Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.01.2018 | Sonderheft 3/2019

Cluster Computing 3/2019

Enhanced sentiment labeling and implicit aspect identification by integration of deep convolution neural network and sequential algorithm

Zeitschrift:
Cluster Computing > Sonderheft 3/2019
Autoren:
Jinzhan Feng, Shuqin Cai, Xiaomeng Ma

Abstract

The existing methods for Chinese sentiment Labeling mainly relies on the artificial sentiment corpus, but a sentiment word in the corpus may not be sentiment words in different sentences. This paper proposes a new method to label the words in the sentences by combining deep convolution neural network with sequential algorithm., We first extract the aspects comprised by words vectors, part of speech vectors, dependent syntax vectors to train the deep convolution neural network, and then employ the sequential algorithm to obtain the sentiment annotation of the sentence. Experimental results verify that our method is effective for sentiment labeling. Considering that the identification of the implicit aspects can improve the completeness of sentiment analysis, we suggest to construct the tuples including aspect, sentiment shifter, sentiment intensity, sentiment words after obtaining the sentiment labels for each word in the sentence. We develop new algorithm for implicit aspect identification by taking the two key factors of the aspects as a topic and the match degree of aspects and sentiment words, and the human language habit. The experiment demonstrates that the algorithm can effectively identify the implicit aspect. In this paper, we solve the problem of sentiment labeling and implicit aspect recognition in sentiment analysis. As a new tool for sentiment analysis, our method can be applied to the enterprise management information analysis, such as product online review, product online reputation, brand image and consumer preference management, and can also be used for the sentiment analysis of large-scale text data.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Sonderheft 3/2019

Cluster Computing 3/2019 Zur Ausgabe

Premium Partner

    Bildnachweise