Skip to main content

2023 | OriginalPaper | Buchkapitel

18. Environmental and Health Effects of Fluoride Contamination and Treatment of Wastewater Using Various Technologies

verfasst von : Ankit Kumar, Ramakrishna Chava, Sonam Gupta, Saba Shirin, Aarif Jamal, Akhilesh Kumar Yadav

Erschienen in: Advanced Treatment Technologies for Fluoride Removal in Water

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The growth of the economy is highly dependent on industrial development, and most industries discharge their effluent into streams or lakes. Due to industries growing at a very fast rate, the rate of pollution increased several times. Various industries discharge their effluent into the mainstream of water. As a result, the water becomes polluted and humans, aquatic animals, and even plants are affected. Fluoride is a chemical contaminant. It is toxic to plants and animals, including humans. This chapter explores the impact of fluoride contamination on the environment and contaminations in drinking water that can harm human health and various species at high levels. We also examine strategies to prevent and treat fluorosis, both globally and in India, and recent advances in fluoride remediation, as well as review various methods for fluoride removal from drinking water, such as coagulation-precipitation, membrane separation process, ion exchange, adsorption techniques, hybrid technology, and others. However, membrane and ion exchange processes are not widely adopted due to high installation and maintenance costs. Coagulation-precipitation and adsorption techniques are more prevalent in India. Among the different methods for water defluoridation, the adsorption technique is widely used and provides satisfactory results. It is also a more attractive method in terms of cost, design, and operation simplicity. The literature survey reveals that various methods have demonstrated novel potential for fluoride removal. However, it is still a need to evaluate the feasibility of such methods on a commercial scale, leading to improved pollution control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahmad, S., Singh, R., Arfin, T., & Neeti, K. (2022). Fluoride contamination, consequences and removal techniques in water: A review. Environmental Science: Advances. Ahmad, S., Singh, R., Arfin, T., & Neeti, K. (2022). Fluoride contamination, consequences and removal techniques in water: A review. Environmental Science: Advances.
Zurück zum Zitat Ali, S., Fakhri, Y., Golbini, M., Thakur, S. K., Alinejad, A., Parseh, I., Shekhar, S., & Bhattacharya, P. (2019). Concentration of fluoride in groundwater of india: A systematic review, meta-analysis and risk assessment. Groundwater for Sustainable Development, 9, 100224 Ali, S., Fakhri, Y., Golbini, M., Thakur, S. K., Alinejad, A., Parseh, I., Shekhar, S., & Bhattacharya, P. (2019). Concentration of fluoride in groundwater of india: A systematic review, meta-analysis and risk assessment. Groundwater for Sustainable Development, 9, 100224
Zurück zum Zitat Aljerf, L., & Choukaife, A. E. (2017). Hydroxyapatite and fluoroapatite behavior with ph change. Internal Medicine Journal, 24, 407–410. Aljerf, L., & Choukaife, A. E. (2017). Hydroxyapatite and fluoroapatite behavior with ph change. Internal Medicine Journal, 24, 407–410.
Zurück zum Zitat Bazrafshan, E., Ownagh, K. A., & Mahvi, A. H. (2012). Application of electrocoagulation process using iron and aluminum electrodes for fluoride removal from aqueous environment. E-Journal of Chemistry, 9, 2297–2308. Bazrafshan, E., Ownagh, K. A., & Mahvi, A. H. (2012). Application of electrocoagulation process using iron and aluminum electrodes for fluoride removal from aqueous environment. E-Journal of Chemistry, 9, 2297–2308.
Zurück zum Zitat Bhatnagar, A., Kumar, E., & Sillanpää, M. (2011). Fluoride removal from water by adsorption—A review. Chemical Engineering Journal, 171, 811–840.CrossRef Bhatnagar, A., Kumar, E., & Sillanpää, M. (2011). Fluoride removal from water by adsorption—A review. Chemical Engineering Journal, 171, 811–840.CrossRef
Zurück zum Zitat Camargo, J. A. (2003). Fluoride toxicity to aquatic organisms: A review. Chemosphere, 50, 251–264. Camargo, J. A. (2003). Fluoride toxicity to aquatic organisms: A review. Chemosphere, 50, 251–264.
Zurück zum Zitat Chatterjee, A., Sarah, S., Sreedevi, P. D., Selles, A., & Ahmed, S. (2017). Demarcation of fluoride vulnerability zones in granitic aquifer, semi-arid region, Telengana, India. Arabian Journal of Geosciences, 10, 558.CrossRef Chatterjee, A., Sarah, S., Sreedevi, P. D., Selles, A., & Ahmed, S. (2017). Demarcation of fluoride vulnerability zones in granitic aquifer, semi-arid region, Telengana, India. Arabian Journal of Geosciences, 10, 558.CrossRef
Zurück zum Zitat Chaudhary, K., & Khan, S. (2016). Physiochemical characterization of fluoride (f) contaminated soil and its microbe-assisted bioremediation by prosopis juliflora. Plant Biol. Soil Health, 3. Chaudhary, K., & Khan, S. (2016). Physiochemical characterization of fluoride (f) contaminated soil and its microbe-assisted bioremediation by prosopis juliflora. Plant Biol. Soil Health, 3.
Zurück zum Zitat Chaudhary, V., & Prasad, S. (2015). Rapid removal of fluoride from aqueous media using activated dolomite. Analytical Methods, 7, 8304–8314.CrossRef Chaudhary, V., & Prasad, S. (2015). Rapid removal of fluoride from aqueous media using activated dolomite. Analytical Methods, 7, 8304–8314.CrossRef
Zurück zum Zitat Chikuma, M., & Nishimura, M. (1990). Selective sorption of fluoride ions by anion-exchange resin modified with alizarin fluorine blue-praseodymium(iii) complex. Reactive Polymers, 13, 131–138.CrossRef Chikuma, M., & Nishimura, M. (1990). Selective sorption of fluoride ions by anion-exchange resin modified with alizarin fluorine blue-praseodymium(iii) complex. Reactive Polymers, 13, 131–138.CrossRef
Zurück zum Zitat Chikuma, M., Okabayashi, Y., Nakagawa, T., Inoue, A., & Tanaka, H. (1987). Separation and determination of fluoride ion by using ion exchange resin loaded with alizarin fluorine blue. Chemical & Pharmaceutical Bulletin, 35, 3734–3739.CrossRef Chikuma, M., Okabayashi, Y., Nakagawa, T., Inoue, A., & Tanaka, H. (1987). Separation and determination of fluoride ion by using ion exchange resin loaded with alizarin fluorine blue. Chemical & Pharmaceutical Bulletin, 35, 3734–3739.CrossRef
Zurück zum Zitat Chowdhury, A., Adak, M. K., Mukherjee, A., Dhak, P., Khatun, J., & Dhak, D. (2019). A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure. Journal of Hydrology, 574, 333–359.CrossRefADS Chowdhury, A., Adak, M. K., Mukherjee, A., Dhak, P., Khatun, J., & Dhak, D. (2019). A critical review on geochemical and geological aspects of fluoride belts, fluorosis and natural materials and other sources for alternatives to fluoride exposure. Journal of Hydrology, 574, 333–359.CrossRefADS
Zurück zum Zitat Collins, J. P. (2010). Amphibian decline and extinction: What we know and what we need to learn. Diseases of Aquatic Organisms, 92, 93–99.PubMedCrossRef Collins, J. P. (2010). Amphibian decline and extinction: What we know and what we need to learn. Diseases of Aquatic Organisms, 92, 93–99.PubMedCrossRef
Zurück zum Zitat Dawes, C. (2003). What is the critical ph and why does a tooth dissolve in acid? Journal (Canadian Dental Association), 69, 722–724.PubMed Dawes, C. (2003). What is the critical ph and why does a tooth dissolve in acid? Journal (Canadian Dental Association), 69, 722–724.PubMed
Zurück zum Zitat Devi, R. R., Umlong, I. M., Raul, P. K., Das, B., Banerjee, S., & Singh, L. (2014). Defluoridation of water using nano-magnesium oxide. Journal of Experimental Nanoscience, 9, 512–524.CrossRefADS Devi, R. R., Umlong, I. M., Raul, P. K., Das, B., Banerjee, S., & Singh, L. (2014). Defluoridation of water using nano-magnesium oxide. Journal of Experimental Nanoscience, 9, 512–524.CrossRefADS
Zurück zum Zitat Diawara, C. K., Diop, S. N., Diallo, M. A., Farcy, M., & Deratani, A. (2011). Performance of nanofiltration (nf) and low pressure reverse osmosis (lpro) membranes in the removal of fluorine and salinity from brackish drinking water. Journal of Water Resource and Protection, 3, 912.CrossRef Diawara, C. K., Diop, S. N., Diallo, M. A., Farcy, M., & Deratani, A. (2011). Performance of nanofiltration (nf) and low pressure reverse osmosis (lpro) membranes in the removal of fluorine and salinity from brackish drinking water. Journal of Water Resource and Protection, 3, 912.CrossRef
Zurück zum Zitat Dwivedi, S., Mondal, P., & Balomajumder, C. (2017). Bioremoval of fluoride from synthetic water using gram-negative bacteria shewanella putrefaciens. Journal of Hazardous, Toxic, and Radioactive Waste, 21, 04016023.CrossRef Dwivedi, S., Mondal, P., & Balomajumder, C. (2017). Bioremoval of fluoride from synthetic water using gram-negative bacteria shewanella putrefaciens. Journal of Hazardous, Toxic, and Radioactive Waste, 21, 04016023.CrossRef
Zurück zum Zitat Emamjomeh, M. M., Sivakumar, M., & Varyani, A. S. (2011). Analysis and the understanding of fluoride removal mechanisms by an electrocoagulation/flotation (ecf) process. Desalination, 275, 102–106.CrossRef Emamjomeh, M. M., Sivakumar, M., & Varyani, A. S. (2011). Analysis and the understanding of fluoride removal mechanisms by an electrocoagulation/flotation (ecf) process. Desalination, 275, 102–106.CrossRef
Zurück zum Zitat Gai, W.-Z., & Deng, Z.-Y. (2021). A comprehensive review of adsorbents for fluoride removal from water: Performance, water quality assessment and mechanism. Environmental Science: Water Research & Technology, 7, 1362–1386. Gai, W.-Z., & Deng, Z.-Y. (2021). A comprehensive review of adsorbents for fluoride removal from water: Performance, water quality assessment and mechanism. Environmental Science: Water Research & Technology, 7, 1362–1386.
Zurück zum Zitat Ghorai, S., & Pant, K. K. (2005). Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Separation and Purification Technology, 42, 265–271.CrossRef Ghorai, S., & Pant, K. K. (2005). Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Separation and Purification Technology, 42, 265–271.CrossRef
Zurück zum Zitat Ghosh, D., Medhi, C. R., & Purkait, M. K. (2008). Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections. Chemosphere, 73, 1393–1400.PubMedCrossRefADS Ghosh, D., Medhi, C. R., & Purkait, M. K. (2008). Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections. Chemosphere, 73, 1393–1400.PubMedCrossRefADS
Zurück zum Zitat Ghosh, S., Malloum, A., Igwegbe, C. A., Ighalo, J. O., Ahmadi, S., Dehghani, M. H., Othmani, A., Gökkuş, Ö., & Mubarak, N. M. (2022). New generation adsorbents for the removal of fluoride from water and wastewater: A review. Journal of Molecular Liquids, 346, 118257.CrossRef Ghosh, S., Malloum, A., Igwegbe, C. A., Ighalo, J. O., Ahmadi, S., Dehghani, M. H., Othmani, A., Gökkuş, Ö., & Mubarak, N. M. (2022). New generation adsorbents for the removal of fluoride from water and wastewater: A review. Journal of Molecular Liquids, 346, 118257.CrossRef
Zurück zum Zitat Guissouma, W., Hakami, O., Al-Rajab, A. J., & Tarhouni, J. (2017). Risk assessment of fluoride exposure in drinking water of Tunisia. Chemosphere, 177, 102–108.PubMedCrossRefADS Guissouma, W., Hakami, O., Al-Rajab, A. J., & Tarhouni, J. (2017). Risk assessment of fluoride exposure in drinking water of Tunisia. Chemosphere, 177, 102–108.PubMedCrossRefADS
Zurück zum Zitat He, L., Tu, C., He, S., Long, J., Sun, Y., Sun, Y., & Lin, C. (2021). Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health. Environmental Geochemistry and Health, 43, 1137–1154.PubMedCrossRef He, L., Tu, C., He, S., Long, J., Sun, Y., Sun, Y., & Lin, C. (2021). Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health. Environmental Geochemistry and Health, 43, 1137–1154.PubMedCrossRef
Zurück zum Zitat Ho, L. N., Ishihara, T., Ueshima, S., Nishiguchi, H., & Takita, Y. (2004). Removal of fluoride from water through ion exchange by mesoporous ti oxohydroxide. Journal of Colloid and Interface Science, 272, 399–403.PubMedCrossRefADS Ho, L. N., Ishihara, T., Ueshima, S., Nishiguchi, H., & Takita, Y. (2004). Removal of fluoride from water through ion exchange by mesoporous ti oxohydroxide. Journal of Colloid and Interface Science, 272, 399–403.PubMedCrossRefADS
Zurück zum Zitat Hu, K., & Dickson, J. M. (2006). Nanofiltration membrane performance on fluoride removal from water. Journal of Membrane Science, 279, 529–538.CrossRef Hu, K., & Dickson, J. M. (2006). Nanofiltration membrane performance on fluoride removal from water. Journal of Membrane Science, 279, 529–538.CrossRef
Zurück zum Zitat Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., & Marathe, K. V. (2015). Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management, 162, 306–325.PubMedCrossRef Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., & Marathe, K. V. (2015). Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management, 162, 306–325.PubMedCrossRef
Zurück zum Zitat Jha, S. K., Mishra, V. K., Sharma, D. K., & Damodaran, T. (2011). Fluoride in the environment and its metabolism in humans. Reviews of Environmental Contamination and Toxicology, 211, 121–142.PubMed Jha, S. K., Mishra, V. K., Sharma, D. K., & Damodaran, T. (2011). Fluoride in the environment and its metabolism in humans. Reviews of Environmental Contamination and Toxicology, 211, 121–142.PubMed
Zurück zum Zitat Johnston, N. R., & Strobel, S. A. (2020). Principles of fluoride toxicity and the cellular response: A review. Archives of Toxicology, 94, 1051–1069.PubMedPubMedCentralCrossRef Johnston, N. R., & Strobel, S. A. (2020). Principles of fluoride toxicity and the cellular response: A review. Archives of Toxicology, 94, 1051–1069.PubMedPubMedCentralCrossRef
Zurück zum Zitat Kabir, H., Gupta, A. K., & Tripathy, S. (2020). Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Critical Reviews in Environmental Science and Technology, 50, 1116–1193.CrossRef Kabir, H., Gupta, A. K., & Tripathy, S. (2020). Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Critical Reviews in Environmental Science and Technology, 50, 1116–1193.CrossRef
Zurück zum Zitat Kapenja, A. J., Msigala, L. C., & Mwakabona, H. T. (2017). The effect of amaranthus hybridus on fluoride removal by iron (iii) salts as fluoride coagulants. African Journal of Environmental Science and Technology, 11, 207–212.CrossRef Kapenja, A. J., Msigala, L. C., & Mwakabona, H. T. (2017). The effect of amaranthus hybridus on fluoride removal by iron (iii) salts as fluoride coagulants. African Journal of Environmental Science and Technology, 11, 207–212.CrossRef
Zurück zum Zitat Kashyap, S. J., Sankannavar, R., & Madhu, G. (2021). Fluoride sources, toxicity and fluorosis management techniques—A brief review. Journal of Hazardous Materials Letters, 2, 100033.CrossRef Kashyap, S. J., Sankannavar, R., & Madhu, G. (2021). Fluoride sources, toxicity and fluorosis management techniques—A brief review. Journal of Hazardous Materials Letters, 2, 100033.CrossRef
Zurück zum Zitat Kumar, P. S., Suganya, S., Srinivas, S., Priyadharshini, S., Karthika, M., Karishma Sri, R., Swetha, V., Naushad, M., & Lichtfouse, E. (2019). Treatment of fluoride-contaminated water. A review. Environmental Chemistry Letters, 17, 1707–1726.CrossRef Kumar, P. S., Suganya, S., Srinivas, S., Priyadharshini, S., Karthika, M., Karishma Sri, R., Swetha, V., Naushad, M., & Lichtfouse, E. (2019). Treatment of fluoride-contaminated water. A review. Environmental Chemistry Letters, 17, 1707–1726.CrossRef
Zurück zum Zitat Lacson, C. F. Z., Lu, M.-C., & Huang, Y.-H. (2021). Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management-an overview. Journal of Cleaner Production, 280, 124236.CrossRef Lacson, C. F. Z., Lu, M.-C., & Huang, Y.-H. (2021). Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management-an overview. Journal of Cleaner Production, 280, 124236.CrossRef
Zurück zum Zitat Li, M., Zhao, Y., Tian, X., Liu, P., Xie, J., Dong, N., Feng, J., Gao, Y., Fan, Y., & Qiu, Y. (2021). Fluoride exposure and blood pressure: A systematic review and meta-analysis. Biological Trace Element Research, 199, 925–934.PubMedCrossRef Li, M., Zhao, Y., Tian, X., Liu, P., Xie, J., Dong, N., Feng, J., Gao, Y., Fan, Y., & Qiu, Y. (2021). Fluoride exposure and blood pressure: A systematic review and meta-analysis. Biological Trace Element Research, 199, 925–934.PubMedCrossRef
Zurück zum Zitat Maheshwari, N., Qasim, N., Anjum, R., & Mahmood, R. (2021). Fluoride enhances generation of reactive oxygen and nitrogen species, oxidizes hemoglobin, lowers antioxidant power and inhibits transmembrane electron transport in isolated human red blood cells. Ecotoxicology and Environmental Safety, 208, 111611.PubMedCrossRef Maheshwari, N., Qasim, N., Anjum, R., & Mahmood, R. (2021). Fluoride enhances generation of reactive oxygen and nitrogen species, oxidizes hemoglobin, lowers antioxidant power and inhibits transmembrane electron transport in isolated human red blood cells. Ecotoxicology and Environmental Safety, 208, 111611.PubMedCrossRef
Zurück zum Zitat Mallakpour, S., & Hussain, C. M. (2021). Environmental applications of carbon nanomaterials-based devices: Wiley Online Library. Mallakpour, S., & Hussain, C. M. (2021). Environmental applications of carbon nanomaterials-based devices: Wiley Online Library.
Zurück zum Zitat Mastropietro, T. F., Bruno, R., Pardo, E., & Armentano, D. (2021). Reverse osmosis and nanofiltration membranes for highly efficient pfass removal: Overview, challenges and future perspectives. Dalton Transactions, 50, 5398–5410.PubMedCrossRef Mastropietro, T. F., Bruno, R., Pardo, E., & Armentano, D. (2021). Reverse osmosis and nanofiltration membranes for highly efficient pfass removal: Overview, challenges and future perspectives. Dalton Transactions, 50, 5398–5410.PubMedCrossRef
Zurück zum Zitat Meenakshi, S., & Viswanathan, N. (2007). Identification of selective ion-exchange resin for fluoride sorption. Journal of Colloid and Interface Science, 308, 438–450.PubMedCrossRefADS Meenakshi, S., & Viswanathan, N. (2007). Identification of selective ion-exchange resin for fluoride sorption. Journal of Colloid and Interface Science, 308, 438–450.PubMedCrossRefADS
Zurück zum Zitat Min, B. R., Gill, A. L., & Gill, W. N. (1984). A note on fluoride removal by reverse osmosis. Desalination, 49, 89–93.CrossRef Min, B. R., Gill, A. L., & Gill, W. N. (1984). A note on fluoride removal by reverse osmosis. Desalination, 49, 89–93.CrossRef
Zurück zum Zitat Miranda, G. H. N., Alvarenga, M. O. P., Ferreira, M. K. M., Puty, B., Bittencourt, L. O., Fagundes, N. C. F., Pessan, J. P., Buzalaf, M. A. R., & Lima, R. R. (2021). A systematic review and meta-analysis of the association between fluoride exposure and neurological disorders. Scientific Reports, 11, 22659.PubMedPubMedCentralCrossRefADS Miranda, G. H. N., Alvarenga, M. O. P., Ferreira, M. K. M., Puty, B., Bittencourt, L. O., Fagundes, N. C. F., Pessan, J. P., Buzalaf, M. A. R., & Lima, R. R. (2021). A systematic review and meta-analysis of the association between fluoride exposure and neurological disorders. Scientific Reports, 11, 22659.PubMedPubMedCentralCrossRefADS
Zurück zum Zitat Mohapatra, M., Anand, S., Mishra, B. K., Giles, D. E., & Singh, P. (2009). Review of fluoride removal from drinking water. Journal of Environmental Management, 91, 67–77.PubMedCrossRef Mohapatra, M., Anand, S., Mishra, B. K., Giles, D. E., & Singh, P. (2009). Review of fluoride removal from drinking water. Journal of Environmental Management, 91, 67–77.PubMedCrossRef
Zurück zum Zitat Mollah, M. Y. A., Schennach, R., Parga, J. R., & Cocke, D. L. (2001). Electrocoagulation (ec)—Science and applications. Journal of Hazardous Materials, 84, 29–41.PubMedCrossRef Mollah, M. Y. A., Schennach, R., Parga, J. R., & Cocke, D. L. (2001). Electrocoagulation (ec)—Science and applications. Journal of Hazardous Materials, 84, 29–41.PubMedCrossRef
Zurück zum Zitat Mukherjee, I., & Singh, U. K. (2018). Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environmental Geochemistry and Health, 40, 2259–2301.PubMedCrossRef Mukherjee, I., & Singh, U. K. (2018). Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environmental Geochemistry and Health, 40, 2259–2301.PubMedCrossRef
Zurück zum Zitat Nakayama, H., Yamasaki, Y., & Nakaya, S. (2022). Effect of hydrogeological structure on geogenic fluoride contamination of groundwater in granitic rock belt in Tanzania. Journal of Hydrology, 612, 128026.CrossRef Nakayama, H., Yamasaki, Y., & Nakaya, S. (2022). Effect of hydrogeological structure on geogenic fluoride contamination of groundwater in granitic rock belt in Tanzania. Journal of Hydrology, 612, 128026.CrossRef
Zurück zum Zitat Obulapuram, P. K., Arfin, T., Mohammad, F., Khiste, S. K., Chavali, M., Albalawi, A. N., & Al-Lohedan, H. A. (2021a). Adsorption, equilibrium isotherm, and thermodynamic studies towards the removal of reactive orange 16 dye using cu(i)-polyaninile composite. Polymers, 13, 3490.PubMedPubMedCentralCrossRef Obulapuram, P. K., Arfin, T., Mohammad, F., Khiste, S. K., Chavali, M., Albalawi, A. N., & Al-Lohedan, H. A. (2021a). Adsorption, equilibrium isotherm, and thermodynamic studies towards the removal of reactive orange 16 dye using cu(i)-polyaninile composite. Polymers, 13, 3490.PubMedPubMedCentralCrossRef
Zurück zum Zitat Obulapuram, P. K., Arfin, T., Mohammad, F., Kumari, K., Khiste, S. K., Al-Lohedan, H. A., & Chavali, M. (2021b). Surface-enhanced biocompatibility and adsorption capacity of a zirconium phosphate-coated polyaniline composite. ACS Omega, 6, 33614–33626.PubMedPubMedCentralCrossRef Obulapuram, P. K., Arfin, T., Mohammad, F., Kumari, K., Khiste, S. K., Al-Lohedan, H. A., & Chavali, M. (2021b). Surface-enhanced biocompatibility and adsorption capacity of a zirconium phosphate-coated polyaniline composite. ACS Omega, 6, 33614–33626.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ojekunle, O. Z., Ojekunle, O. V., Adeyemi, A. A., Taiwo, A. G., Sangowusi, O. R., Taiwo, A. M., & Adekitan, A. A. (2016). Evaluation of surface water quality indices and ecological risk assessment for heavy metals in scrap yard neighbourhood. Springerplus, 5, 560.PubMedPubMedCentralCrossRef Ojekunle, O. Z., Ojekunle, O. V., Adeyemi, A. A., Taiwo, A. G., Sangowusi, O. R., Taiwo, A. M., & Adekitan, A. A. (2016). Evaluation of surface water quality indices and ecological risk assessment for heavy metals in scrap yard neighbourhood. Springerplus, 5, 560.PubMedPubMedCentralCrossRef
Zurück zum Zitat Onipe, T., Edokpayi, J. N., & Odiyo, J. O. (2020). A review on the potential sources and health implications of fluoride in groundwater of Sub-Saharan Africa. Journal of Environmental Science and Health, Part A, 55, 1078–1093.CrossRef Onipe, T., Edokpayi, J. N., & Odiyo, J. O. (2020). A review on the potential sources and health implications of fluoride in groundwater of Sub-Saharan Africa. Journal of Environmental Science and Health, Part A, 55, 1078–1093.CrossRef
Zurück zum Zitat Organization, W. H. (2017). Guidelines for drinking-water quality: First addendum to the fourth edition. Organization, W. H. (2017). Guidelines for drinking-water quality: First addendum to the fourth edition.
Zurück zum Zitat Pearcy, K., Elphick, J., & Burnett-Seidel, C. (2015). Toxicity of fluoride to aquatic species and evaluation of toxicity modifying factors. Environmental Toxicology and Chemistry, 34, 1642–1648.PubMedCrossRef Pearcy, K., Elphick, J., & Burnett-Seidel, C. (2015). Toxicity of fluoride to aquatic species and evaluation of toxicity modifying factors. Environmental Toxicology and Chemistry, 34, 1642–1648.PubMedCrossRef
Zurück zum Zitat Peter, K. (2009). Defluoridation of high fluoride waters from natural water sources by using soils rich in bauxite and kaolinite. JEAS-Journal of Engineering & Applied Sciences, 4, 240–246. Peter, K. (2009). Defluoridation of high fluoride waters from natural water sources by using soils rich in bauxite and kaolinite. JEAS-Journal of Engineering & Applied Sciences, 4, 240–246.
Zurück zum Zitat Pillai, P., Dharaskar, S., Pandian, S., & Panchal, H. (2021). Overview of fluoride removal from water using separation techniques. Environmental Technology & Innovation, 21, 101246.CrossRef Pillai, P., Dharaskar, S., Pandian, S., & Panchal, H. (2021). Overview of fluoride removal from water using separation techniques. Environmental Technology & Innovation, 21, 101246.CrossRef
Zurück zum Zitat Poonia, T., Singh, N., & Garg, M. (2021). Contamination of arsenic, chromium and fluoride in the Indian groundwater: A review, meta-analysis and cancer risk assessment. International Journal of Environmental Science and Technology, 18, 2891–2902.CrossRef Poonia, T., Singh, N., & Garg, M. (2021). Contamination of arsenic, chromium and fluoride in the Indian groundwater: A review, meta-analysis and cancer risk assessment. International Journal of Environmental Science and Technology, 18, 2891–2902.CrossRef
Zurück zum Zitat Raj, D., & Shaji, E. (2017). Fluoride contamination in groundwater resources of Alleppey, Southern India. Geoscience Frontiers, 8, 117–124.CrossRef Raj, D., & Shaji, E. (2017). Fluoride contamination in groundwater resources of Alleppey, Southern India. Geoscience Frontiers, 8, 117–124.CrossRef
Zurück zum Zitat Razzaq, A. A., Yuan, X., Chen, Y., Hu, J., Mu, Q., Ma, Y., Zhao, X., Miao, L., Ahn, J.-H., & Peng, Y. (2020). Anchoring mof-derived cos 2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 8, 1298–1306.CrossRef Razzaq, A. A., Yuan, X., Chen, Y., Hu, J., Mu, Q., Ma, Y., Zhao, X., Miao, L., Ahn, J.-H., & Peng, Y. (2020). Anchoring mof-derived cos 2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 8, 1298–1306.CrossRef
Zurück zum Zitat Rizzu, M., Tanda, A., Cappai, C., Roggero, P. P., & Seddaiu, G. (2021). Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: A systematic review. Science of the Total Environment, 787, 147650.CrossRefADS Rizzu, M., Tanda, A., Cappai, C., Roggero, P. P., & Seddaiu, G. (2021). Impacts of soil and water fluoride contamination on the safety and productivity of food and feed crops: A systematic review. Science of the Total Environment, 787, 147650.CrossRefADS
Zurück zum Zitat Shen, J., & Schäfer, A. (2014). Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere, 117, 679–691.PubMedCrossRefADS Shen, J., & Schäfer, A. (2014). Removal of fluoride and uranium by nanofiltration and reverse osmosis: A review. Chemosphere, 117, 679–691.PubMedCrossRefADS
Zurück zum Zitat Singh, G., Kumari, B., Sinam, G., Kumar, N., & Mallick, S. (2018). Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective—A review. Environmental Pollution, 239, 95–108.PubMedCrossRef Singh, G., Kumari, B., Sinam, G., Kumar, N., & Mallick, S. (2018). Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective—A review. Environmental Pollution, 239, 95–108.PubMedCrossRef
Zurück zum Zitat Singh, K., Lataye, D. H., & Wasewar, K. L. (2016). Removal of fluoride from aqueous solution by using low-cost sugarcane bagasse: Kinetic study and equilibrium isotherm analyses. Journal of Hazardous, Toxic, and Radioactive Waste, 20, 04015024.CrossRef Singh, K., Lataye, D. H., & Wasewar, K. L. (2016). Removal of fluoride from aqueous solution by using low-cost sugarcane bagasse: Kinetic study and equilibrium isotherm analyses. Journal of Hazardous, Toxic, and Radioactive Waste, 20, 04015024.CrossRef
Zurück zum Zitat Skórka-Majewicz, M., Goschorska, M., Żwierełło, W., Baranowska-Bosiacka, I., Styburski, D., Kapczuk, P., & Gutowska, I. (2020). Effect of fluoride on endocrine tissues and their secretory functions—review. Chemosphere, 260, 127565.PubMedCrossRefADS Skórka-Majewicz, M., Goschorska, M., Żwierełło, W., Baranowska-Bosiacka, I., Styburski, D., Kapczuk, P., & Gutowska, I. (2020). Effect of fluoride on endocrine tissues and their secretory functions—review. Chemosphere, 260, 127565.PubMedCrossRefADS
Zurück zum Zitat Susheela, A. K. (1999). Fluorosis management programme in India. Current Science, 77, 1250–1256. Susheela, A. K. (1999). Fluorosis management programme in India. Current Science, 77, 1250–1256.
Zurück zum Zitat Tahaikt, M., El Habbani, R., Ait Haddou, A., Achary, I., Amor, Z., Taky, M., Alami, A., Boughriba, A., Hafsi, M., & Elmidaoui, A. (2007). Fluoride removal from groundwater by nanofiltration. Desalination, 212, 46–53.CrossRef Tahaikt, M., El Habbani, R., Ait Haddou, A., Achary, I., Amor, Z., Taky, M., Alami, A., Boughriba, A., Hafsi, M., & Elmidaoui, A. (2007). Fluoride removal from groundwater by nanofiltration. Desalination, 212, 46–53.CrossRef
Zurück zum Zitat Tiwari, K., Krishan, G., Prasad, G., Mondal, N., & Bhardwaj, V. (2020). Evaluation of fluoride contamination in groundwater in a semi-arid region, Dausa district, Rajasthan, India. Groundwater for Sustainable Development, 11, 100465.CrossRef Tiwari, K., Krishan, G., Prasad, G., Mondal, N., & Bhardwaj, V. (2020). Evaluation of fluoride contamination in groundwater in a semi-arid region, Dausa district, Rajasthan, India. Groundwater for Sustainable Development, 11, 100465.CrossRef
Zurück zum Zitat Vandana, K., Srishti Raj, B., & Desai, R. (2021). Dental fluorosis and periodontium: An original research report of in vitro and in vivo institutional studies. Biological Trace Element Research, 199, 3579–3592.PubMedCrossRef Vandana, K., Srishti Raj, B., & Desai, R. (2021). Dental fluorosis and periodontium: An original research report of in vitro and in vivo institutional studies. Biological Trace Element Research, 199, 3579–3592.PubMedCrossRef
Zurück zum Zitat Vasudevan, S., Kannan, B. S., Lakshmi, J., Mohanraj, S., & Sozhan, G. (2011). Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water. Journal of Chemical Technology & Biotechnology, 86, 428–436.CrossRef Vasudevan, S., Kannan, B. S., Lakshmi, J., Mohanraj, S., & Sozhan, G. (2011). Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water. Journal of Chemical Technology & Biotechnology, 86, 428–436.CrossRef
Zurück zum Zitat Vinati, A., Mahanty, B., & Behera, S. K. (2015). Clay and clay minerals for fluoride removal from water: A state-of-the-art review. Applied Clay Science, 114, 340–348.CrossRef Vinati, A., Mahanty, B., & Behera, S. K. (2015). Clay and clay minerals for fluoride removal from water: A state-of-the-art review. Applied Clay Science, 114, 340–348.CrossRef
Zurück zum Zitat Vithanage, M., & Bhattacharya, P. (2015). Fluoride in the environment: Sources, distribution and defluoridation. Environmental Chemistry Letters, 13, 131–147.CrossRef Vithanage, M., & Bhattacharya, P. (2015). Fluoride in the environment: Sources, distribution and defluoridation. Environmental Chemistry Letters, 13, 131–147.CrossRef
Zurück zum Zitat Waghmare, S., Arfin, T., Rayalu, S., Lataye, D., Dubey, S., & Tiwari, S. (2015). Adsorption behavior of modified zeolite as novel adsorbents for fluoride removal from drinking water: Surface phenomena, kinetics and thermodynamics studies. International Journal of Science, Engineering and Technology Research, 4, 4114–4124. Waghmare, S., Arfin, T., Rayalu, S., Lataye, D., Dubey, S., & Tiwari, S. (2015). Adsorption behavior of modified zeolite as novel adsorbents for fluoride removal from drinking water: Surface phenomena, kinetics and thermodynamics studies. International Journal of Science, Engineering and Technology Research, 4, 4114–4124.
Zurück zum Zitat Waghmare, S. S., & Arfin, T. (2015). Fluoride removal from water by various techniques. International Journal of Innovative Studies in Sciences and Engineering Technology, 2, 560–571. Waghmare, S. S., & Arfin, T. (2015). Fluoride removal from water by various techniques. International Journal of Innovative Studies in Sciences and Engineering Technology, 2, 560–571.
Zurück zum Zitat Wan, K., Huang, L., Yan, J., Ma, B., Huang, X., Luo, Z., Zhang, H., & Xiao, T. (2021). Removal of fluoride from industrial wastewater by using different adsorbents: A review. Science of the Total Environment, 773, 145535.PubMedCrossRefADS Wan, K., Huang, L., Yan, J., Ma, B., Huang, X., Luo, Z., Zhang, H., & Xiao, T. (2021). Removal of fluoride from industrial wastewater by using different adsorbents: A review. Science of the Total Environment, 773, 145535.PubMedCrossRefADS
Zurück zum Zitat Wang, M., Li, X., He, W.-Y., Li, J.-X., Zhu, Y.-Y., Liao, Y.-L., Yang, J.-Y., & Yang, X.-E. (2019). Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, Southwest China. Environmental Pollution, 249, 423–433.PubMedCrossRef Wang, M., Li, X., He, W.-Y., Li, J.-X., Zhu, Y.-Y., Liao, Y.-L., Yang, J.-Y., & Yang, X.-E. (2019). Distribution, health risk assessment, and anthropogenic sources of fluoride in farmland soils in phosphate industrial area, Southwest China. Environmental Pollution, 249, 423–433.PubMedCrossRef
Zurück zum Zitat Wang, T., Yan, L., He, Y., Alhassan, S. I., Gang, H., Wu, B., Jin, L., & Wang, H. (2022). Application of polypyrrole-based adsorbents in the removal of fluoride: A review. RSC Advances, 12, 3505–3517.CrossRefADS Wang, T., Yan, L., He, Y., Alhassan, S. I., Gang, H., Wu, B., Jin, L., & Wang, H. (2022). Application of polypyrrole-based adsorbents in the removal of fluoride: A review. RSC Advances, 12, 3505–3517.CrossRefADS
Zurück zum Zitat WHO, G. (2011). Guidelines for drinking-water quality. World Health Organization, 216, 303–304. WHO, G. (2011). Guidelines for drinking-water quality. World Health Organization, 216, 303–304.
Zurück zum Zitat Wimalawansa, S. J. (2020). Does fluoride cause the mysterious chronic kidney disease of multifactorial origin? Environmental Geochemistry and Health, 42, 3035–3057.PubMedCrossRef Wimalawansa, S. J. (2020). Does fluoride cause the mysterious chronic kidney disease of multifactorial origin? Environmental Geochemistry and Health, 42, 3035–3057.PubMedCrossRef
Zurück zum Zitat Yadav, K. K., Kumar, S., Pham, Q. B., Gupta, N., Rezania, S., Kamyab, H., Yadav, S., Vymazal, J., Kumar, V., & Tri, D. Q. (2019). Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicology and Environmental Safety, 182, 109362.PubMedCrossRef Yadav, K. K., Kumar, S., Pham, Q. B., Gupta, N., Rezania, S., Kamyab, H., Yadav, S., Vymazal, J., Kumar, V., & Tri, D. Q. (2019). Fluoride contamination, health problems and remediation methods in Asian groundwater: A comprehensive review. Ecotoxicology and Environmental Safety, 182, 109362.PubMedCrossRef
Zurück zum Zitat Yang, W., Shi, F., Jiang, W., Chen, Y., Zhang, K., Jian, S., Jiang, S., Zhang, C., & Hu, J. (2022). Outstanding fluoride removal from aqueous solution by a la-based adsorbent. RSC Advances, 12, 30522–30528.PubMedPubMedCentralCrossRefADS Yang, W., Shi, F., Jiang, W., Chen, Y., Zhang, K., Jian, S., Jiang, S., Zhang, C., & Hu, J. (2022). Outstanding fluoride removal from aqueous solution by a la-based adsorbent. RSC Advances, 12, 30522–30528.PubMedPubMedCentralCrossRefADS
Metadaten
Titel
Environmental and Health Effects of Fluoride Contamination and Treatment of Wastewater Using Various Technologies
verfasst von
Ankit Kumar
Ramakrishna Chava
Sonam Gupta
Saba Shirin
Aarif Jamal
Akhilesh Kumar Yadav
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-38845-3_18