Skip to main content

2023 | OriginalPaper | Buchkapitel

Entangled Quantum Neural Network

verfasst von : Qinxue Meng, Jiarun Zhang, Zhao Li, Ming Li, Lin Cui

Erschienen in: Quantum Computing: A Shift from Bits to Qubits

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum entanglement (QE) is the phenomenon that when several particles interact, the properties of each particle will be integrated into the properties of the overall system, and the properties of each particle cannot be described independently from others. QE can be proved by violating Bell Inequality, that is, it can describe strong statistical correlation (i.e., quantum correlation). By introducing QE into machine learning, the adjusted framework would have advantages such as faster execution time of the learning algorithms and stronger capacity. Therefore, here we introduce our novel framework called Entangled Quantum Neural Network, EQNN. Using quantum entanglement to development on neuron networks can be described in three different ways: By replacing the hidden layer nodes of the Multi-Layer Perception (MLP) with a measurement process of entangled states (QECA, QCCA); by replacing the output layer of MLP with a quantum measurement operation (ECA); or by reconstructing the neurons in NN using regularizer to constrain state vectors to entangled states (QNN). With extensive experiments on the three most frequently used machine learning datasets from UCI, Abalone, Wine Quality (Red), and Wine Quality (White), we demonstrate that all QCCA, QECA, ECA, and QNN outperform the baseline algorithms. Under the same parameter settings, which are: learning rate is 0.001, mini-batch is 1, training epochs is 500 and initial weight is 0.01, the performance among themselves in descending order are QNN > ECA > QECA > QCCA.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
\(\{|+\rangle , |-\rangle \}\) denotes an arbitrary orthonormal basis of the 1-qubit Hilbert space \(\mathbb {C}^{2}\). \(\sigma _{3} = \sigma _{z}\) denotes Pauli matrix, and Pauli matrix refers to four common matrices, which are \(2\times 2\) matrix, each with its own mark, namely \(\sigma _{x}\equiv \sigma _{1}\equiv X\), \(\sigma _{y}\equiv \sigma _{2}\equiv Y\), \(\sigma _{z}\equiv \sigma _{3}\equiv Z\) and \(\sigma _{0}\equiv I\).
 
Literatur
1.
Zurück zum Zitat F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)CrossRef F. Rosenblatt, The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)CrossRef
2.
Zurück zum Zitat D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986) D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
3.
Zurück zum Zitat G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006) G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
4.
Zurück zum Zitat R.S. Michalski, J.G. Carbonell, T.M. Mitchell, Machine Learning: An Artificial Intelligence Approach (Springer Science & Business Media, 2013) R.S. Michalski, J.G. Carbonell, T.M. Mitchell, Machine Learning: An Artificial Intelligence Approach (Springer Science & Business Media, 2013)
5.
Zurück zum Zitat N. Bohr, et al., The Quantum Postulate and the Recent Development of Atomic Theory, vol. 3 (Printed in Great Britain by R. & R. Clarke, Limited, 1928) N. Bohr, et al., The Quantum Postulate and the Recent Development of Atomic Theory, vol. 3 (Printed in Great Britain by R. & R. Clarke, Limited, 1928)
6.
8.
Zurück zum Zitat T. Yu, J. Eberly, Qubit disentanglement and decoherence via dephasing. Phys. Rev. B 68(16), 165322 (2003)CrossRef T. Yu, J. Eberly, Qubit disentanglement and decoherence via dephasing. Phys. Rev. B 68(16), 165322 (2003)CrossRef
9.
Zurück zum Zitat A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)CrossRefMATH A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)CrossRefMATH
10.
Zurück zum Zitat E. Schrödinger, Discussion of probability relations between separated systems, in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, no. 4 (Cambridge University Press, 1935), pp. 555–563 E. Schrödinger, Discussion of probability relations between separated systems, in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, no. 4 (Cambridge University Press, 1935), pp. 555–563
12.
Zurück zum Zitat H. Zhang, J. Wang, Z. Song, J.-Q. Liang, L.-F. Wei, Spin-parity effect in violation of bell’s inequalities for entangled states of parallel polarization. Mod. Phys. Lett. B 31(04), 1750032 (2017)MathSciNetCrossRef H. Zhang, J. Wang, Z. Song, J.-Q. Liang, L.-F. Wei, Spin-parity effect in violation of bell’s inequalities for entangled states of parallel polarization. Mod. Phys. Lett. B 31(04), 1750032 (2017)MathSciNetCrossRef
13.
Zurück zum Zitat D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory (Psychology Press, 2005) D.O. Hebb, The Organization of Behavior: A Neuropsychological Theory (Psychology Press, 2005)
14.
Zurück zum Zitat M.A. Nielsen, Neural Networks and Deep Learning, vol. 25. (Determination Press San Francisco, CA, USA, 2015) M.A. Nielsen, Neural Networks and Deep Learning, vol. 25. (Determination Press San Francisco, CA, USA, 2015)
15.
Zurück zum Zitat S. Lloyd, M. Mohseni, P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning (2013). arXiv preprint arXiv:1307.0411 S. Lloyd, M. Mohseni, P. Rebentrost, Quantum algorithms for supervised and unsupervised machine learning (2013). arXiv preprint arXiv:​1307.​0411
16.
Zurück zum Zitat Y. Levine, O. Sharir, N. Cohen, A. Shashua, Quantum entanglement in deep learning architectures. Phys. Rev. Lett. 122(6), 065301 (2019)MathSciNetCrossRef Y. Levine, O. Sharir, N. Cohen, A. Shashua, Quantum entanglement in deep learning architectures. Phys. Rev. Lett. 122(6), 065301 (2019)MathSciNetCrossRef
17.
Zurück zum Zitat M. Schuld, N. Killoran, Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett. 122(4), 040504 (2019)CrossRef M. Schuld, N. Killoran, Quantum machine learning in feature hilbert spaces. Phys. Rev. Lett. 122(4), 040504 (2019)CrossRef
18.
Zurück zum Zitat V. Dunjko, H.J. Briegel, Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81(7), 074001 (2018)MathSciNetCrossRef V. Dunjko, H.J. Briegel, Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81(7), 074001 (2018)MathSciNetCrossRef
19.
Zurück zum Zitat J. Adcock, E. Allen, M. Day, S. Frick, J. Hinchliff, M. Johnson, S. Morley-Short, S. Pallister, A. Price, S. Stanisic, Advances in quantum machine learning (2015). arXiv preprint arXiv:1512.02900 J. Adcock, E. Allen, M. Day, S. Frick, J. Hinchliff, M. Johnson, S. Morley-Short, S. Pallister, A. Price, S. Stanisic, Advances in quantum machine learning (2015). arXiv preprint arXiv:​1512.​02900
20.
Zurück zum Zitat P. Rebentrost, T.R. Bromley, C. Weedbrook, S. Lloyd, Quantum hopfield neural network. Phys. Rev. A 98(4), 042308 (2018)CrossRef P. Rebentrost, T.R. Bromley, C. Weedbrook, S. Lloyd, Quantum hopfield neural network. Phys. Rev. A 98(4), 042308 (2018)CrossRef
21.
22.
Zurück zum Zitat G. Verdon, T. McCourt, E. Luzhnica, V. Singh, S. Leichenauer, J. Hidary, Quantum graph neural networks (2019). arXiv preprint arXiv:1909.12264 G. Verdon, T. McCourt, E. Luzhnica, V. Singh, S. Leichenauer, J. Hidary, Quantum graph neural networks (2019). arXiv preprint arXiv:​1909.​12264
23.
Zurück zum Zitat I. Cong, S. Choi, M.D. Lukin, Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)CrossRef I. Cong, S. Choi, M.D. Lukin, Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)CrossRef
24.
Zurück zum Zitat J. Zhang, Z. Li, J. Wang, Y. Wang, S. Hu, J. Xiao, Z. Li, Quantum entanglement inspired correlation learning for classification, in Pacific-Asia Conference on Knowledge Discovery and Data Mining (Springer, 2022), pp. 58–70 J. Zhang, Z. Li, J. Wang, Y. Wang, S. Hu, J. Xiao, Z. Li, Quantum entanglement inspired correlation learning for classification, in Pacific-Asia Conference on Knowledge Discovery and Data Mining (Springer, 2022), pp. 58–70
25.
Zurück zum Zitat Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814 Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML-10), pp 807–814
26.
Zurück zum Zitat J. Zhang, R. He, Z. Li, J. Zhang, B. Wang, Z. Li, T. Niu, Quantum correlation revealed by bell state for classification tasks, in 2021 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2021), pp. 1–8 J. Zhang, R. He, Z. Li, J. Zhang, B. Wang, Z. Li, T. Niu, Quantum correlation revealed by bell state for classification tasks, in 2021 International Joint Conference on Neural Networks (IJCNN) (IEEE, 2021), pp. 1–8
27.
Zurück zum Zitat J. Zhang, Y. Hou, Z. Li, L. Zhang, X. Chen, Strong statistical correlation revealed by quantum entanglement for supervised learning, in ECAI (IOS Press, 2020), pp. 1650–1657 J. Zhang, Y. Hou, Z. Li, L. Zhang, X. Chen, Strong statistical correlation revealed by quantum entanglement for supervised learning, in ECAI (IOS Press, 2020), pp. 1650–1657
28.
Zurück zum Zitat D. M. Greenberger, M. A. Horne, A. Zeilinger, Going beyond bell’s theorem, in Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Springer, 1989), pp. 69–72 D. M. Greenberger, M. A. Horne, A. Zeilinger, Going beyond bell’s theorem, in Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Springer, 1989), pp. 69–72
30.
Zurück zum Zitat I. Bengtsson, K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2017) I. Bengtsson, K. Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2017)
31.
Zurück zum Zitat T. Cover, P. Hart, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefMATH T. Cover, P. Hart, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefMATH
32.
Zurück zum Zitat C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995) C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)
34.
Zurück zum Zitat D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003) D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Metadaten
Titel
Entangled Quantum Neural Network
verfasst von
Qinxue Meng
Jiarun Zhang
Zhao Li
Ming Li
Lin Cui
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-9530-9_14

Premium Partner