Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

Enhancement of Si-Based Solar Cell Efficiency via Nanostructure Integration

verfasst von : Junshuai Li, Hong-Yu Yu

Erschienen in: Energy Efficiency and Renewable Energy Through Nanotechnology

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Solar cells are considered one of the most promising clean and renewable energy sources. Si wafer-based solar cells currently dominate the photovoltaic (PV) market with over 80% of the market share, largely owing to the available and rich manufacturing processes developed for the integrated circuit industry. However, the relatively high cost of the PV modules using Si wafer solar cells compared to conventional fossil fuels-based energy restricts its wide adoption for the civil electricity supply. How to effectively lower the costs of PV modules becomes one of the most important scientific and technical topics, especially considering the current world-wide efforts to combat climate change due to the “greenhouse” gas emissions when consuming carbon-based fossil energy. Two methodologies are generally pursued to realize this goal: one is to utilize low-grade raw materials and the other is by increasing the power conversion efficiency (PCE). In this chapter, the approaches to lower the costs and enhance the PCE of the Si-based solar cells by incorporating various Si nanostructures (e.g., nanodots, nanowires, nanocones and nanoholes) are presented, with details on the preparation techniques and their optical and electrical characteristics. The possible mechanisms of PCE improvement using these Si nanostructures are discussed in terms of enhanced light absorption and photogenerated carrier collection.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Würfel P (2005) Physics of solar cells: from principles to new concepts. Wiley-VCH, Weinheim Würfel P (2005) Physics of solar cells: from principles to new concepts. Wiley-VCH, Weinheim
2.
Zurück zum Zitat Pagliaro M, Palmisano G, Ciriminna R (2008) Flexible solar cells. Wiley-VCH, WeinheimCrossRef Pagliaro M, Palmisano G, Ciriminna R (2008) Flexible solar cells. Wiley-VCH, WeinheimCrossRef
3.
Zurück zum Zitat Green MA (2001) Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog Photovolt Res Appl 9:123–135CrossRef Green MA (2001) Third generation photovoltaics: ultra-high conversion efficiency at low cost. Prog Photovolt Res Appl 9:123–135CrossRef
4.
Zurück zum Zitat Green MA (2003) Third generation photovoltaics: advanced solar energy conversion. Springer, Berlin Green MA (2003) Third generation photovoltaics: advanced solar energy conversion. Springer, Berlin
5.
Zurück zum Zitat Green MA (2002) Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14:65–70CrossRef Green MA (2002) Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14:65–70CrossRef
6.
Zurück zum Zitat Conibeer G, Green MA, Corkish R et al (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662CrossRef Conibeer G, Green MA, Corkish R et al (2006) Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films 511:654–662CrossRef
7.
Zurück zum Zitat Conibeer G, Green MA, Cho EC et al (2008) Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516:6748–6756CrossRef Conibeer G, Green MA, Cho EC et al (2008) Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516:6748–6756CrossRef
8.
Zurück zum Zitat Kayes BM, Atwater HA, Lewis NS (2005) Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J Appl Phys 97:114302-11CrossRef Kayes BM, Atwater HA, Lewis NS (2005) Comparison of the device physics principles of planar and radial p–n junction nanorod solar cells. J Appl Phys 97:114302-11CrossRef
9.
Zurück zum Zitat Zhu J, Yu Z, Burkhard GF et al (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone array. Nano Lett 9:279–282CrossRef Zhu J, Yu Z, Burkhard GF et al (2009) Optical absorption enhancement in amorphous silicon nanowire and nanocone array. Nano Lett 9:279–282CrossRef
10.
Zurück zum Zitat Yuan HC, Yost VE, Page MR et al (2009) Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules. Appl Phys Lett 95:123501-3 Yuan HC, Yost VE, Page MR et al (2009) Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules. Appl Phys Lett 95:123501-3
11.
Zurück zum Zitat Kim TW, Cho CH, Kim BH et al (2006) Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl Phys Lett 88:123102-3 Kim TW, Cho CH, Kim BH et al (2006) Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl Phys Lett 88:123102-3
12.
Zurück zum Zitat van Buuren T, Dinh LN, Chase LL et al (1998) Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys Rev Lett 80:3803–3806CrossRef van Buuren T, Dinh LN, Chase LL et al (1998) Changes in the electronic properties of Si nanocrystals as a function of particle size. Phys Rev Lett 80:3803–3806CrossRef
13.
Zurück zum Zitat Tian B, Zheng X, Kempa TJ et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–890CrossRef Tian B, Zheng X, Kempa TJ et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–890CrossRef
14.
Zurück zum Zitat Zacharias M, Heitmann J, Scholz R et al (2002) Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl Phys Lett 80:661–663CrossRef Zacharias M, Heitmann J, Scholz R et al (2002) Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Appl Phys Lett 80:661–663CrossRef
15.
Zurück zum Zitat Scardera G, Puzzer T, Conibeer G et al (2008) Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride films. J Appl Phys 104:104310-7CrossRef Scardera G, Puzzer T, Conibeer G et al (2008) Fourier transform infrared spectroscopy of annealed silicon-rich silicon nitride films. J Appl Phys 104:104310-7CrossRef
16.
Zurück zum Zitat Song D, Cho EC, Conibeer G et al (2007) Fabrication and electrical characteristics of Si nanocrystal/c-Si heterojunctions. Appl Phys Lett 91:123510-3 Song D, Cho EC, Conibeer G et al (2007) Fabrication and electrical characteristics of Si nanocrystal/c-Si heterojunctions. Appl Phys Lett 91:123510-3
17.
Zurück zum Zitat Kayes BM, Filler MA, Putnam MC et al (2007) Growth of vertically aligned Si wire array over large areas (>1 cm2) with Au and Cu catalysts. Appl Phys Lett 91:103110-3CrossRef Kayes BM, Filler MA, Putnam MC et al (2007) Growth of vertically aligned Si wire array over large areas (>1 cm2) with Au and Cu catalysts. Appl Phys Lett 91:103110-3CrossRef
18.
Zurück zum Zitat Stelzner T, Pietsch M, Andrä G et al (2008) Silicon nanowire-based solar cells. Nanotechnology 19:295203-4CrossRef Stelzner T, Pietsch M, Andrä G et al (2008) Silicon nanowire-based solar cells. Nanotechnology 19:295203-4CrossRef
19.
Zurück zum Zitat Hsu CM, Connor ST, Tang MX et al (2008) Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl Phys Lett 93:133109-3 Hsu CM, Connor ST, Tang MX et al (2008) Wafer-scale silicon nanopillars and nanocones by Langmuir–Blodgett assembly and etching. Appl Phys Lett 93:133109-3
20.
Zurück zum Zitat Hsu CH, Lo HC, Chen CF et al (2004) Generally applicable self-masked dry etching technique for nanotip array fabrication. Nano Lett 4:471–475CrossRef Hsu CH, Lo HC, Chen CF et al (2004) Generally applicable self-masked dry etching technique for nanotip array fabrication. Nano Lett 4:471–475CrossRef
21.
Zurück zum Zitat Huang MJ, Yang CR, Chiou YC et al (2008) Fabrication of nanoporous antireflection surfaces on silicon. Sol Energy Mater Sol Cells 92:1352–1357CrossRef Huang MJ, Yang CR, Chiou YC et al (2008) Fabrication of nanoporous antireflection surfaces on silicon. Sol Energy Mater Sol Cells 92:1352–1357CrossRef
22.
Zurück zum Zitat Branz HM, Yost VE, Ward S et al (2009) Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl Phys Lett 94:231121-3CrossRef Branz HM, Yost VE, Ward S et al (2009) Nanostructured black silicon and the optical reflectance of graded-density surfaces. Appl Phys Lett 94:231121-3CrossRef
23.
Zurück zum Zitat Conibeer G (2007) Third-generation photovoltaics. Mater Today 10:42–50CrossRef Conibeer G (2007) Third-generation photovoltaics. Mater Today 10:42–50CrossRef
24.
Zurück zum Zitat Conibeer G, Ekins-Daukes N, Guillemoles JF et al (2009) Progress on hot carrier cells. Sol Energy Mater Sol Cells 93:713–719CrossRef Conibeer G, Ekins-Daukes N, Guillemoles JF et al (2009) Progress on hot carrier cells. Sol Energy Mater Sol Cells 93:713–719CrossRef
25.
Zurück zum Zitat Boutry GA (1948) Augustin Fresnel: his time, life and work 1788–1827. Sci Prog 36:587–604 Boutry GA (1948) Augustin Fresnel: his time, life and work 1788–1827. Sci Prog 36:587–604
26.
Zurück zum Zitat Xi JQ, Schubert MF, Kim JK et al (2007) Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat Photon 1:176–179 Xi JQ, Schubert MF, Kim JK et al (2007) Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat Photon 1:176–179
27.
Zurück zum Zitat Arndt RA, Allison JF, Haynos JG et al (1975) Optical properties of the COMSAT non-reflective cell. In: Proceedings of 11th IEEE photovoltaic specialists conference, Scottsdale, May, pp 40–43 Arndt RA, Allison JF, Haynos JG et al (1975) Optical properties of the COMSAT non-reflective cell. In: Proceedings of 11th IEEE photovoltaic specialists conference, Scottsdale, May, pp 40–43
28.
Zurück zum Zitat Zhao J, Wang A, Green MA et al (1998) 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett 73:1991–1993CrossRef Zhao J, Wang A, Green MA et al (1998) 19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett 73:1991–1993CrossRef
29.
Zurück zum Zitat Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17:183–189CrossRef Green MA (2009) The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog Photovolt Res Appl 17:183–189CrossRef
30.
Zurück zum Zitat Li JS, Yu HY, Wong SM et al (2009) Si nanopillar array optimization on Si thin films for solar energy harvesting. Appl Phys Lett 95:033102-3 Li JS, Yu HY, Wong SM et al (2009) Si nanopillar array optimization on Si thin films for solar energy harvesting. Appl Phys Lett 95:033102-3
31.
Zurück zum Zitat Li JS, Yu HY, Wong SM et al (2009) Surface nanostructure optimization for solar energy harvesting in Si thin film based solar cells. In: IEEE technical digest, international electron devices meeting, pp 547–550 Li JS, Yu HY, Wong SM et al (2009) Surface nanostructure optimization for solar energy harvesting in Si thin film based solar cells. In: IEEE technical digest, international electron devices meeting, pp 547–550
32.
Zurück zum Zitat Iacona F, Franzò G, Spinella C (2000) Correlation between luminescence and structural properties of Si nanocrystals. J Appl Phys 87:1295–1303CrossRef Iacona F, Franzò G, Spinella C (2000) Correlation between luminescence and structural properties of Si nanocrystals. J Appl Phys 87:1295–1303CrossRef
33.
Zurück zum Zitat Tsybeskov L, Hirschman KD, Duttagupta SP et al (1998) Nanocrystalline-silicon superlattice produced by controlled recrystallization. Appl Phys Lett 72:43–45CrossRef Tsybeskov L, Hirschman KD, Duttagupta SP et al (1998) Nanocrystalline-silicon superlattice produced by controlled recrystallization. Appl Phys Lett 72:43–45CrossRef
34.
Zurück zum Zitat Zhang RJ, Chen YM, Lu WJ (2009) Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix. Appl Phys Lett 95:161109-3 Zhang RJ, Chen YM, Lu WJ (2009) Influence of nanocrystal size on dielectric functions of Si nanocrystals embedded in SiO2 matrix. Appl Phys Lett 95:161109-3
35.
Zurück zum Zitat Kim TY, Park NM, Kim KH et al (2004) Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl Phys Lett 85:5355–5357CrossRef Kim TY, Park NM, Kim KH et al (2004) Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl Phys Lett 85:5355–5357CrossRef
36.
Zurück zum Zitat Park NM, Choi CJ, Seong TY et al (2001) Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys Rev Lett 86:1355–1357CrossRef Park NM, Choi CJ, Seong TY et al (2001) Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys Rev Lett 86:1355–1357CrossRef
37.
Zurück zum Zitat Boer KW (1990) Survey of semiconductor physics. van Nostrand Reinhold, New York Boer KW (1990) Survey of semiconductor physics. van Nostrand Reinhold, New York
38.
Zurück zum Zitat Jiang CW, Green MA (2006) Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J Appl Phys 99:114902-7 Jiang CW, Green MA (2006) Silicon quantum dot superlattices: modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J Appl Phys 99:114902-7
39.
Zurück zum Zitat Meillaud F, Shah A, Droz C et al (2006) Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells 90:2952–2959CrossRef Meillaud F, Shah A, Droz C et al (2006) Efficiency limits for single-junction and tandem solar cells. Sol Energy Mater Sol Cells 90:2952–2959CrossRef
40.
Zurück zum Zitat Song D, Cho EC, Conibeer G et al (2008) Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices. Sol Energy Mater Sol Cells 92:474–481CrossRef Song D, Cho EC, Conibeer G et al (2008) Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction devices. Sol Energy Mater Sol Cells 92:474–481CrossRef
41.
Zurück zum Zitat Cho EC, Park S, Hao X et al (2008) Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 19:245201-5CrossRef Cho EC, Park S, Hao X et al (2008) Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 19:245201-5CrossRef
42.
Zurück zum Zitat Stupca M, Alsalhi M, Saud TA et al (2007) Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle. Appl Phys Lett 91:063107-3CrossRef Stupca M, Alsalhi M, Saud TA et al (2007) Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle. Appl Phys Lett 91:063107-3CrossRef
43.
Zurück zum Zitat Kim SK, Cho CH, Kim BH et al (2009) Electrical and optical characteristics of silicon nanocrystal solar cells. Appl Phys Lett 95:143120-3 Kim SK, Cho CH, Kim BH et al (2009) Electrical and optical characteristics of silicon nanocrystal solar cells. Appl Phys Lett 95:143120-3
44.
Zurück zum Zitat Perez-Wurfl I, Hao X, Gentle A et al (2009) Si nanocrystal p–i–n diodes fabricated on quartz substrates for third generation solar cell applications. Appl Phys Lett 95:153506-3CrossRef Perez-Wurfl I, Hao X, Gentle A et al (2009) Si nanocrystal p–i–n diodes fabricated on quartz substrates for third generation solar cell applications. Appl Phys Lett 95:153506-3CrossRef
45.
Zurück zum Zitat Cantele G, Degoli E, Luppi E et al (2005) First-principles study of n- and p-doped silicon nanoclusters. Phys Rev B 72:113303-4CrossRef Cantele G, Degoli E, Luppi E et al (2005) First-principles study of n- and p-doped silicon nanoclusters. Phys Rev B 72:113303-4CrossRef
46.
Zurück zum Zitat Erwin SC, Zu L, Haftel MI et al (2005) Doping semiconductor nanocrystals. Nature 436:91–94CrossRef Erwin SC, Zu L, Haftel MI et al (2005) Doping semiconductor nanocrystals. Nature 436:91–94CrossRef
47.
Zurück zum Zitat Westwater J, Gosain DP, Tomiya S et al (1997) Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J Vac Sci Technol B 15:554–557CrossRef Westwater J, Gosain DP, Tomiya S et al (1997) Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J Vac Sci Technol B 15:554–557CrossRef
48.
Zurück zum Zitat Hochbaum AI, Fan R, He R et al (2005) Controlled growth of Si nanowire array for device integration. Nano Lett 5:457–460CrossRef Hochbaum AI, Fan R, He R et al (2005) Controlled growth of Si nanowire array for device integration. Nano Lett 5:457–460CrossRef
49.
Zurück zum Zitat Schmidt V, Senz S, Gösele U (2005) Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett 5:931–935CrossRef Schmidt V, Senz S, Gösele U (2005) Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett 5:931–935CrossRef
50.
Zurück zum Zitat Tsakalakos L, Balch J, Fronheiser J et al (2007) Strong broadband optical absorption in silicon nanowire films. J. Nanophoton 1:013552-10CrossRef Tsakalakos L, Balch J, Fronheiser J et al (2007) Strong broadband optical absorption in silicon nanowire films. J. Nanophoton 1:013552-10CrossRef
51.
Zurück zum Zitat Hochbaum AI, Chen R, Delgado RD et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–168CrossRef Hochbaum AI, Chen R, Delgado RD et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163–168CrossRef
52.
Zurück zum Zitat Chan CK, Peng H, Liu G et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRef Chan CK, Peng H, Liu G et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRef
53.
Zurück zum Zitat Pan C, Wu H, Wang C et al (2008) Nanowire-based high performance “micro fuel cells”: one nanowire, one fuel cell. Adv Mater 20:1644–1648CrossRef Pan C, Wu H, Wang C et al (2008) Nanowire-based high performance “micro fuel cells”: one nanowire, one fuel cell. Adv Mater 20:1644–1648CrossRef
54.
Zurück zum Zitat Peng KQ, Yan YJ, Gao SP et al (2002) Synthesis of large-area silicon nanowire array via self-assembling nanoelectrochemistry. Adv Mater 14:1164–1167CrossRef Peng KQ, Yan YJ, Gao SP et al (2002) Synthesis of large-area silicon nanowire array via self-assembling nanoelectrochemistry. Adv Mater 14:1164–1167CrossRef
55.
Zurück zum Zitat Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire array with controlled diameter, length, and density. Adv Mater 19:744–748CrossRef Huang Z, Fang H, Zhu J (2007) Fabrication of silicon nanowire array with controlled diameter, length, and density. Adv Mater 19:744–748CrossRef
56.
Zurück zum Zitat Wang Y, Schmidt V, Senz S et al (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1:186–189CrossRef Wang Y, Schmidt V, Senz S et al (2006) Epitaxial growth of silicon nanowires using an aluminium catalyst. Nat Nanotechnol 1:186–189CrossRef
57.
Zurück zum Zitat Shimizu T, Xie T, Nishikawa J et al (2007) Synthesis of vertical high-density epitaxial Si (100) nanowire array on a Si (100) substrate using an anodic aluminum oxide template. Adv Mater 19:917–920CrossRef Shimizu T, Xie T, Nishikawa J et al (2007) Synthesis of vertical high-density epitaxial Si (100) nanowire array on a Si (100) substrate using an anodic aluminum oxide template. Adv Mater 19:917–920CrossRef
58.
Zurück zum Zitat Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4:89–90CrossRef Wagner RS, Ellis WC (1964) Vapor–liquid–solid mechanism of single crystal growth. Appl Phys Lett 4:89–90CrossRef
59.
Zurück zum Zitat Westwater J, Gosain DP, Usui S (1998) Si nanowires grown via the vapor–liquid–solid reaction. Phys Stat Sol (a) 165:37–42CrossRef Westwater J, Gosain DP, Usui S (1998) Si nanowires grown via the vapor–liquid–solid reaction. Phys Stat Sol (a) 165:37–42CrossRef
60.
Zurück zum Zitat Yao Y, Fan S (2007) Si nanowires synthesized with Cu catalyst. Mater Lett 61:177–181CrossRef Yao Y, Fan S (2007) Si nanowires synthesized with Cu catalyst. Mater Lett 61:177–181CrossRef
61.
Zurück zum Zitat Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211CrossRef Morales AM, Lieber CM (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279:208–211CrossRef
62.
Zurück zum Zitat Ke Y, Weng X, Redwing JM et al (2009) Fabrication and electrical properties of Si nanowires synthesized by Al catalyzed vapor–liquid–solid growth. Nano Lett 9:4494–4499CrossRef Ke Y, Weng X, Redwing JM et al (2009) Fabrication and electrical properties of Si nanowires synthesized by Al catalyzed vapor–liquid–solid growth. Nano Lett 9:4494–4499CrossRef
63.
Zurück zum Zitat Chen W, Ahmed H (1993) Fabrication of high aspect ratio silicon pillars of <10 nm diameter. Appl Phys Lett 63:1116–1118CrossRef Chen W, Ahmed H (1993) Fabrication of high aspect ratio silicon pillars of <10 nm diameter. Appl Phys Lett 63:1116–1118CrossRef
64.
Zurück zum Zitat Hadobás K, Kirsch S, Carl A et al (2000) Reflection properties of nanostructure-array silicon surfaces. Nanotechnology 11:161–164CrossRef Hadobás K, Kirsch S, Carl A et al (2000) Reflection properties of nanostructure-array silicon surfaces. Nanotechnology 11:161–164CrossRef
65.
Zurück zum Zitat Bullis WM (1966) Properties of gold in silicon. Solid-State Electron 9:143–168CrossRef Bullis WM (1966) Properties of gold in silicon. Solid-State Electron 9:143–168CrossRef
66.
Zurück zum Zitat Dabbousi BO, Murray CB, Rubner MF et al (1994) Langmuir–Blodgett manipulation of size-selected CdSe nanocrystallites. Chem Mater 6:216–219CrossRef Dabbousi BO, Murray CB, Rubner MF et al (1994) Langmuir–Blodgett manipulation of size-selected CdSe nanocrystallites. Chem Mater 6:216–219CrossRef
67.
Zurück zum Zitat Peng K, Zhang M, Lu A et al (2007) Ordered silicon nanowire array via nanosphere lithography and metal induced etching. Appl Phys Lett 90:163123-3 Peng K, Zhang M, Lu A et al (2007) Ordered silicon nanowire array via nanosphere lithography and metal induced etching. Appl Phys Lett 90:163123-3
68.
Zurück zum Zitat Lu Y, Xiong H, Jiang X et al (2003) Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J Am Chem Soc 125:12724–12725CrossRef Lu Y, Xiong H, Jiang X et al (2003) Asymmetric dimers can be formed by dewetting half-shells of gold deposited on the surfaces of spherical oxide colloids. J Am Chem Soc 125:12724–12725CrossRef
69.
Zurück zum Zitat Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574CrossRef Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574CrossRef
70.
Zurück zum Zitat Fuhrmann B, Leipner HS, Höche HR et al (2005) Ordered array of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett 5:2524–2527CrossRef Fuhrmann B, Leipner HS, Höche HR et al (2005) Ordered array of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Lett 5:2524–2527CrossRef
71.
Zurück zum Zitat Masuda H, Fukuda K (1995) Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468CrossRef Masuda H, Fukuda K (1995) Ordered metal nanohole array made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468CrossRef
72.
Zurück zum Zitat Che G, Lakshmi BB, Fisher ER et al (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349CrossRef Che G, Lakshmi BB, Fisher ER et al (1998) Carbon nanotubule membranes for electrochemical energy storage and production. Nature 393:346–349CrossRef
73.
Zurück zum Zitat Choi J, Sauer G, Nielsch K et al (2003) Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem Mater 15:776–779CrossRef Choi J, Sauer G, Nielsch K et al (2003) Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem Mater 15:776–779CrossRef
74.
Zurück zum Zitat Mei X, Kim D, Ruda HE et al (2002) Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot array using anodic Al2O3 nanohole array template masks. Appl Phys Lett 81:361–363CrossRef Mei X, Kim D, Ruda HE et al (2002) Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot array using anodic Al2O3 nanohole array template masks. Appl Phys Lett 81:361–363CrossRef
75.
Zurück zum Zitat Nasir ME, Allsopp DWE, Bowen CR et al (2010) The fabrication of mono-domain highly ordered nanoporous alumina on a wafer scale by a guided electric field. Nanotechnology 21:105303-6CrossRef Nasir ME, Allsopp DWE, Bowen CR et al (2010) The fabrication of mono-domain highly ordered nanoporous alumina on a wafer scale by a guided electric field. Nanotechnology 21:105303-6CrossRef
76.
Zurück zum Zitat Jessensky O, Müller F, Gösele U (1998) Self-organized formation of hexagonal pore array in anodic alumina. Appl Phys Lett 72:1173–1175CrossRef Jessensky O, Müller F, Gösele U (1998) Self-organized formation of hexagonal pore array in anodic alumina. Appl Phys Lett 72:1173–1175CrossRef
77.
Zurück zum Zitat Lombardi I, Hochbaum AI, Yang P et al (2006) Synthesis of high density, size-controlled Si nanowire array by porous anodic alumina mask. Chem Mater 18:988–991CrossRef Lombardi I, Hochbaum AI, Yang P et al (2006) Synthesis of high density, size-controlled Si nanowire array by porous anodic alumina mask. Chem Mater 18:988–991CrossRef
78.
Zurück zum Zitat Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495–513CrossRef Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495–513CrossRef
79.
Zurück zum Zitat Plass KE, Filler MA, Spurgeon JM et al (2008) Flexible polymer-embedded Si wire array. Adv Mater 21:325–328CrossRef Plass KE, Filler MA, Spurgeon JM et al (2008) Flexible polymer-embedded Si wire array. Adv Mater 21:325–328CrossRef
80.
Zurück zum Zitat Tsakalakos L, Balch J, Fronheiser J et al (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117-3CrossRef Tsakalakos L, Balch J, Fronheiser J et al (2007) Silicon nanowire solar cells. Appl Phys Lett 91:233117-3CrossRef
81.
Zurück zum Zitat Garnett EC, Yang P (2008) Silicon nanowire radial p–n junction solar cells. J Am Chem Soc 130:9224–9225CrossRef Garnett EC, Yang P (2008) Silicon nanowire radial p–n junction solar cells. J Am Chem Soc 130:9224–9225CrossRef
82.
Zurück zum Zitat Kalita G, Adhikari S, Aryal HR et al (2009) Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes. J Phys D Appl Phys 42:115104-5 Kalita G, Adhikari S, Aryal HR et al (2009) Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes. J Phys D Appl Phys 42:115104-5
83.
Zurück zum Zitat Street RA, Qi P, Lujan R et al (2008) Reflectivity of disordered silicon nanowires. Appl Phys Lett 93:163109-3 Street RA, Qi P, Lujan R et al (2008) Reflectivity of disordered silicon nanowires. Appl Phys Lett 93:163109-3
84.
Zurück zum Zitat Hu L, Chen G (2007) Analysis of optical absorption in silicon nanowire array for photovoltaic applications. Nano Lett 7:3249–3252CrossRef Hu L, Chen G (2007) Analysis of optical absorption in silicon nanowire array for photovoltaic applications. Nano Lett 7:3249–3252CrossRef
86.
Zurück zum Zitat Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510–519CrossRef Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p–n junction solar cells. J Appl Phys 32:510–519CrossRef
87.
Zurück zum Zitat Li JS, Yu HY, Wong SM et al (2009) Design guidelines of periodic Si nanowire array for solar cell application. Appl Phys Lett 95:243113-3 Li JS, Yu HY, Wong SM et al (2009) Design guidelines of periodic Si nanowire array for solar cell application. Appl Phys Lett 95:243113-3
88.
Zurück zum Zitat Putnam MC, Turner-Evans DB, Kelzenberg MD et al (2009) 10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapour–liquid–solid growth. Appl Phys Lett 95:163116-3CrossRef Putnam MC, Turner-Evans DB, Kelzenberg MD et al (2009) 10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapour–liquid–solid growth. Appl Phys Lett 95:163116-3CrossRef
89.
Zurück zum Zitat Maiolo JR III, Kayes BM, Filler MA et al (2007) High aspect ratio silicon wire array photoelectrochemical cells. J Am Chem Soc 129:12346–12347CrossRef Maiolo JR III, Kayes BM, Filler MA et al (2007) High aspect ratio silicon wire array photoelectrochemical cells. J Am Chem Soc 129:12346–12347CrossRef
90.
Zurück zum Zitat Sivakov V, Andrä G, Gawlik A et al (2009) Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9:1549–1554CrossRef Sivakov V, Andrä G, Gawlik A et al (2009) Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. Nano Lett 9:1549–1554CrossRef
91.
Zurück zum Zitat van den Donker MN, Gordijn A, Stiebig H et al (2007) Flexible amorphous and microcrystalline silicon tandem solar modules in the temporary superstrate concept. Sol Energy Mater Sol Cells 91:572–580CrossRef van den Donker MN, Gordijn A, Stiebig H et al (2007) Flexible amorphous and microcrystalline silicon tandem solar modules in the temporary superstrate concept. Sol Energy Mater Sol Cells 91:572–580CrossRef
92.
Zurück zum Zitat Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087CrossRef Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087CrossRef
93.
Zurück zum Zitat Yoon J, Baca AJ, Park SI et al (2008) Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 7:907–915CrossRef Yoon J, Baca AJ, Park SI et al (2008) Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 7:907–915CrossRef
94.
Zurück zum Zitat Campbell P, Green MA (1987) Light trapping properties of pyramidally textured surfaces. J Appl Phys 62:243–249CrossRef Campbell P, Green MA (1987) Light trapping properties of pyramidally textured surfaces. J Appl Phys 62:243–249CrossRef
95.
Zurück zum Zitat Gray JL (2003) The physics of the solar cell. In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, Chichester Gray JL (2003) The physics of the solar cell. In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, Chichester
96.
Zurück zum Zitat Kelzenberg MD, Turner-Evans DB, Kayes BM et al (2008) Single-nanowire Si solar cells. In: Proceedings of the 33rd IEEE photovoltaic specialists conference, pp 144–149 Kelzenberg MD, Turner-Evans DB, Kayes BM et al (2008) Single-nanowire Si solar cells. In: Proceedings of the 33rd IEEE photovoltaic specialists conference, pp 144–149
97.
Zurück zum Zitat Bai XD, Zhi CY, Liu S et al (2003) High-density uniformly aligned silicon nanotip array and their enhanced field emission characteristics. Solid State Commun 125:185–188CrossRef Bai XD, Zhi CY, Liu S et al (2003) High-density uniformly aligned silicon nanotip array and their enhanced field emission characteristics. Solid State Commun 125:185–188CrossRef
98.
Zurück zum Zitat Wang Q, Li JJ, Bai XD et al (2005) Field emission properties of carbon coated Si nanocone array on porous silicon. Nanotechnology 15:2919–2922CrossRef Wang Q, Li JJ, Bai XD et al (2005) Field emission properties of carbon coated Si nanocone array on porous silicon. Nanotechnology 15:2919–2922CrossRef
99.
Zurück zum Zitat Hsu CH, Huang YF, Chen LC et al (2006) Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching. J Vac Sci Technol B 24:308–311CrossRef Hsu CH, Huang YF, Chen LC et al (2006) Morphology control of silicon nanotips fabricated by electron cyclotron resonance plasma etching. J Vac Sci Technol B 24:308–311CrossRef
100.
Zurück zum Zitat Li LP, Lu YF, Doerr DW et al (2004) Parametric investigation of laser nanoimprinting of hemispherical cavity array. J Appl Phys 96:5144–5151CrossRef Li LP, Lu YF, Doerr DW et al (2004) Parametric investigation of laser nanoimprinting of hemispherical cavity array. J Appl Phys 96:5144–5151CrossRef
101.
Zurück zum Zitat Huang SM, Hong MH, Luk’yanchuk BS et al (2002) Pulsed laser-assisted surface structuring with optical and near-field enhanced effects. J Appl Phys 92:2495–2500CrossRef Huang SM, Hong MH, Luk’yanchuk BS et al (2002) Pulsed laser-assisted surface structuring with optical and near-field enhanced effects. J Appl Phys 92:2495–2500CrossRef
102.
Zurück zum Zitat Tsujino K, Matsumura M, Nishimoto Y (2006) Texturization of multicrystalline silicon wafers for solar cells by chemical treatment using metallic catalyst. Sol Energy Mater Sol Cells 90:100–110CrossRef Tsujino K, Matsumura M, Nishimoto Y (2006) Texturization of multicrystalline silicon wafers for solar cells by chemical treatment using metallic catalyst. Sol Energy Mater Sol Cells 90:100–110CrossRef
103.
Zurück zum Zitat Gorostiza P, Díaz R, Servat J et al (1997) Atomic force microscopy study of the silicon doping influence on the first stages of platinum electroless deposition. J Electrochem Soc 144:909–914CrossRef Gorostiza P, Díaz R, Servat J et al (1997) Atomic force microscopy study of the silicon doping influence on the first stages of platinum electroless deposition. J Electrochem Soc 144:909–914CrossRef
104.
Zurück zum Zitat Wang F, Yu HY, Wang XC et al (2010) Maskless fabrication of large scale Si nanohole array via laser annealed metal nanoparticles catalytic etching for photovoltaic application. J Appl Phys 108:024301-3 Wang F, Yu HY, Wang XC et al (2010) Maskless fabrication of large scale Si nanohole array via laser annealed metal nanoparticles catalytic etching for photovoltaic application. J Appl Phys 108:024301-3
105.
Zurück zum Zitat Li JS, Yu HY, Wong SM et al (2010) Si nanocone array optimization on crystalline Si thin films for solar energy harvesting. J Phys D Appl Phys 43:255101-7 Li JS, Yu HY, Wong SM et al (2010) Si nanocone array optimization on crystalline Si thin films for solar energy harvesting. J Phys D Appl Phys 43:255101-7
106.
Zurück zum Zitat Wang F, Yu HY, Li JS et al (2010) Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application. Opt Lett 35:40–42CrossRef Wang F, Yu HY, Li JS et al (2010) Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application. Opt Lett 35:40–42CrossRef
107.
Zurück zum Zitat Wong SM, Yu HY, Li JS et al (2010) Design high-efficiency Si nanopillar-array-textured thin film solar cell. IEEE Electron Device Lett 31:335–337CrossRef Wong SM, Yu HY, Li JS et al (2010) Design high-efficiency Si nanopillar-array-textured thin film solar cell. IEEE Electron Device Lett 31:335–337CrossRef
108.
Zurück zum Zitat Shockley W, Read WT (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835–842MATHCrossRef Shockley W, Read WT (1952) Statistics of the recombinations of holes and electrons. Phys Rev 87:835–842MATHCrossRef
109.
Zurück zum Zitat Shibib MA, Lindholm FA, Fossum JG (1979) Auger recombination in heavily doped shallow-emitter silicon p–n-junction solar cells, diodes and transistors. IEEE Trans Electron Devices ED 26:1104–1106CrossRef Shibib MA, Lindholm FA, Fossum JG (1979) Auger recombination in heavily doped shallow-emitter silicon p–n-junction solar cells, diodes and transistors. IEEE Trans Electron Devices ED 26:1104–1106CrossRef
110.
Zurück zum Zitat Kelzenberg MD, Putnam MC, Turner-Evans DB et al (2009) Predicted efficiency of Si wire array solar cells. In: Proceedings of the 34th IEEE photovoltaic specialists conference, pp 391–396 Kelzenberg MD, Putnam MC, Turner-Evans DB et al (2009) Predicted efficiency of Si wire array solar cells. In: Proceedings of the 34th IEEE photovoltaic specialists conference, pp 391–396
111.
Zurück zum Zitat Li JS, Wong SM, Li YL et al (2010) High-efficiency crystalline Si thin film solar cells with Si nanopillar array textured surfaces. In: Proceedings of the 35th IEEE photovoltaic specialists conference Li JS, Wong SM, Li YL et al (2010) High-efficiency crystalline Si thin film solar cells with Si nanopillar array textured surfaces. In: Proceedings of the 35th IEEE photovoltaic specialists conference
112.
Zurück zum Zitat Zhu J, Hsu CM, Yu Z et al (2010) Nanodome solar cells with efficient light management and self-cleaning. Nano Lett 10:1979–1984CrossRef Zhu J, Hsu CM, Yu Z et al (2010) Nanodome solar cells with efficient light management and self-cleaning. Nano Lett 10:1979–1984CrossRef
113.
Zurück zum Zitat Green MA, Emery K, Hishikawa Y et al (2009) Solar cell efficiency tables (version 34). Prog Photovolt Res Appl 17:320–326CrossRef Green MA, Emery K, Hishikawa Y et al (2009) Solar cell efficiency tables (version 34). Prog Photovolt Res Appl 17:320–326CrossRef
114.
Zurück zum Zitat Nishioka K, Sueto T, Saito N (2009) Formation of antireflection nanostructure for silicon solar cells using catalysis of single nano-sized silver particle. Appl Surf Sci 255:9504–9507CrossRef Nishioka K, Sueto T, Saito N (2009) Formation of antireflection nanostructure for silicon solar cells using catalysis of single nano-sized silver particle. Appl Surf Sci 255:9504–9507CrossRef
Metadaten
Titel
Enhancement of Si-Based Solar Cell Efficiency via Nanostructure Integration
verfasst von
Junshuai Li
Hong-Yu Yu
Copyright-Jahr
2011
Verlag
Springer London
DOI
https://doi.org/10.1007/978-0-85729-638-2_1