Skip to main content

2019 | OriginalPaper | Buchkapitel

2. Enhanced Thermal and Mechanical Performance of Functionalized Graphene Epoxy Nanocomposites: Effect of Processing Conditions, Different Grades and Loading of Graphene

verfasst von : Saswata Bose, Arit Das, Anirban Ghosh

Erschienen in: Advances in Materials, Mechanical and Industrial Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene nanoplatelets (GnPs) belong to a category of recently innovated inexpensive materials that comprises of a small pile of graphite layers that has often been employed to augment the tensile strength of composites. In this work, acid modified Polyacroyl chloride (PACl)-functionalized GnP has been incorporated in epoxy (Epon 828) matrix and the effect of solution processing on the thermal, viscoelastic and mechanical properties of the nanocomposites was investigated.  As a result of the acid treatment, hydroxl groups were incorporated on to the GnP backbone which in turn served as a site for covalent bonding with the acyl chloride groups of PACl. The unreacted acyl chloride groups bonded to the epoxy in the nanocomposite. The nanocomposites were prepared in the presence of acetone as a solvent (solvent processed) and also in the absence of solvent. The fractured surfaces of the prepared nanocomposites upon tensile testing were examined using scanning electron microscopy (SEM) which revealed the strong interfacial bonding between the functionalized GnPs and epoxy matrix. The thermal and viscoelastic properties of the nanocomposites were characterized by thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA), respectively. It could be concluded that the mechanical and thermal properties of epoxy nanocomposites were improved to an appreciable extent upon the incorporation of functionalized GnPs and the processing conditions played a pivotal role in controlling the aforementioned properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today 60, 35–41 (2007) Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today 60, 35–41 (2007)
2.
Zurück zum Zitat Stoller, M.D., Park, S.J., Zhu, Y.W., An, J.H., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)CrossRef Stoller, M.D., Park, S.J., Zhu, Y.W., An, J.H., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008)CrossRef
3.
Zurück zum Zitat Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., Zhang, J.: A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7(5), 1564–1596 (2014)CrossRef Chabot, V., Higgins, D., Yu, A., Xiao, X., Chen, Z., Zhang, J.: A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ. Sci. 7(5), 1564–1596 (2014)CrossRef
4.
Zurück zum Zitat Cai, W., Zhu, Y., Li, X., Piner, R.D., Ruoff, R.S.: Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 95(12), 123115 (2009)CrossRef Cai, W., Zhu, Y., Li, X., Piner, R.D., Ruoff, R.S.: Large area few-layer graphene/graphite films as transparent thin conducting electrodes. Appl. Phys. Lett. 95(12), 123115 (2009)CrossRef
5.
Zurück zum Zitat Wang, G., Shen, X., Yao, J., Park, J.: Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47 (8), 2049–2053 (2009)CrossRef Wang, G., Shen, X., Yao, J., Park, J.: Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47 (8), 2049–2053 (2009)CrossRef
6.
Zurück zum Zitat Bose, S., Basu, S., Das, A., Rahman, M., Drzal, L.T.: Fabrication of a sulfonated aramid-graphene nanoplatelet composite paper and its performance as a supercapacitor electrode. J. Appl. Polym. Sci. 134(29), 45099 (2017)CrossRef Bose, S., Basu, S., Das, A., Rahman, M., Drzal, L.T.: Fabrication of a sulfonated aramid-graphene nanoplatelet composite paper and its performance as a supercapacitor electrode. J. Appl. Polym. Sci. 134(29), 45099 (2017)CrossRef
7.
Zurück zum Zitat Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M.: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem., Int. Ed. Engl. 49(17), 3014–3017 (2010)CrossRef Guo, C.X., Yang, H.B., Sheng, Z.M., Lu, Z.S., Song, Q.L., Li, C.M.: Layered graphene/quantum dots for photovoltaic devices. Angew. Chem., Int. Ed. Engl. 49(17), 3014–3017 (2010)CrossRef
8.
Zurück zum Zitat Eswaraiah, V., Sankaranarayanan, V., Ramaprabhu, S.: Graphene-based engine oil nanofluids for tribological applications. ACS Appl. Mater. Interfaces. 3(11), 4221–4227 (2011)CrossRef Eswaraiah, V., Sankaranarayanan, V., Ramaprabhu, S.: Graphene-based engine oil nanofluids for tribological applications. ACS Appl. Mater. Interfaces. 3(11), 4221–4227 (2011)CrossRef
9.
Zurück zum Zitat Bose, S., Das, A., Basu, S., Drzal, L.T.: Edge stitching of graphene nanoplatelets (GnPs) and their effectiveness as a filler for epoxy nanocomposites. ChemistrySelect 2(20), 5769–5774 (2017)CrossRef Bose, S., Das, A., Basu, S., Drzal, L.T.: Edge stitching of graphene nanoplatelets (GnPs) and their effectiveness as a filler for epoxy nanocomposites. ChemistrySelect 2(20), 5769–5774 (2017)CrossRef
10.
Zurück zum Zitat Bose, S., Das, A., Basu, S., Drzal, L.T.: Covalent functionalization of graphene using polyacryloyl chloride and performance of functionalized graphene-epoxy nanocomposite. Polym. Compos. 298, 339 (2017) Bose, S., Das, A., Basu, S., Drzal, L.T.: Covalent functionalization of graphene using polyacryloyl chloride and performance of functionalized graphene-epoxy nanocomposite. Polym. Compos. 298, 339 (2017)
11.
Zurück zum Zitat Liu, Z., Shen, D., Yu, J., Dai, W., Li, C., Du, S., Jiang, N., Li, H., Lin, C.T.: Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites. RSC Advances 6, 22364–22369 (2016)CrossRef Liu, Z., Shen, D., Yu, J., Dai, W., Li, C., Du, S., Jiang, N., Li, H., Lin, C.T.: Exceptionally high thermal and electrical conductivity of three-dimensional graphene-foam-based polymer composites. RSC Advances 6, 22364–22369 (2016)CrossRef
12.
Zurück zum Zitat Zeng, C., Lu, S., Song, L., Xiao, X., Gao, J., Pan, L., He, Z., Yu, J.: Enhanced thermal properties in a hybrid graphene-alumina filler for epoxy composites. RSC Advances 5, 35773–35782 (2015)CrossRef Zeng, C., Lu, S., Song, L., Xiao, X., Gao, J., Pan, L., He, Z., Yu, J.: Enhanced thermal properties in a hybrid graphene-alumina filler for epoxy composites. RSC Advances 5, 35773–35782 (2015)CrossRef
13.
Zurück zum Zitat Yao, Y., Wang, J., Lu, H., Xu, B., Fu, Y., Liu, Y., Leng, J.: Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties. Smart Mater. Struct. 25, 015021 (2016)CrossRef Yao, Y., Wang, J., Lu, H., Xu, B., Fu, Y., Liu, Y., Leng, J.: Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties. Smart Mater. Struct. 25, 015021 (2016)CrossRef
14.
Zurück zum Zitat Wajid, A.S., Ahmed, H.S., Das, S., Irin, F., Jankowski, A.F., Green, M.J.: High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol. Mater. Eng. 298, 339–347 (2013)CrossRef Wajid, A.S., Ahmed, H.S., Das, S., Irin, F., Jankowski, A.F., Green, M.J.: High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties. Macromol. Mater. Eng. 298, 339–347 (2013)CrossRef
15.
Zurück zum Zitat Balakrishnan, S., Start, P.R., Raghavan, D., Hudson, S.D.: The influence of clay and elastomer concentration on the morphology and fracture energy of preformed acrylic rubber dispersed clay filled epoxy nanocomposites. Polymer 46, 11255–11262 (2005)CrossRef Balakrishnan, S., Start, P.R., Raghavan, D., Hudson, S.D.: The influence of clay and elastomer concentration on the morphology and fracture energy of preformed acrylic rubber dispersed clay filled epoxy nanocomposites. Polymer 46, 11255–11262 (2005)CrossRef
16.
Zurück zum Zitat Zhang, Y., Wang, Y., Yu, J., Chen, L., Zhu, J., Hu, Z.: Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55, 4990–5000 (2014)CrossRef Zhang, Y., Wang, Y., Yu, J., Chen, L., Zhu, J., Hu, Z.: Tuning the interface of graphene platelets/epoxy composites by the covalent grafting of polybenzimidazole. Polymer 55, 4990–5000 (2014)CrossRef
17.
Zurück zum Zitat Mittal, V.: Functional polymer nanocomposites with graphene: a review. Macromol. Mater. Eng. 299, 906–931 (2014)CrossRef Mittal, V.: Functional polymer nanocomposites with graphene: a review. Macromol. Mater. Eng. 299, 906–931 (2014)CrossRef
18.
Zurück zum Zitat Sofer, Z., Simek, P., Pumera, M.: Complex organic molecules are released during thermal reduction of graphite oxides. Phys. Chem. Chem. Phys. 15, 9257–9264 (2013)CrossRef Sofer, Z., Simek, P., Pumera, M.: Complex organic molecules are released during thermal reduction of graphite oxides. Phys. Chem. Chem. Phys. 15, 9257–9264 (2013)CrossRef
19.
Zurück zum Zitat Cheng, M., Yang, R., Zhang, L., Shi, Z., Yang, W., WangD, Xie G., Shi, D., Zhang, G.: Restoration of graphene from graphene oxide by defect repair. Carbon 50, 2581–2587 (2012)CrossRef Cheng, M., Yang, R., Zhang, L., Shi, Z., Yang, W., WangD, Xie G., Shi, D., Zhang, G.: Restoration of graphene from graphene oxide by defect repair. Carbon 50, 2581–2587 (2012)CrossRef
20.
Zurück zum Zitat Yang, K., Gu, M., Guo, Y., Pan, X., Mu, G.: Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47, 1723–1737 (2009)CrossRef Yang, K., Gu, M., Guo, Y., Pan, X., Mu, G.: Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47, 1723–1737 (2009)CrossRef
21.
Zurück zum Zitat Kim, M.G., Moon, J.B., Kim, C.G.: Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature. Compos. A Appl. Sci. Manuf. 43, 1620–1627 (2012)CrossRef Kim, M.G., Moon, J.B., Kim, C.G.: Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature. Compos. A Appl. Sci. Manuf. 43, 1620–1627 (2012)CrossRef
22.
Zurück zum Zitat Rahman, M.M., Hosur, M., Zainuddin, S., Jajam, K.C., Tippur, H.V., Jeelani, S.: Mechanical characterization of epoxy composites modified with reactive polyol diluent and randomly-oriented amino-functionalized MWCNTs. Polym. Testing 31, 1083–1093 (2012)CrossRef Rahman, M.M., Hosur, M., Zainuddin, S., Jajam, K.C., Tippur, H.V., Jeelani, S.: Mechanical characterization of epoxy composites modified with reactive polyol diluent and randomly-oriented amino-functionalized MWCNTs. Polym. Testing 31, 1083–1093 (2012)CrossRef
23.
Zurück zum Zitat Damian, C.M., Garea, S.A., Vasile, E., Iovu, H.: Covalent and non-covalent functionalized MWCNTs for improved thermo-mechanical properties of epoxy composites. Compos. B Eng. 43, 3507–3515 (2012)CrossRef Damian, C.M., Garea, S.A., Vasile, E., Iovu, H.: Covalent and non-covalent functionalized MWCNTs for improved thermo-mechanical properties of epoxy composites. Compos. B Eng. 43, 3507–3515 (2012)CrossRef
24.
Zurück zum Zitat Zou, W., Du, Z.J., Liu, Y.X., Yang, X., Li, H.Q., Zhang, C.: Functionalization of MWNTs using polyacryloyl chloride and the properties of CNT–epoxy matrix nanocomposites. Compos. Sci. Technol. 68, 3259–3264 (2008)CrossRef Zou, W., Du, Z.J., Liu, Y.X., Yang, X., Li, H.Q., Zhang, C.: Functionalization of MWNTs using polyacryloyl chloride and the properties of CNT–epoxy matrix nanocomposites. Compos. Sci. Technol. 68, 3259–3264 (2008)CrossRef
25.
Zurück zum Zitat Ho, S.S., Park, K.H., Kim, B.H., Choi, Y.W., Jun, G.H., Lee, D.J., Kong, B.S., Paik, K.W., Jeon,S.: Enhanced thermal conductivity of epoxy–graphene composites by using non‐oxidized graphene flakes with non‐covalent functionalization. Adv. Mater. 25, 732–737 (2013) Ho, S.S., Park, K.H., Kim, B.H., Choi, Y.W., Jun, G.H., Lee, D.J., Kong, B.S., Paik, K.W., Jeon,S.: Enhanced thermal conductivity of epoxy–graphene composites by using non‐oxidized graphene flakes with non‐covalent functionalization. Adv. Mater. 25, 732–737 (2013)
26.
Zurück zum Zitat Lee, J.K., Song, S., Kim, B.: Functionalized graphene sheets-epoxy based nanocomposite for cryotank composite application. Polym. Compos. 33, 1263–1273 (2012)CrossRef Lee, J.K., Song, S., Kim, B.: Functionalized graphene sheets-epoxy based nanocomposite for cryotank composite application. Polym. Compos. 33, 1263–1273 (2012)CrossRef
27.
Zurück zum Zitat Jin, F.L., Ma, C.J., Park, S.J.: Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater. Sci. Eng., A 528, 8517–8522 (2011)CrossRef Jin, F.L., Ma, C.J., Park, S.J.: Thermal and mechanical interfacial properties of epoxy composites based on functionalized carbon nanotubes. Mater. Sci. Eng., A 528, 8517–8522 (2011)CrossRef
28.
Zurück zum Zitat Nadler, M., Werner, J., Mahrholz, T., Riedel, U., Hufenbach, W.: Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos. A Appl. Sci. Manuf. 40, 932–937 (2009)CrossRef Nadler, M., Werner, J., Mahrholz, T., Riedel, U., Hufenbach, W.: Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos. A Appl. Sci. Manuf. 40, 932–937 (2009)CrossRef
29.
Zurück zum Zitat Geng, Y., Liu, M.Y., Li, J., Shi, X.M., Kim, J.K.: Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos. A Appl. Sci. Manuf. 39, 1876–1883 (2008)CrossRef Geng, Y., Liu, M.Y., Li, J., Shi, X.M., Kim, J.K.: Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos. A Appl. Sci. Manuf. 39, 1876–1883 (2008)CrossRef
30.
Zurück zum Zitat Shen, J., Huang, W., Wu, L., Hu, Y., Ye, M.: Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Compos. A Appl. Sci. Manuf. 38(5), 1331–1336 (2007)CrossRef Shen, J., Huang, W., Wu, L., Hu, Y., Ye, M.: Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Compos. A Appl. Sci. Manuf. 38(5), 1331–1336 (2007)CrossRef
31.
Zurück zum Zitat Kim, J.A., Seong, D.G., Kang, T.J., Youn, J.R.: Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44, 1898–1905 (2006)CrossRef Kim, J.A., Seong, D.G., Kang, T.J., Youn, J.R.: Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44, 1898–1905 (2006)CrossRef
32.
Zurück zum Zitat Zhang, Y., Ren, L., Wang, S., Marathe, A., Chaudhuri, J., Li, G.: Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)CrossRef Zhang, Y., Ren, L., Wang, S., Marathe, A., Chaudhuri, J., Li, G.: Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)CrossRef
33.
Zurück zum Zitat Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)CrossRef Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)CrossRef
34.
Zurück zum Zitat Worsley, K.A., Ramesh, P., Mandal, S.K., Niyogi, S., Itkis, M.E., Haddon, R.C.: Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445, 51–56 (2007)CrossRef Worsley, K.A., Ramesh, P., Mandal, S.K., Niyogi, S., Itkis, M.E., Haddon, R.C.: Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445, 51–56 (2007)CrossRef
35.
Zurück zum Zitat Zhang, Y., Ren, L., Wang, S., Marathe, A., Chaudhuri, J., Li, G.: Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)CrossRef Zhang, Y., Ren, L., Wang, S., Marathe, A., Chaudhuri, J., Li, G.: Functionalization of graphene sheets through fullerene attachment. J. Mater. Chem. 21, 5386–5391 (2011)CrossRef
36.
Zurück zum Zitat Salavagione, H.J., Gomez, M.A., Martinez, G.: Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 42, 6331–6334 (2009)CrossRef Salavagione, H.J., Gomez, M.A., Martinez, G.: Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 42, 6331–6334 (2009)CrossRef
37.
Zurück zum Zitat MohammadiA, Peighambardoust S.J., Entezami, A.A., Arsalani, N.: High performance of covalently grafted poly (o-methoxyaniline) nanocomposite in the presence of amine-functionalized graphene oxide sheets (POMA/f-GO) for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 28, 5776–5787 (2017) MohammadiA, Peighambardoust S.J., Entezami, A.A., Arsalani, N.: High performance of covalently grafted poly (o-methoxyaniline) nanocomposite in the presence of amine-functionalized graphene oxide sheets (POMA/f-GO) for supercapacitor applications. J. Mater. Sci.: Mater. Electron. 28, 5776–5787 (2017)
38.
Zurück zum Zitat Sulleiro, M.V., Quiroga, S., Peña, D., Pérez, D., Guitian, E., Criado, A., Prato, M.: Microwave-induced covalent functionalization of few-layer graphene with arynes under solvent-free conditions. Chem. Commun. 54, 2086–2089 (2018)CrossRef Sulleiro, M.V., Quiroga, S., Peña, D., Pérez, D., Guitian, E., Criado, A., Prato, M.: Microwave-induced covalent functionalization of few-layer graphene with arynes under solvent-free conditions. Chem. Commun. 54, 2086–2089 (2018)CrossRef
39.
Zurück zum Zitat Criado, A., Melchionna, M., Marchesan, S., Prato, M.: The covalent functionalization of graphene on substrates. Angew.Chem. Int. Ed. 54, 10734–10750 (2015)CrossRef Criado, A., Melchionna, M., Marchesan, S., Prato, M.: The covalent functionalization of graphene on substrates. Angew.Chem. Int. Ed. 54, 10734–10750 (2015)CrossRef
40.
Zurück zum Zitat Naebe, M., Wang, J., Amini, A., Khayyam, H., Hammed, N., Li, L.H., Chen, Y., Fox, B.: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep. 4, 4375 (2014)CrossRef Naebe, M., Wang, J., Amini, A., Khayyam, H., Hammed, N., Li, L.H., Chen, Y., Fox, B.: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep. 4, 4375 (2014)CrossRef
41.
Zurück zum Zitat Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology 22, 405603 (2011)CrossRef Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Preparation of non-covalently functionalized graphene using 9-anthracene carboxylic acid. Nanotechnology 22, 405603 (2011)CrossRef
42.
Zurück zum Zitat Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J. Mater. Chem. 22, 9696–9703 (2012)CrossRef Bose, S., Kuila, T., Mishra, A.K., Kim, N.H., Lee, J.H.: Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J. Mater. Chem. 22, 9696–9703 (2012)CrossRef
43.
Zurück zum Zitat Park, S., Lee, K.S., Bozoklu, G., Cai, W., Nguyen, S.T., Ruoff, R.S.: Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)CrossRef Park, S., Lee, K.S., Bozoklu, G., Cai, W., Nguyen, S.T., Ruoff, R.S.: Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)CrossRef
44.
Zurück zum Zitat Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S., Taheri, F.: Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater. Des. 66, 142–149 (2015)CrossRef Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S., Taheri, F.: Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites. Mater. Des. 66, 142–149 (2015)CrossRef
Metadaten
Titel
Enhanced Thermal and Mechanical Performance of Functionalized Graphene Epoxy Nanocomposites: Effect of Processing Conditions, Different Grades and Loading of Graphene
verfasst von
Saswata Bose
Arit Das
Anirban Ghosh
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-96968-8_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.