using a glassy carbon electrode modified with palladium nanoparticles deposited on graphene-wrapped carbon nanotubes. Microchim Acta 183:1055–1062CrossRef
Metadaten
Titel
Enhanced non-enzymatic glucose sensing of Cu–BTC-derived porous copper@carbon agglomerate
verfasst von
Qianyi Gong
Li-Ping Sun
Zhouling Wu
Li-Hua Huo
Hui Zhao
Publikationsdatum
12.02.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 10/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2078-x

Weitere Artikel der Ausgabe 10/2018

Journal of Materials Science 10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.