Skip to main content
Erschienen in: Cellulose 6/2011

01.12.2011

Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose

verfasst von: Diana Ciolacu, Selestina Gorgieva, Daniel Tampu, Vanja Kokol

Erschienen in: Cellulose | Ausgabe 6/2011

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper investigates the enzymatic hydrolysis of three main allomorphic forms of microcrystalline cellulose using different cellulases, from Trichoderma reesei and from Aspergillus niger, respectively. It was demonstrated that both the morphological and crystalline structures are important parameters that have a great influence on the course of the hydrolysis process. The efficiency of the enzymatic hydrolysis of cellulosic substrates was estimated by the amounts of reducing sugar and by the yield of the reaction. Changes in the average particle sizes of the cellulose allomorphs were determined during enzymatic hydrolysis. The accumulation of soluble sugar within the supernatant was used as a measure of the biodegradation process’s efficiency, and was established by HPLC-SEC analysis. Any modifications in the supramolecular structure of the cellulosic residues resulting from the enzymatic hydrolysis were determined by X-ray diffraction. The action of each cellulase was demonstrated by a reduction in the crystalline index and the crystallite dimensions of the corresponding allomorphic forms. The crystalline structure of allomorphic forms I and II did not suffer significant modifications, while cellulose III recorded a partial return to the crystalline structure of cellulose I. The microstructures of cellulose allomorph residues were presented using optical microscopy and scanning electron microscopy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ahamed A, Vermette P (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42:41–46CrossRef Ahamed A, Vermette P (2008) Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem Eng J 42:41–46CrossRef
Zurück zum Zitat Al-Zuhair S (2008) The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. Bioresour Techn 99:4078–4085CrossRef Al-Zuhair S (2008) The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis. Bioresour Techn 99:4078–4085CrossRef
Zurück zum Zitat Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285CrossRef
Zurück zum Zitat Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626CrossRef Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6(2):612–626CrossRef
Zurück zum Zitat Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Bioresour Tech 101:4461–4471CrossRef Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates. Bioresour Tech 101:4461–4471CrossRef
Zurück zum Zitat Ciolacu D (2007) On the supramolecular structure of cellulose allomorphs after enzymatic degradation. J Optoelectron Adv Mater 9(4):1033–1037 Ciolacu D (2007) On the supramolecular structure of cellulose allomorphs after enzymatic degradation. J Optoelectron Adv Mater 9(4):1033–1037
Zurück zum Zitat Ciolacu D, Popa VI (2010a) Cellulose allomorphs: structure, accessibility and reactivity, series: polymer science and technology. Nova Science Publishers, Inc., United States Ciolacu D, Popa VI (2010a) Cellulose allomorphs: structure, accessibility and reactivity, series: polymer science and technology. Nova Science Publishers, Inc., United States
Zurück zum Zitat Ciolacu D, Popa VI (2010b) Cellulose allomorphs–overview and perspectives. In: Lejeune A, Deprez T (eds) Cellulose: structure and properties, derivatives and industrial uses. Nova Science Publishers, Inc., United States, pp 1–38 Ciolacu D, Popa VI (2010b) Cellulose allomorphs–overview and perspectives. In: Lejeune A, Deprez T (eds) Cellulose: structure and properties, derivatives and industrial uses. Nova Science Publishers, Inc., United States, pp 1–38
Zurück zum Zitat Ciolacu D, Ciolacu F, Dumitriu R, Vasile C, Popa VI (2007) Kinetics aspects in the enzymatic hydrolysis of cellulose allomorphs. Cellulose Chem Tech 41(1):35–40 Ciolacu D, Ciolacu F, Dumitriu R, Vasile C, Popa VI (2007) Kinetics aspects in the enzymatic hydrolysis of cellulose allomorphs. Cellulose Chem Tech 41(1):35–40
Zurück zum Zitat Ciolacu D, Ciolacu F, Popa VI (2008) Supramolecular structure–a key parameter for cellulose biodegradation. Macromol Symp 272(1):136–142CrossRef Ciolacu D, Ciolacu F, Popa VI (2008) Supramolecular structure–a key parameter for cellulose biodegradation. Macromol Symp 272(1):136–142CrossRef
Zurück zum Zitat Das K, Ray D, Bandyopadhyay NR, Sengupta S (2010) Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J Polym Environ 18:355–363CrossRef Das K, Ray D, Bandyopadhyay NR, Sengupta S (2010) Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J Polym Environ 18:355–363CrossRef
Zurück zum Zitat Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859CrossRef Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859CrossRef
Zurück zum Zitat Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575CrossRef Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575CrossRef
Zurück zum Zitat Gusakov AV, Salanovich TN, Antonov AI, Usti-nov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97:1028–1038CrossRef Gusakov AV, Salanovich TN, Antonov AI, Usti-nov BB, Okunev ON, Burlingame R, Emalfarb M, Baez M, Sinitsyn AP (2007) Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnol Bioeng 97:1028–1038CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-sssembly, and applications. Chem Rev 110(6):3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-sssembly, and applications. Chem Rev 110(6):3479–3500CrossRef
Zurück zum Zitat Hayashia N, Sugiyama J, Okano T, Ishihara M (1997) The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type. Carbohydr Res 305(2):261–269CrossRef Hayashia N, Sugiyama J, Okano T, Ishihara M (1997) The enzymatic susceptibility of cellulose microfibrils of the algal-bacterial type and the cotton-ramie type. Carbohydr Res 305(2):261–269CrossRef
Zurück zum Zitat Hu XP, Hsieh YL (1996) Crystalline structure of developing cotton fibers. J Polym Sci B Polym Phys 34:1451–1459CrossRef Hu XP, Hsieh YL (1996) Crystalline structure of developing cotton fibers. J Polym Sci B Polym Phys 34:1451–1459CrossRef
Zurück zum Zitat Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6:41–53CrossRef Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6:41–53CrossRef
Zurück zum Zitat Krässig HA (1993) Methods of fiber structure characterization. In: Huglin MB (ed) Cellulose: structure, accessibility and reactivity, polymer monographs, vol 11, chapter 3. Gordon and Breach Science Publishers, Philadelphia, pp 43–149 Krässig HA (1993) Methods of fiber structure characterization. In: Huglin MB (ed) Cellulose: structure, accessibility and reactivity, polymer monographs, vol 11, chapter 3. Gordon and Breach Science Publishers, Philadelphia, pp 43–149
Zurück zum Zitat Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391CrossRef Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391CrossRef
Zurück zum Zitat Liu H, Fu SY, Zhu JY, Li H, Zhan HY (2009) Vizualization of enzymatic hydrolysis of cellulose using AFM phase imaging. Enzyme Microb Technol 45:274–281CrossRef Liu H, Fu SY, Zhu JY, Li H, Zhan HY (2009) Vizualization of enzymatic hydrolysis of cellulose using AFM phase imaging. Enzyme Microb Technol 45:274–281CrossRef
Zurück zum Zitat Lyagin E, Drews A, Bhattacharya S, Kraume M (2011) Continuous membrane-based screening system for biocatalysis. Membranes 1:70–79CrossRef Lyagin E, Drews A, Bhattacharya S, Kraume M (2011) Continuous membrane-based screening system for biocatalysis. Membranes 1:70–79CrossRef
Zurück zum Zitat Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506CrossRef Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506CrossRef
Zurück zum Zitat MacLellan J (2010) Strategies to enhance enzymatic hydrolysis of cellulose in lignocellulosic biomass. MMG 445 Basic Biotech e-J 6:31–35 MacLellan J (2010) Strategies to enhance enzymatic hydrolysis of cellulose in lignocellulosic biomass. MMG 445 Basic Biotech e-J 6:31–35
Zurück zum Zitat Mansfield SD, Meder R (2003) Cellulose hydrolysis—the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10:159–169CrossRef Mansfield SD, Meder R (2003) Cellulose hydrolysis—the role of monocomponent cellulases in crystalline cellulose degradation. Cellulose 10:159–169CrossRef
Zurück zum Zitat Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRef Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRef
Zurück zum Zitat Mussatto SI, Fernandes M, Milagres AMF, Roberto IC (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enz Microb Tech 43:124–129CrossRef Mussatto SI, Fernandes M, Milagres AMF, Roberto IC (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enz Microb Tech 43:124–129CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRef
Zurück zum Zitat Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306CrossRef
Zurück zum Zitat Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef
Zurück zum Zitat Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohydr Res 341(5):591–597CrossRef Pu Y, Ziemer C, Ragauskas AJ (2006) CP/MAS 13C NMR analysis of cellulase treated bleached softwood kraft pulp. Carbohydr Res 341(5):591–597CrossRef
Zurück zum Zitat Russell JB, Muck RE, Weimer PJ (2009) Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 67(2):183–197CrossRef Russell JB, Muck RE, Weimer PJ (2009) Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 67(2):183–197CrossRef
Zurück zum Zitat Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158CrossRef Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
Zurück zum Zitat Sun Y, Zhuang J, Lin L, Ouyang P (2009) Clean conversion of cellulose into fermentable glucose. Biotech Adv 27:625–632CrossRef Sun Y, Zhuang J, Lin L, Ouyang P (2009) Clean conversion of cellulose into fermentable glucose. Biotech Adv 27:625–632CrossRef
Zurück zum Zitat Varma AJ (2004) Biodegradable polymers from renewable forest resources. In: Smith R (ed) Biodegradable polymers for industrial applications. Woodhead Publishing Limited, Cambridge, p 223 Varma AJ (2004) Biodegradable polymers from renewable forest resources. In: Smith R (ed) Biodegradable polymers for industrial applications. Woodhead Publishing Limited, Cambridge, p 223
Zurück zum Zitat Wada M, Chanzy H, Nishiyama Y, Langan P (2004a) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromol 37(23):8548–8555CrossRef Wada M, Chanzy H, Nishiyama Y, Langan P (2004a) Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromol 37(23):8548–8555CrossRef
Zurück zum Zitat Wada M, Heux L, Sugiyama J (2004b) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromol 5:1385–1391CrossRef Wada M, Heux L, Sugiyama J (2004b) Polymorphism of cellulose I family: reinvestigation of cellulose IVI. Biomacromol 5:1385–1391CrossRef
Zurück zum Zitat Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia-cellulose I: new insights into the conversion of cellulose I to cellulose IIII. Macromol 39(8):2947–2952CrossRef Wada M, Nishiyama Y, Langan P (2006) X-ray structure of ammonia-cellulose I: new insights into the conversion of cellulose I to cellulose IIII. Macromol 39(8):2947–2952CrossRef
Zurück zum Zitat Wada M, Ike M, Tokuyasu K (2010) Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym Degrad Stab 95:543–548CrossRef Wada M, Ike M, Tokuyasu K (2010) Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym Degrad Stab 95:543–548CrossRef
Zurück zum Zitat Weimer PJ, Odt CL (1995) Cellulose degradation by ruminai microbes: physiological and hydrolytic diversity among ruminai cellulolytic bacteria. In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble carbohydrates, chapter 18, ACS symposium series, vol 618, pp 291–304 Weimer PJ, Odt CL (1995) Cellulose degradation by ruminai microbes: physiological and hydrolytic diversity among ruminai cellulolytic bacteria. In: Saddler JN, Penner MH (eds) Enzymatic degradation of insoluble carbohydrates, chapter 18, ACS symposium series, vol 618, pp 291–304
Zurück zum Zitat Yeh AI, Huang YC, Chen SH (2010) Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr Polym 79:192–199CrossRef Yeh AI, Huang YC, Chen SH (2010) Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr Polym 79:192–199CrossRef
Zurück zum Zitat Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824CrossRef Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824CrossRef
Metadaten
Titel
Enzymatic hydrolysis of different allomorphic forms of microcrystalline cellulose
verfasst von
Diana Ciolacu
Selestina Gorgieva
Daniel Tampu
Vanja Kokol
Publikationsdatum
01.12.2011
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2011
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-011-9601-4

Weitere Artikel der Ausgabe 6/2011

Cellulose 6/2011 Zur Ausgabe