Skip to main content

2021 | OriginalPaper | Buchkapitel

14. Enzyme Biocatalysis and Sustainability

verfasst von : Carminna Ottone, Oscar Romero, Paulina Urrutia, Claudia Bernal, Andrés Illanes, Lorena Wilson

Erschienen in: Nanostructured Catalysts for Environmental Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Enzymes are biological catalysts capable of recognizing a substrate and catalyze reactions of hydrolysis and synthesis. The most significant property of enzymes is their high specificity toward their substrates since they are able to recognize and act upon a molecule from a pool of similar compounds.
Enzymes are labile catalysts at certain operative conditions that may severely affect their stability. However, the attachment of enzymes to solid supports has proven to be a good solution to stabilize them and, thus, to preserve their catalytic performances.
The fundamentals of enzyme biocatalysis in sustainable processes are summarized in this chapter. The advantages of immobilized enzymes in environmental applications and sustainable processes will be addressed considering the most suitable materials and the most common immobilization methods. The use of biocatalysts in bioremediation, biofuel production, and in the valorization of waste streams is reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Buchholz, V. Kasche, U.T. Bornscheuer, Biocatalysts and Enzyme Technology (Wiley, New York, 2012) K. Buchholz, V. Kasche, U.T. Bornscheuer, Biocatalysts and Enzyme Technology (Wiley, New York, 2012)
2.
Zurück zum Zitat K.M. Koeller, C.-H. Wong, Enzymes for chemical synthesis. Nature 409(6817), 232–240 (2001)CrossRef K.M. Koeller, C.-H. Wong, Enzymes for chemical synthesis. Nature 409(6817), 232–240 (2001)CrossRef
3.
Zurück zum Zitat R.D. Ward, Relationship between enzyme heterozygosity and quaternary structure. Biochem. Genet. 15(1), 123–135 (1977)CrossRef R.D. Ward, Relationship between enzyme heterozygosity and quaternary structure. Biochem. Genet. 15(1), 123–135 (1977)CrossRef
4.
Zurück zum Zitat C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym. Microb. Technol. 40(6), 1451–1463 (2007)CrossRef C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym. Microb. Technol. 40(6), 1451–1463 (2007)CrossRef
5.
Zurück zum Zitat U. Hanefeld, L. Gardossi, E. Magner, Understanding enzyme immobilisation. Chem. Soc. Rev. 38(2), 453–468 (2009)CrossRef U. Hanefeld, L. Gardossi, E. Magner, Understanding enzyme immobilisation. Chem. Soc. Rev. 38(2), 453–468 (2009)CrossRef
6.
Zurück zum Zitat L. Cao, Immobilised enzymes: science or art? Curr. Opin. Chem. Biol. 9(2), 217–226 (2005)CrossRef L. Cao, Immobilised enzymes: science or art? Curr. Opin. Chem. Biol. 9(2), 217–226 (2005)CrossRef
7.
Zurück zum Zitat R. DiCosimo, J. McAuliffe, A.J. Poulose, G. Bohlmann, Industrial use of immobilized enzymes. Chem. Soc. Rev. 42(15), 6437–6474 (2013)CrossRef R. DiCosimo, J. McAuliffe, A.J. Poulose, G. Bohlmann, Industrial use of immobilized enzymes. Chem. Soc. Rev. 42(15), 6437–6474 (2013)CrossRef
8.
Zurück zum Zitat J.R. Cherry, A.L. Fidantsef, Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14(4), 438–443 (2003)CrossRef J.R. Cherry, A.L. Fidantsef, Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14(4), 438–443 (2003)CrossRef
9.
Zurück zum Zitat A. Kumar, S. Singh, Directed evolution: tailoring biocatalysts for industrial applications. Crit. Rev. Biotechnol. 33(4), 365–378 (2013)CrossRef A. Kumar, S. Singh, Directed evolution: tailoring biocatalysts for industrial applications. Crit. Rev. Biotechnol. 33(4), 365–378 (2013)CrossRef
10.
Zurück zum Zitat C. Bernal, K. Rodríguez, R. Martínez, Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnol. Adv. 36(5), 1470–1480 (2018)CrossRef C. Bernal, K. Rodríguez, R. Martínez, Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnol. Adv. 36(5), 1470–1480 (2018)CrossRef
11.
Zurück zum Zitat Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019)CrossRef Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019)CrossRef
12.
Zurück zum Zitat X. Wang, Y. Hu, H. Wei, Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg. Chem. Front. 3(1), 41–60 (2016)CrossRef X. Wang, Y. Hu, H. Wei, Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg. Chem. Front. 3(1), 41–60 (2016)CrossRef
13.
Zurück zum Zitat J.-M. Choi, S.-S. Han, H.-S. Kim, Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol. Adv. 33(7), 1443–1454 (2015)CrossRef J.-M. Choi, S.-S. Han, H.-S. Kim, Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol. Adv. 33(7), 1443–1454 (2015)CrossRef
14.
Zurück zum Zitat O. Kirk, T.V. Borchert, C.C. Fuglsang, Industrial enzyme applications. Curr. Opin. Biotechnol. 13(4), 345–351 (2002)CrossRef O. Kirk, T.V. Borchert, C.C. Fuglsang, Industrial enzyme applications. Curr. Opin. Biotechnol. 13(4), 345–351 (2002)CrossRef
15.
Zurück zum Zitat M. Alcalde, M. Ferrer, F.J. Plou, A. Ballesteros, Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol. 24(6), 281–287 (2006)CrossRef M. Alcalde, M. Ferrer, F.J. Plou, A. Ballesteros, Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol. 24(6), 281–287 (2006)CrossRef
16.
Zurück zum Zitat P. Kumar, S. Sharma, Enzymes in green chemistry: the need for environment and sustainability. Int. J. Appl. Res. 2, 337–341 (2016) P. Kumar, S. Sharma, Enzymes in green chemistry: the need for environment and sustainability. Int. J. Appl. Res. 2, 337–341 (2016)
17.
Zurück zum Zitat C.S. Karigar, S.S. Rao, Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym. Res. 2011, 805187 (2011)CrossRef C.S. Karigar, S.S. Rao, Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym. Res. 2011, 805187 (2011)CrossRef
18.
Zurück zum Zitat C.H. Okino-Delgado, M.R. Zanutto-Elgui, D.Z. do Prado, M.S. Pereira, L.F. Fleuri, Enzymatic bioremediation: current status, challenges of obtaining process, and applications, in Microbial Metabolism of Xenobiotic Compounds, ed. by P. K. Arora, (Springer Singapore, Singapore, 2019), pp. 79–101CrossRef C.H. Okino-Delgado, M.R. Zanutto-Elgui, D.Z. do Prado, M.S. Pereira, L.F. Fleuri, Enzymatic bioremediation: current status, challenges of obtaining process, and applications, in Microbial Metabolism of Xenobiotic Compounds, ed. by P. K. Arora, (Springer Singapore, Singapore, 2019), pp. 79–101CrossRef
19.
Zurück zum Zitat R.L. Singh, P.K. Singh, R.P. Singh, Enzymatic decolorization and degradation of azo dyes—a review. Int. Biodeterior. Biodegrad. 104, 21–31 (2015)CrossRef R.L. Singh, P.K. Singh, R.P. Singh, Enzymatic decolorization and degradation of azo dyes—a review. Int. Biodeterior. Biodegrad. 104, 21–31 (2015)CrossRef
20.
Zurück zum Zitat T. Sutherland, I. Horne, K. Weir, C. Coppin, M. Williams, M. Selleck, R. Russell, J. Oakeshott, Enzymatic bioremediation: from enzyme discovery to applications. Clin. Exp. Pharmacol. Physiol. 31(11), 817–821 (2004)CrossRef T. Sutherland, I. Horne, K. Weir, C. Coppin, M. Williams, M. Selleck, R. Russell, J. Oakeshott, Enzymatic bioremediation: from enzyme discovery to applications. Clin. Exp. Pharmacol. Physiol. 31(11), 817–821 (2004)CrossRef
21.
Zurück zum Zitat M. Babaki, M. Yousefi, Z. Habibi, M. Mohammadi, Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology. Renew. Energy 105, 465–472 (2017)CrossRef M. Babaki, M. Yousefi, Z. Habibi, M. Mohammadi, Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology. Renew. Energy 105, 465–472 (2017)CrossRef
22.
Zurück zum Zitat A. Badoei-Dalfard, S. Malekabadi, Z. Karami, G. Sargazi, Magnetic cross-linked enzyme aggregates of Km12 lipase: a stable nanobiocatalyst for biodiesel synthesis from waste cooking oil. Renew. Energy 141, 874–882 (2019)CrossRef A. Badoei-Dalfard, S. Malekabadi, Z. Karami, G. Sargazi, Magnetic cross-linked enzyme aggregates of Km12 lipase: a stable nanobiocatalyst for biodiesel synthesis from waste cooking oil. Renew. Energy 141, 874–882 (2019)CrossRef
23.
Zurück zum Zitat M. Bilal, H.M.N. Iqbal, Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities—a review. Food Res. Int. 123, 226–240 (2019)CrossRef M. Bilal, H.M.N. Iqbal, Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities—a review. Food Res. Int. 123, 226–240 (2019)CrossRef
24.
Zurück zum Zitat R.A. Sheldon, S. van Pelt, Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42(15), 6223–6235 (2013)CrossRef R.A. Sheldon, S. van Pelt, Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42(15), 6223–6235 (2013)CrossRef
25.
Zurück zum Zitat J.M. Guisán, Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes. Enzym. Microb. Technol. 10(6), 375–382 (1988)CrossRef J.M. Guisán, Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes. Enzym. Microb. Technol. 10(6), 375–382 (1988)CrossRef
26.
Zurück zum Zitat C. Mateo, J.M. Palomo, M. Fuentes, L. Betancor, V. Grazu, F. López-Gallego, B.C.C. Pessela, A. Hidalgo, G. Fernández-Lorente, R. Fernández-Lafuente, J.M. Guisán, Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzym. Microb. Technol. 39(2), 274–280 (2006)CrossRef C. Mateo, J.M. Palomo, M. Fuentes, L. Betancor, V. Grazu, F. López-Gallego, B.C.C. Pessela, A. Hidalgo, G. Fernández-Lorente, R. Fernández-Lafuente, J.M. Guisán, Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzym. Microb. Technol. 39(2), 274–280 (2006)CrossRef
27.
Zurück zum Zitat V.P. Torchilin, E.G. Tischenko, V.N. Smirnov, Effect of electrostatic complex formation prior to immobilization. J. Solid Phase Biochem. 2(1), 19–29 (1977)CrossRef V.P. Torchilin, E.G. Tischenko, V.N. Smirnov, Effect of electrostatic complex formation prior to immobilization. J. Solid Phase Biochem. 2(1), 19–29 (1977)CrossRef
28.
Zurück zum Zitat N.S. Rios, S. Arana-Peña, C. Mendez-Sanchez, C. Ortiz, L.R.B. Gonçalves, R. Fernandez-Lafuente, Reuse of lipase from Pseudomonas fluorescens via its step-by-step coimmobilization on glyoxyl-octyl agarose beads with least stable lipases. Catalysts 9, 5 (2019)CrossRef N.S. Rios, S. Arana-Peña, C. Mendez-Sanchez, C. Ortiz, L.R.B. Gonçalves, R. Fernandez-Lafuente, Reuse of lipase from Pseudomonas fluorescens via its step-by-step coimmobilization on glyoxyl-octyl agarose beads with least stable lipases. Catalysts 9, 5 (2019)CrossRef
29.
Zurück zum Zitat R. Fernandez-Lafuente, P. Armisén, P. Sabuquillo, G. Fernández-Lorente, J.M. Guisán, Immobilization of lipases by selective adsorption on hydrophobic supports. Chem. Phys. Lipids 93(1–2), 185–197 (1998)CrossRef R. Fernandez-Lafuente, P. Armisén, P. Sabuquillo, G. Fernández-Lorente, J.M. Guisán, Immobilization of lipases by selective adsorption on hydrophobic supports. Chem. Phys. Lipids 93(1–2), 185–197 (1998)CrossRef
30.
Zurück zum Zitat J.M. Palomo, G. Fernandez-Lorente, C. Mateo, C. Ortiz, R. Fernandez-Lafuente, J.M. Guisan, Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzym. Microb. Technol. 31(6), 775–783 (2002)CrossRef J.M. Palomo, G. Fernandez-Lorente, C. Mateo, C. Ortiz, R. Fernandez-Lafuente, J.M. Guisan, Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzym. Microb. Technol. 31(6), 775–783 (2002)CrossRef
31.
Zurück zum Zitat J.M. Palomo, G. Muoz, G. Fernández-Lorente, C. Mateo, R. Fernández-Lafuente, J.M. Guisán, Interfacial adsorption of lipases on very hydrophobic support (octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J. Mol. Catal. B Enzym. 19(20), 279–286 (2002)CrossRef J.M. Palomo, G. Muoz, G. Fernández-Lorente, C. Mateo, R. Fernández-Lafuente, J.M. Guisán, Interfacial adsorption of lipases on very hydrophobic support (octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J. Mol. Catal. B Enzym. 19(20), 279–286 (2002)CrossRef
32.
Zurück zum Zitat A. Care, P.L. Bergquist, A. Sunna, Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol. 33(5), 259–268 (2015)CrossRef A. Care, P.L. Bergquist, A. Sunna, Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol. 33(5), 259–268 (2015)CrossRef
33.
Zurück zum Zitat J. Nilsson, S. Ståhl, J. Lundeberg, M. Uhlén, P.Å. Nygren, Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr. Purif. 11(1), 1–16 (1997)CrossRef J. Nilsson, S. Ståhl, J. Lundeberg, M. Uhlén, P.Å. Nygren, Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr. Purif. 11(1), 1–16 (1997)CrossRef
34.
Zurück zum Zitat S. Lopez, L. Rondot, C. Leprêtre, C. Marchi-Delapierre, S. Ménage, C. Cavazza, Cross-linked artificial enzyme crystals as heterogeneous catalysts for oxidation reactions. J. Am. Chem. Soc. 139(49), 17994–18002 (2017)CrossRef S. Lopez, L. Rondot, C. Leprêtre, C. Marchi-Delapierre, S. Ménage, C. Cavazza, Cross-linked artificial enzyme crystals as heterogeneous catalysts for oxidation reactions. J. Am. Chem. Soc. 139(49), 17994–18002 (2017)CrossRef
35.
Zurück zum Zitat L. Cao, F. Van Rantwijk, R.A. Sheldon, Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org. Lett. 2(10), 1361–1364 (2000)CrossRef L. Cao, F. Van Rantwijk, R.A. Sheldon, Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org. Lett. 2(10), 1361–1364 (2000)CrossRef
36.
Zurück zum Zitat R. Sheldon, Cross-Linked Enzyme Aggregates (CLEA® s): Stable and Recyclable Biocatalysts (Portland Press Limited, London, 2007) R. Sheldon, Cross-Linked Enzyme Aggregates (CLEA® s): Stable and Recyclable Biocatalysts (Portland Press Limited, London, 2007)
37.
Zurück zum Zitat E.T. Hwang, M.B. Gu, Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 13(1), 49–61 (2013)CrossRef E.T. Hwang, M.B. Gu, Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 13(1), 49–61 (2013)CrossRef
38.
Zurück zum Zitat P. Jochems, Y. Satyawali, L. Diels, W. Dejonghe, Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem. 13(7), 1609–1623 (2011)CrossRef P. Jochems, Y. Satyawali, L. Diels, W. Dejonghe, Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem. 13(7), 1609–1623 (2011)CrossRef
39.
Zurück zum Zitat J. Zdarta, A.S. Meyer, T. Jesionowski, M. Pinelo, A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8, 2 (2018)CrossRef J. Zdarta, A.S. Meyer, T. Jesionowski, M. Pinelo, A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8, 2 (2018)CrossRef
40.
Zurück zum Zitat G. Busca, Catalytic materials based on silica and alumina: structural features and generation of surface acidity. Prog. Mater. Sci. 104, 215–249 (2019)CrossRef G. Busca, Catalytic materials based on silica and alumina: structural features and generation of surface acidity. Prog. Mater. Sci. 104, 215–249 (2019)CrossRef
41.
Zurück zum Zitat J. Hou, G. Dong, Y. Ye, V. Chen, Laccase immobilization on titania nanoparticles and titania-functionalized membranes. J. Membr. Sci. 452, 229–240 (2014)CrossRef J. Hou, G. Dong, Y. Ye, V. Chen, Laccase immobilization on titania nanoparticles and titania-functionalized membranes. J. Membr. Sci. 452, 229–240 (2014)CrossRef
42.
Zurück zum Zitat J. Yu, H. Ju, Preparation of porous titania sol−gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. Anal. Chem. 74(14), 3579–3583 (2002)CrossRef J. Yu, H. Ju, Preparation of porous titania sol−gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. Anal. Chem. 74(14), 3579–3583 (2002)CrossRef
43.
Zurück zum Zitat C. Pizarro, M.A. Fernández-Torroba, C. Benito, J.M. González-Sáiz, Optimization by experimental design of polyacrylamide gel composition as support for enzyme immobilization by entrapment. Biotechnol. Bioeng. 53(5), 497–506 (1997)CrossRef C. Pizarro, M.A. Fernández-Torroba, C. Benito, J.M. González-Sáiz, Optimization by experimental design of polyacrylamide gel composition as support for enzyme immobilization by entrapment. Biotechnol. Bioeng. 53(5), 497–506 (1997)CrossRef
44.
Zurück zum Zitat W. Jin, J.D. Brennan, Properties and applications of proteins encapsulated within sol-gel derived materials. Anal. Chim. Acta 461(1), 1–36 (2002)CrossRef W. Jin, J.D. Brennan, Properties and applications of proteins encapsulated within sol-gel derived materials. Anal. Chim. Acta 461(1), 1–36 (2002)CrossRef
45.
Zurück zum Zitat R. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (John Wiley & Sons, New York, 1979) R. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (John Wiley & Sons, New York, 1979)
46.
Zurück zum Zitat N. Velikova, Y. Vueva, Y. Ivanova, I. Salvado, M. Fernandes, P. Vassileva, R. Georgieva, A. Detcheva, Synthesis and characterization of sol-gel mesoporous organosilicas functionalized with amine groups. J. Noncrystal. Solids 378, 89–95 (2013)CrossRef N. Velikova, Y. Vueva, Y. Ivanova, I. Salvado, M. Fernandes, P. Vassileva, R. Georgieva, A. Detcheva, Synthesis and characterization of sol-gel mesoporous organosilicas functionalized with amine groups. J. Noncrystal. Solids 378, 89–95 (2013)CrossRef
47.
Zurück zum Zitat B. Sun, G. Zhou, H. Zhang, Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: a review. Prog. Solid State Chem. 44(1), 1–19 (2016)CrossRef B. Sun, G. Zhou, H. Zhang, Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: a review. Prog. Solid State Chem. 44(1), 1–19 (2016)CrossRef
48.
Zurück zum Zitat A.A. Pisal, A.V. Rao, Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method. J. Porous. Mater. 23(6), 1547–1556 (2016)CrossRef A.A. Pisal, A.V. Rao, Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method. J. Porous. Mater. 23(6), 1547–1556 (2016)CrossRef
49.
Zurück zum Zitat H. Isobe, S. Utsumi, K. Yamamoto, H. Kanoh, K. Kaneko, Micropore to macropore structure-designed silicas with regulated condensation of silicic acid nanoparticles. Langmuir 21(17), 8042–8047 (2005)CrossRef H. Isobe, S. Utsumi, K. Yamamoto, H. Kanoh, K. Kaneko, Micropore to macropore structure-designed silicas with regulated condensation of silicic acid nanoparticles. Langmuir 21(17), 8042–8047 (2005)CrossRef
50.
Zurück zum Zitat P.S. Nabavi Zadeh, B. Åkerman, Immobilization of enzymes in mesoporous silica particles: protein concentration and rotational mobility in the pores. J. Phys. Chem. B 121(12), 2575–2583 (2017)CrossRef P.S. Nabavi Zadeh, B. Åkerman, Immobilization of enzymes in mesoporous silica particles: protein concentration and rotational mobility in the pores. J. Phys. Chem. B 121(12), 2575–2583 (2017)CrossRef
51.
Zurück zum Zitat N. Zhong, W. Chen, L. Liu, H. Chen, Immobilization of Rhizomucor miehei lipase onto the organic functionalized SBA-15: their enzymatic properties and glycerolysis efficiencies for diacylglycerols production. Food Chem. 271, 739–746 (2019)CrossRef N. Zhong, W. Chen, L. Liu, H. Chen, Immobilization of Rhizomucor miehei lipase onto the organic functionalized SBA-15: their enzymatic properties and glycerolysis efficiencies for diacylglycerols production. Food Chem. 271, 739–746 (2019)CrossRef
52.
Zurück zum Zitat C. Bernal, A. Illanes, L. Wilson, Heterofunctional hydrophilic-hydrophobic porous silica as support for multipoint covalent immobilization of lipases: application to lactulose palmitate synthesis. Langmuir 30(12), 3557–3566 (2014)CrossRef C. Bernal, A. Illanes, L. Wilson, Heterofunctional hydrophilic-hydrophobic porous silica as support for multipoint covalent immobilization of lipases: application to lactulose palmitate synthesis. Langmuir 30(12), 3557–3566 (2014)CrossRef
53.
Zurück zum Zitat P. Zucca, E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19(9), 14139–14194 (2014)CrossRef P. Zucca, E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19(9), 14139–14194 (2014)CrossRef
54.
Zurück zum Zitat A.C. Pierre, The sol-gel encapsulation of enzymes. Biocatal. Biotransform. 22(3), 145–170 (2004)CrossRef A.C. Pierre, The sol-gel encapsulation of enzymes. Biocatal. Biotransform. 22(3), 145–170 (2004)CrossRef
55.
Zurück zum Zitat S. Pandey, S.B. Mishra, Sol-gel derived organic-inorganic hybrid materials: synthesis, characterizations and applications. J. Sol-Gel Sci. Technol. 59(1), 73–94 (2011)CrossRef S. Pandey, S.B. Mishra, Sol-gel derived organic-inorganic hybrid materials: synthesis, characterizations and applications. J. Sol-Gel Sci. Technol. 59(1), 73–94 (2011)CrossRef
56.
Zurück zum Zitat X. Xiang, H. Suo, C. Xu, Y. Hu, Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent. Colloids Surf. B: Biointerf. 165, 262–269 (2018)CrossRef X. Xiang, H. Suo, C. Xu, Y. Hu, Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent. Colloids Surf. B: Biointerf. 165, 262–269 (2018)CrossRef
57.
Zurück zum Zitat H. Dai, S. Ou, Z. Liu, H. Huang, Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydr. Polym. 169, 504–514 (2017)CrossRef H. Dai, S. Ou, Z. Liu, H. Huang, Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydr. Polym. 169, 504–514 (2017)CrossRef
58.
Zurück zum Zitat R. Onbas, O. Yesil-Celiktas, Synthesis of alginate-silica hybrid hydrogel for biocatalytic conversion by β-glucosidase in microreactor. Eng. Life Sci. 19(1), 37–46 (2019)CrossRef R. Onbas, O. Yesil-Celiktas, Synthesis of alginate-silica hybrid hydrogel for biocatalytic conversion by β-glucosidase in microreactor. Eng. Life Sci. 19(1), 37–46 (2019)CrossRef
59.
Zurück zum Zitat A. Jędrzak, T. Rębiś, Ł. Klapiszewski, J. Zdarta, G. Milczarek, T. Jesionowski, Carbon paste electrode based on functional GOx/silica-lignin system to prepare an amperometric glucose biosensor. Sens. Actuators B Chem. 256, 176–185 (2018)CrossRef A. Jędrzak, T. Rębiś, Ł. Klapiszewski, J. Zdarta, G. Milczarek, T. Jesionowski, Carbon paste electrode based on functional GOx/silica-lignin system to prepare an amperometric glucose biosensor. Sens. Actuators B Chem. 256, 176–185 (2018)CrossRef
60.
Zurück zum Zitat J. Luo, A.S. Meyer, R.V. Mateiu, M. Pinelo, Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol. New Biotechnol. 32(3), 319–327 (2015)CrossRef J. Luo, A.S. Meyer, R.V. Mateiu, M. Pinelo, Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol. New Biotechnol. 32(3), 319–327 (2015)CrossRef
61.
Zurück zum Zitat J.M. Sperl, V. Sieber, Multienzyme cascade reactions—status and recent advances. ACS Catal. 8(3), 2385–2396 (2018)CrossRef J.M. Sperl, V. Sieber, Multienzyme cascade reactions—status and recent advances. ACS Catal. 8(3), 2385–2396 (2018)CrossRef
62.
Zurück zum Zitat C. Schmidt-Dannert, F. Lopez-Gallego, A roadmap for biocatalysis–functional and spatial orchestration of enzyme cascades. Microb. Biotechnol. 9(5), 601–609 (2016)CrossRef C. Schmidt-Dannert, F. Lopez-Gallego, A roadmap for biocatalysis–functional and spatial orchestration of enzyme cascades. Microb. Biotechnol. 9(5), 601–609 (2016)CrossRef
63.
Zurück zum Zitat J. Rocha-Martín, B.L. Rivas, R. Muñoz, J.M. Guisán, F. López-Gallego, Rational co-immobilization of bi-enzyme cascades on porous supports and their applications in bio-redox reactions with insitu recycling of soluble cofactors. ChemCatChem 4(9), 1279–1288 (2012)CrossRef J. Rocha-Martín, B.L. Rivas, R. Muñoz, J.M. Guisán, F. López-Gallego, Rational co-immobilization of bi-enzyme cascades on porous supports and their applications in bio-redox reactions with insitu recycling of soluble cofactors. ChemCatChem 4(9), 1279–1288 (2012)CrossRef
64.
Zurück zum Zitat J. Rocha-Martin, A. Acosta, J.M. Guisan, F. López-Gallego, Immobilizing systems biocatalysis for the selective oxidation of glycerol coupled to in situ cofactor recycling and hydrogen peroxide elimination. ChemCatChem 7(13), 1939–1947 (2015)CrossRef J. Rocha-Martin, A. Acosta, J.M. Guisan, F. López-Gallego, Immobilizing systems biocatalysis for the selective oxidation of glycerol coupled to in situ cofactor recycling and hydrogen peroxide elimination. ChemCatChem 7(13), 1939–1947 (2015)CrossRef
65.
Zurück zum Zitat X. Ji, Z. Su, P. Wang, G. Ma, S. Zhang, Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes. ACS Nano. 9(4), 4600–4610 (2015)CrossRef X. Ji, Z. Su, P. Wang, G. Ma, S. Zhang, Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes. ACS Nano. 9(4), 4600–4610 (2015)CrossRef
66.
Zurück zum Zitat J. Chung, E.T. Hwang, J.H. Kim, B.C. Kim, M.B. Gu, Modular multi-enzyme cascade process using highly stabilized enzyme microbeads. Green Chem. 16(3), 1163–1167 (2014)CrossRef J. Chung, E.T. Hwang, J.H. Kim, B.C. Kim, M.B. Gu, Modular multi-enzyme cascade process using highly stabilized enzyme microbeads. Green Chem. 16(3), 1163–1167 (2014)CrossRef
67.
Zurück zum Zitat J. Fu, Y.R. Yang, A. Johnson-Buck, M. Liu, Y. Liu, N.G. Walter, N.W. Woodbury, H. Yan, Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotechnol. 9(7), 531 (2014)CrossRef J. Fu, Y.R. Yang, A. Johnson-Buck, M. Liu, Y. Liu, N.G. Walter, N.W. Woodbury, H. Yan, Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotechnol. 9(7), 531 (2014)CrossRef
68.
Zurück zum Zitat R. Xue, J.M. Woodley, Process technology for multi-enzymatic reaction systems. Bioresour. Technol. 115, 183–195 (2012)CrossRef R. Xue, J.M. Woodley, Process technology for multi-enzymatic reaction systems. Bioresour. Technol. 115, 183–195 (2012)CrossRef
69.
Zurück zum Zitat E. Araya, P. Urrutia, O. Romero, A. Illanes, L. Wilson, Design of combined crosslinked enzyme aggregates (combi-CLEAs) of β-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chem. 288, 102–107 (2019)CrossRef E. Araya, P. Urrutia, O. Romero, A. Illanes, L. Wilson, Design of combined crosslinked enzyme aggregates (combi-CLEAs) of β-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chem. 288, 102–107 (2019)CrossRef
70.
Zurück zum Zitat T.C. Logan, D.S. Clark, T.B. Stachowiak, F. Svec, J.M.J. Fréchet, Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions. Anal. Chem. 79(17), 6592–6598 (2007)CrossRef T.C. Logan, D.S. Clark, T.B. Stachowiak, F. Svec, J.M.J. Fréchet, Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions. Anal. Chem. 79(17), 6592–6598 (2007)CrossRef
71.
Zurück zum Zitat S. Talekar, A. Pandharbale, M. Ladole, S. Nadar, M. Mulla, K. Japhalekar, K. Pattankude, D. Arage, Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-cleas): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour. Technol. 147, 269–275 (2013)CrossRef S. Talekar, A. Pandharbale, M. Ladole, S. Nadar, M. Mulla, K. Japhalekar, K. Pattankude, D. Arage, Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-cleas): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour. Technol. 147, 269–275 (2013)CrossRef
72.
Zurück zum Zitat J.M. Blamey, F. Fischer, H.-P. Meyer, F. Sarmiento, M. Zinn, Enzymatic biocatalysis in chemical transformations: a promising and emerging field in green chemistry practice, in Biotechnology of Microbial Enzymes, ed. by G. Brahmachari, (Elsevier, San Diego, 2017), pp. 347–403CrossRef J.M. Blamey, F. Fischer, H.-P. Meyer, F. Sarmiento, M. Zinn, Enzymatic biocatalysis in chemical transformations: a promising and emerging field in green chemistry practice, in Biotechnology of Microbial Enzymes, ed. by G. Brahmachari, (Elsevier, San Diego, 2017), pp. 347–403CrossRef
73.
Zurück zum Zitat M.C. Bryan, P.J. Dunn, D. Entwistle, F. Gallou, S.G. Koenig, J.D. Hayler, M.R. Hickey, S. Hughes, M.E. Kopach, G. Moine, Key green chemistry research areas from a pharmaceutical manufacturers’ perspective revisited. Green Chem. 20(22), 5082–5103 (2018)CrossRef M.C. Bryan, P.J. Dunn, D. Entwistle, F. Gallou, S.G. Koenig, J.D. Hayler, M.R. Hickey, S. Hughes, M.E. Kopach, G. Moine, Key green chemistry research areas from a pharmaceutical manufacturers’ perspective revisited. Green Chem. 20(22), 5082–5103 (2018)CrossRef
74.
Zurück zum Zitat S. Kobayashi, H. Uyama, J.-I. Kadokawa, Enzymatic Polymerization Towards Green Polymer Chemistry (Springer, New York, 2019)CrossRef S. Kobayashi, H. Uyama, J.-I. Kadokawa, Enzymatic Polymerization Towards Green Polymer Chemistry (Springer, New York, 2019)CrossRef
75.
Zurück zum Zitat T. Fecker, P. Galaz-Davison, F. Engelberger, Y. Narui, M. Sotomayor, L.P. Parra, C.A. Ramírez-Sarmiento, Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophys. J. 114(6), 1302–1312 (2018)CrossRef T. Fecker, P. Galaz-Davison, F. Engelberger, Y. Narui, M. Sotomayor, L.P. Parra, C.A. Ramírez-Sarmiento, Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophys. J. 114(6), 1302–1312 (2018)CrossRef
76.
Zurück zum Zitat D.W. Wong, Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 157(2), 174–209 (2009)CrossRef D.W. Wong, Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 157(2), 174–209 (2009)CrossRef
77.
Zurück zum Zitat J.D.C. Medina, A.L. Woiciechowski, L.R.C. Guimarães, S.G. Karp, C.R. Soccol, 10-Peroxidases, in Current Developments in Biotechnology and Bioengineering, ed. by A. Pandey, S. Negi, C. R. Soccol, (Elsevier, New York, 2017), pp. 217–232CrossRef J.D.C. Medina, A.L. Woiciechowski, L.R.C. Guimarães, S.G. Karp, C.R. Soccol, 10-Peroxidases, in Current Developments in Biotechnology and Bioengineering, ed. by A. Pandey, S. Negi, C. R. Soccol, (Elsevier, New York, 2017), pp. 217–232CrossRef
78.
Zurück zum Zitat J. Rocha-Martin, S. Velasco-Lozano, J.M. Guisán, F. López-Gallego, Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production. Green Chem. 16(1), 303–311 (2014)CrossRef J. Rocha-Martin, S. Velasco-Lozano, J.M. Guisán, F. López-Gallego, Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production. Green Chem. 16(1), 303–311 (2014)CrossRef
79.
Zurück zum Zitat M. Bilal, T. Rasheed, F. Nabeel, H.M. Iqbal, Y. Zhao, Hazardous contaminants in the environment and their laccase-assisted degradation—a review. J. Environ. Manag. 234, 253–264 (2019)CrossRef M. Bilal, T. Rasheed, F. Nabeel, H.M. Iqbal, Y. Zhao, Hazardous contaminants in the environment and their laccase-assisted degradation—a review. J. Environ. Manag. 234, 253–264 (2019)CrossRef
80.
Zurück zum Zitat W. Chouyyok, J. Panpranot, C. Thanachayanant, S. Prichanont, Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization. J. Mol. Catal. B Enzym. 56(4), 246–252 (2009)CrossRef W. Chouyyok, J. Panpranot, C. Thanachayanant, S. Prichanont, Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization. J. Mol. Catal. B Enzym. 56(4), 246–252 (2009)CrossRef
81.
Zurück zum Zitat N.C. Veitch, Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3), 249–259 (2004)CrossRef N.C. Veitch, Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3), 249–259 (2004)CrossRef
82.
Zurück zum Zitat L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2(3), 157–167 (2016)CrossRef L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2(3), 157–167 (2016)CrossRef
83.
Zurück zum Zitat D. Gonzalez-Perez, M. Alcalde, The making of versatile peroxidase by directed evolution. Biocatal. Biotransform. 36(1), 1–11 (2018)CrossRef D. Gonzalez-Perez, M. Alcalde, The making of versatile peroxidase by directed evolution. Biocatal. Biotransform. 36(1), 1–11 (2018)CrossRef
84.
Zurück zum Zitat J. Qi, M.K. Anke, K. Szymańska, D. Tischler, Immobilization of Rhodococcus opacus 1CP azoreductase to obtain azo dye degrading biocatalysts operative at acidic pH. Int. Biodeterior. Biodegrad. 118, 89–94 (2017)CrossRef J. Qi, M.K. Anke, K. Szymańska, D. Tischler, Immobilization of Rhodococcus opacus 1CP azoreductase to obtain azo dye degrading biocatalysts operative at acidic pH. Int. Biodeterior. Biodegrad. 118, 89–94 (2017)CrossRef
85.
Zurück zum Zitat A.T. Biegunski, A. Michota, J. Bukowska, K. Jackowska, Immobilization of tyrosinase on poly(indole-5-carboxylic acid) evidenced by electrochemical and spectroscopic methods. Bioelectrochemistry 69(1), 41–48 (2006)CrossRef A.T. Biegunski, A. Michota, J. Bukowska, K. Jackowska, Immobilization of tyrosinase on poly(indole-5-carboxylic acid) evidenced by electrochemical and spectroscopic methods. Bioelectrochemistry 69(1), 41–48 (2006)CrossRef
86.
Zurück zum Zitat T. Brugnari, M.G. Pereira, G.A. Bubna, E.N. de Freitas, A.G. Contato, R.C.G. Corrêa, R. Castoldi, C.G.M. de Souza, M.L.T. de Moraes, A. Bracht, A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci. Total Environ. 634, 1346–1351 (2018)CrossRef T. Brugnari, M.G. Pereira, G.A. Bubna, E.N. de Freitas, A.G. Contato, R.C.G. Corrêa, R. Castoldi, C.G.M. de Souza, M.L.T. de Moraes, A. Bracht, A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci. Total Environ. 634, 1346–1351 (2018)CrossRef
87.
Zurück zum Zitat P. Calza, D. Zacchigna, E. Laurenti, Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environ. Sci. Pollut. Res. 23(23), 23742–23749 (2016)CrossRef P. Calza, D. Zacchigna, E. Laurenti, Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environ. Sci. Pollut. Res. 23(23), 23742–23749 (2016)CrossRef
88.
Zurück zum Zitat H.-Y. Chen, S.-H. Wu, C.-T. Chen, Y.-P. Chen, F.-P. Chang, F.-C. Chien, C.-Y. Mou, Horseradish peroxidase-ancapsulated hollow silica nanospheres for intracellular sensing of reactive oxygen species. Nanoscale Res. Lett. 13(1), 123 (2018)CrossRef H.-Y. Chen, S.-H. Wu, C.-T. Chen, Y.-P. Chen, F.-P. Chang, F.-C. Chien, C.-Y. Mou, Horseradish peroxidase-ancapsulated hollow silica nanospheres for intracellular sensing of reactive oxygen species. Nanoscale Res. Lett. 13(1), 123 (2018)CrossRef
89.
Zurück zum Zitat J.K. Gill, V. Orsat, S. Kermasha, Screening trials for the encapsulation of laccase enzymatic extract in silica sol-gel. J. Sol-Gel Sci. Technol. 85(3), 657–663 (2018)CrossRef J.K. Gill, V. Orsat, S. Kermasha, Screening trials for the encapsulation of laccase enzymatic extract in silica sol-gel. J. Sol-Gel Sci. Technol. 85(3), 657–663 (2018)CrossRef
90.
Zurück zum Zitat D. Vishnu, G. Neeraj, R. Swaroopini, R. Shobana, V.V. Kumar, H. Cabana, Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ. Sci. Pollut. Res. 24(22), 17993–18009 (2017)CrossRef D. Vishnu, G. Neeraj, R. Swaroopini, R. Shobana, V.V. Kumar, H. Cabana, Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ. Sci. Pollut. Res. 24(22), 17993–18009 (2017)CrossRef
91.
Zurück zum Zitat P. Peralta-Zamora, C.M. Pereira, E.R. Tiburtius, S.G. Moraes, M.A. Rosa, R.C. Minussi, N. Durán, Decolorization of reactive dyes by immobilized laccase. Appl. Catal. B Environ. 42(2), 131–144 (2003)CrossRef P. Peralta-Zamora, C.M. Pereira, E.R. Tiburtius, S.G. Moraes, M.A. Rosa, R.C. Minussi, N. Durán, Decolorization of reactive dyes by immobilized laccase. Appl. Catal. B Environ. 42(2), 131–144 (2003)CrossRef
92.
Zurück zum Zitat F. Shakerian, J. Zhao, S.-P. Li, Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants—a review. Chemosphere 239, 124716 (2019)CrossRef F. Shakerian, J. Zhao, S.-P. Li, Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants—a review. Chemosphere 239, 124716 (2019)CrossRef
93.
Zurück zum Zitat K. Golka, S. Kopps, Z.W. Myslak, Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol. Lett. 151(1), 203–210 (2004)CrossRef K. Golka, S. Kopps, Z.W. Myslak, Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol. Lett. 151(1), 203–210 (2004)CrossRef
94.
Zurück zum Zitat Y. Lai, F. Wang, Y. Zhang, P. Ou, P. Wu, Q. Fang, S. Li, Z. Chen, Effective removal of methylene blue and orange II by subsequent immobilized laccase decolorization on crosslinked polymethacrylate/carbon nanotubes. Mater. Res. Exp. 6(085541), 1–11 (2019) Y. Lai, F. Wang, Y. Zhang, P. Ou, P. Wu, Q. Fang, S. Li, Z. Chen, Effective removal of methylene blue and orange II by subsequent immobilized laccase decolorization on crosslinked polymethacrylate/carbon nanotubes. Mater. Res. Exp. 6(085541), 1–11 (2019)
95.
Zurück zum Zitat S. Akhtar, A.A. Khan, Q. Husain, Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosphere 60(3), 291–301 (2005)CrossRef S. Akhtar, A.A. Khan, Q. Husain, Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosphere 60(3), 291–301 (2005)CrossRef
96.
Zurück zum Zitat S.V. Mohan, K.K. Prasad, N.C. Rao, P. Sarma, Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere 58(8), 1097–1105 (2005)CrossRef S.V. Mohan, K.K. Prasad, N.C. Rao, P. Sarma, Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere 58(8), 1097–1105 (2005)CrossRef
97.
Zurück zum Zitat M. Bilal, H.M.N. Iqbal, H. Hu, W. Wang, X. Zhang, Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. J. Environ. Manag. 188, 137–143 (2017)CrossRef M. Bilal, H.M.N. Iqbal, H. Hu, W. Wang, X. Zhang, Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. J. Environ. Manag. 188, 137–143 (2017)CrossRef
98.
Zurück zum Zitat M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv. Colloid Interf. Sci. 143(1), 48–67 (2008)CrossRef M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv. Colloid Interf. Sci. 143(1), 48–67 (2008)CrossRef
99.
Zurück zum Zitat R. Evans, Revised emergency planning and community right-to-know act (EPCRA), section 313, toxic chemical release reporting for calendar year 1998, Oak Ridge Y-12 Plant, TN (US) (2000) R. Evans, Revised emergency planning and community right-to-know act (EPCRA), section 313, toxic chemical release reporting for calendar year 1998, Oak Ridge Y-12 Plant, TN (US) (2000)
100.
Zurück zum Zitat R. Zhai, B. Zhang, Y. Wan, C. Li, J. Wang, J. Liu, Chitosan–halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem. Eng. J. 214, 304–309 (2013)CrossRef R. Zhai, B. Zhang, Y. Wan, C. Li, J. Wang, J. Liu, Chitosan–halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem. Eng. J. 214, 304–309 (2013)CrossRef
101.
Zurück zum Zitat S. Wang, H. Fang, Y. Wen, M. Cai, W. Liu, S. He, X. Xu, Applications of HRP-immobilized catalytic beads to the removal of 2,4-dichlorophenol from wastewater. RSC Adv. 5(71), 57286–57292 (2015)CrossRef S. Wang, H. Fang, Y. Wen, M. Cai, W. Liu, S. He, X. Xu, Applications of HRP-immobilized catalytic beads to the removal of 2,4-dichlorophenol from wastewater. RSC Adv. 5(71), 57286–57292 (2015)CrossRef
102.
Zurück zum Zitat T. Ahmad, R.M. Aadil, H. Ahmed, U.U. Rahman, B.C.V. Soares, S.L.Q. Souza, T.C. Pimentel, H. Scudino, J.T. Guimarães, E.A. Esmerino, M.Q. Freitas, R.B. Almada, S.M.R. Vendramel, M.C. Silva, A.G. Cruz, Treatment and utilization of dairy industrial waste: a review. Trends Food Sci. Technol. 88, 361–372 (2019)CrossRef T. Ahmad, R.M. Aadil, H. Ahmed, U.U. Rahman, B.C.V. Soares, S.L.Q. Souza, T.C. Pimentel, H. Scudino, J.T. Guimarães, E.A. Esmerino, M.Q. Freitas, R.B. Almada, S.M.R. Vendramel, M.C. Silva, A.G. Cruz, Treatment and utilization of dairy industrial waste: a review. Trends Food Sci. Technol. 88, 361–372 (2019)CrossRef
103.
Zurück zum Zitat B.E. Erickson, Acid whey: is the waste product an untapped goldmine? Chem. Eng. News 95(6), 26–30 (2017) B.E. Erickson, Acid whey: is the waste product an untapped goldmine? Chem. Eng. News 95(6), 26–30 (2017)
104.
Zurück zum Zitat M. Krewinkel, M. Gosch, E. Rentschler, L. Fischer, Epilactose production by 2 cellobiose 2-epimerases in natural milk. J. Dairy Sci. 97(1), 155–161 (2014)CrossRef M. Krewinkel, M. Gosch, E. Rentschler, L. Fischer, Epilactose production by 2 cellobiose 2-epimerases in natural milk. J. Dairy Sci. 97(1), 155–161 (2014)CrossRef
105.
Zurück zum Zitat Q. Chen, Y. Xiao, W. Zhang, T. Zhang, B. Jiang, T. Stressler, L. Fischer, W. Mu, Current research on cellobiose 2-epimerase: enzymatic properties, mechanistic insights, and potential applications in the dairy industry. Trends Food Sci. Technol. 82, 167–176 (2018)CrossRef Q. Chen, Y. Xiao, W. Zhang, T. Zhang, B. Jiang, T. Stressler, L. Fischer, W. Mu, Current research on cellobiose 2-epimerase: enzymatic properties, mechanistic insights, and potential applications in the dairy industry. Trends Food Sci. Technol. 82, 167–176 (2018)CrossRef
106.
Zurück zum Zitat J.R. Abril, J.W. Stull, Lactose hydrolysis in acid whey with subsequent glucose isomerisation. J. Sci. Food Agric. 48(4), 511–514 (1989)CrossRef J.R. Abril, J.W. Stull, Lactose hydrolysis in acid whey with subsequent glucose isomerisation. J. Sci. Food Agric. 48(4), 511–514 (1989)CrossRef
107.
Zurück zum Zitat E.A. Arndt, R.L. Wehling, Development of hydrolyzed and hydrolyzed-lsomerized syrups from cheese whey ultrafiltration permeate and their utilization in ice cream. J. Food Sci. 54(4), 880–884 (1989)CrossRef E.A. Arndt, R.L. Wehling, Development of hydrolyzed and hydrolyzed-lsomerized syrups from cheese whey ultrafiltration permeate and their utilization in ice cream. J. Food Sci. 54(4), 880–884 (1989)CrossRef
108.
Zurück zum Zitat C.P. Chiu, F.V. Kosikowski, Conversion of glucose in lactase-hydrolyzed whey permeate to fructose with immobilized glucose isomerase. J. Dairy Sci. 69(4), 959–964 (1986)CrossRef C.P. Chiu, F.V. Kosikowski, Conversion of glucose in lactase-hydrolyzed whey permeate to fructose with immobilized glucose isomerase. J. Dairy Sci. 69(4), 959–964 (1986)CrossRef
109.
Zurück zum Zitat A. Illanés, Whey upgrading by enzyme biocatalysis. Electron. J. Biotechnol. 14, 6 (2011)CrossRef A. Illanés, Whey upgrading by enzyme biocatalysis. Electron. J. Biotechnol. 14, 6 (2011)CrossRef
110.
Zurück zum Zitat A. Illanes, L. Wilson, L. Raiman, Design of immobilized enzyme reactors for the continuous production of fructose syrup from whey permeate. Bioprocess Eng. 21(6), 509–515 (1999)CrossRef A. Illanes, L. Wilson, L. Raiman, Design of immobilized enzyme reactors for the continuous production of fructose syrup from whey permeate. Bioprocess Eng. 21(6), 509–515 (1999)CrossRef
111.
Zurück zum Zitat P. Torres, F. Batista-Viera, Immobilized trienzymatic system with enhanced stabilization for the biotransformation of lactose. Molecules 22, 2 (2017)CrossRef P. Torres, F. Batista-Viera, Immobilized trienzymatic system with enhanced stabilization for the biotransformation of lactose. Molecules 22, 2 (2017)CrossRef
112.
Zurück zum Zitat P.C. Lorenzen, J. Breiter, I. Clawin-Rädecker, A. Dau, A novel bi-enzymatic system for lactose conversion. Int. J. Food Sci. Technol. 48(7), 1396–1403 (2013)CrossRef P.C. Lorenzen, J. Breiter, I. Clawin-Rädecker, A. Dau, A novel bi-enzymatic system for lactose conversion. Int. J. Food Sci. Technol. 48(7), 1396–1403 (2013)CrossRef
113.
Zurück zum Zitat J.V. Hupkes, R. van Tilburg, Production and properties of an immobilized glucose isomerase. Starch 28(10), 356–360 (1976)CrossRef J.V. Hupkes, R. van Tilburg, Production and properties of an immobilized glucose isomerase. Starch 28(10), 356–360 (1976)CrossRef
114.
Zurück zum Zitat K. Beerens, T. Desmet, W. Soetaert, Enzymes for the biocatalytic production of rare sugars. J. Ind. Microbiol. Biotechnol. 39(6), 823–834 (2012)CrossRef K. Beerens, T. Desmet, W. Soetaert, Enzymes for the biocatalytic production of rare sugars. J. Ind. Microbiol. Biotechnol. 39(6), 823–834 (2012)CrossRef
115.
Zurück zum Zitat T. Iida, K. Okuma, Properties of three rare sugars D-psicose, D-allose, D-tagatose and their applications. Oleoscience 13(9), 435–440 (2013)CrossRef T. Iida, K. Okuma, Properties of three rare sugars D-psicose, D-allose, D-tagatose and their applications. Oleoscience 13(9), 435–440 (2013)CrossRef
116.
Zurück zum Zitat J. Jayamuthunagai, G. Srisowmeya, M. Chakravarthy, P. Gautam, D-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate. Bioresour. Technol. 235, 250–255 (2017)CrossRef J. Jayamuthunagai, G. Srisowmeya, M. Chakravarthy, P. Gautam, D-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate. Bioresour. Technol. 235, 250–255 (2017)CrossRef
117.
Zurück zum Zitat Z. Xu, S. Li, F. Fu, G. Li, X. Feng, H. Xu, P. Ouyang, Production of D-tagatose, a functional sweetener, utilizing alginate immobilized Lactobacillus fermentum CGMCC2921 cells. Appl. Biochem. Biotechnol. 166(4), 961–973 (2012)CrossRef Z. Xu, S. Li, F. Fu, G. Li, X. Feng, H. Xu, P. Ouyang, Production of D-tagatose, a functional sweetener, utilizing alginate immobilized Lactobacillus fermentum CGMCC2921 cells. Appl. Biochem. Biotechnol. 166(4), 961–973 (2012)CrossRef
118.
Zurück zum Zitat C. Bertoldo, G. Antranikian, Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6(2), 151–160 (2002)CrossRef C. Bertoldo, G. Antranikian, Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6(2), 151–160 (2002)CrossRef
119.
Zurück zum Zitat A.V. Presecki, Z.F. Blazevic, D. Vasic-Racki, Complete starch hydrolysis by the synergistic action of amylase and glucoamylase: impact of calcium ions. Bioprocess Biosyst. Eng. 36(11), 1555–1562 (2013)CrossRef A.V. Presecki, Z.F. Blazevic, D. Vasic-Racki, Complete starch hydrolysis by the synergistic action of amylase and glucoamylase: impact of calcium ions. Bioprocess Biosyst. Eng. 36(11), 1555–1562 (2013)CrossRef
120.
Zurück zum Zitat K. Gupta, A.K. Jana, S. Kumar, M. Maiti, Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Bioprocess Biosyst. Eng. 36(11), 1715–1724 (2013)CrossRef K. Gupta, A.K. Jana, S. Kumar, M. Maiti, Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Bioprocess Biosyst. Eng. 36(11), 1715–1724 (2013)CrossRef
121.
Zurück zum Zitat D. Park, S. Haam, K. Jang, I.S. Ahn, W.S. Kim, Immobilization of starch-converting enzymes on surface-modified carriers using single and co-immobilized systems: properties and application to starch hydrolysis. Process Biochem. 40(1), 53–61 (2005)CrossRef D. Park, S. Haam, K. Jang, I.S. Ahn, W.S. Kim, Immobilization of starch-converting enzymes on surface-modified carriers using single and co-immobilized systems: properties and application to starch hydrolysis. Process Biochem. 40(1), 53–61 (2005)CrossRef
122.
Zurück zum Zitat I. Roy, M.N. Gupta, Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzym. Microb. Technol. 34(1), 26–32 (2004)CrossRef I. Roy, M.N. Gupta, Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzym. Microb. Technol. 34(1), 26–32 (2004)CrossRef
123.
Zurück zum Zitat M. Soleimani, A. Khani, K. Najafzadeh, α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J. Mol. Catal. B Enzym. 74(1–2), 1–5 (2012)CrossRef M. Soleimani, A. Khani, K. Najafzadeh, α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J. Mol. Catal. B Enzym. 74(1–2), 1–5 (2012)CrossRef
124.
Zurück zum Zitat M. Salgaonkar, S.S. Nadar, V.K. Rathod, Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. Int. J. Biol. Macromol. 113, 464–475 (2018)CrossRef M. Salgaonkar, S.S. Nadar, V.K. Rathod, Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. Int. J. Biol. Macromol. 113, 464–475 (2018)CrossRef
125.
Zurück zum Zitat N.A. Edama, A. Sulaiman, K.H.K. Hamid, S.N.A. Rahim, A.S. Baharuddin, M.N. Mokhtar, Encapsulation of multi-enzymes on waste clay material: preparation, characterization and application for tapioca starch hydrolysis. Appl. Mech. Mater. 548–549, 77–82 (2014)CrossRef N.A. Edama, A. Sulaiman, K.H.K. Hamid, S.N.A. Rahim, A.S. Baharuddin, M.N. Mokhtar, Encapsulation of multi-enzymes on waste clay material: preparation, characterization and application for tapioca starch hydrolysis. Appl. Mech. Mater. 548–549, 77–82 (2014)CrossRef
126.
Zurück zum Zitat S. Talekar, A. Joshi, S. Kambale, S. Jadhav, S. Nadar, M. Ladole, A tri-enzyme magnetic nanobiocatalyst with one pot starch hydrolytic activity. Chem. Eng. J. 325, 80–90 (2017)CrossRef S. Talekar, A. Joshi, S. Kambale, S. Jadhav, S. Nadar, M. Ladole, A tri-enzyme magnetic nanobiocatalyst with one pot starch hydrolytic activity. Chem. Eng. J. 325, 80–90 (2017)CrossRef
127.
Zurück zum Zitat M. Roberfroid, Prebiotics: the concept revisited. J. Nutr. 137(3), 830S–837S (2007)CrossRef M. Roberfroid, Prebiotics: the concept revisited. J. Nutr. 137(3), 830S–837S (2007)CrossRef
128.
Zurück zum Zitat G. Tzortzis, J. Vulevic, Galacto-oligosaccharide prebiotics, in Prebiotics and Probiotics Science and Technology, ed. by D. Charalampopoulos, R. A. Rastall, (Springer, New York, 2009), pp. 207–244CrossRef G. Tzortzis, J. Vulevic, Galacto-oligosaccharide prebiotics, in Prebiotics and Probiotics Science and Technology, ed. by D. Charalampopoulos, R. A. Rastall, (Springer, New York, 2009), pp. 207–244CrossRef
129.
Zurück zum Zitat A. Gosling, G.W. Stevens, A.R. Barber, S.E. Kentish, S.L. Gras, Recent advances refining galactooligosaccharide production from lactose. Food Chem. 121(2), 307–318 (2010)CrossRef A. Gosling, G.W. Stevens, A.R. Barber, S.E. Kentish, S.L. Gras, Recent advances refining galactooligosaccharide production from lactose. Food Chem. 121(2), 307–318 (2010)CrossRef
130.
Zurück zum Zitat H. Yin, J.B. Bultema, L. Dijkhuizen, S.S. van Leeuwen, Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chem. 225, 230–238 (2017)CrossRef H. Yin, J.B. Bultema, L. Dijkhuizen, S.S. van Leeuwen, Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chem. 225, 230–238 (2017)CrossRef
131.
Zurück zum Zitat A.R. Park, D.K. Oh, Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl. Microbiol. Biotechnol. 85(5), 1279–1286 (2010)CrossRef A.R. Park, D.K. Oh, Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl. Microbiol. Biotechnol. 85(5), 1279–1286 (2010)CrossRef
132.
Zurück zum Zitat D.P. Torres, M. Gonçalves, J.A. Teixeira, L.R. Rodrigues, Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr. Rev. Food Sci. Food Saf. 9(5), 438–454 (2010)CrossRef D.P. Torres, M. Gonçalves, J.A. Teixeira, L.R. Rodrigues, Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr. Rev. Food Sci. Food Saf. 9(5), 438–454 (2010)CrossRef
133.
Zurück zum Zitat M.A. Boon, A.E.M. Janssen, K. Van’t Riet, Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzym. Microb. Technol. 26(2–4), 271–281 (2000)CrossRef M.A. Boon, A.E.M. Janssen, K. Van’t Riet, Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzym. Microb. Technol. 26(2–4), 271–281 (2000)CrossRef
134.
Zurück zum Zitat P. Urrutia, B. Rodriguez-Colinas, L. Fernandez-Arrojo, A.O. Ballesteros, L. Wilson, A. Illanes, F.J. Plou, Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. J. Agric. Food Chem. 61(5), 1081–1087 (2013)CrossRef P. Urrutia, B. Rodriguez-Colinas, L. Fernandez-Arrojo, A.O. Ballesteros, L. Wilson, A. Illanes, F.J. Plou, Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. J. Agric. Food Chem. 61(5), 1081–1087 (2013)CrossRef
135.
Zurück zum Zitat R.E. Huber, G. Kurz, K. Wallenfels, A quantitation of the factors which affect the hydrolase and transgalactosylase activities of β-galactosidase (E. coli) on lactose. Biochemistry 15(9), 1994–2001 (1976)CrossRef R.E. Huber, G. Kurz, K. Wallenfels, A quantitation of the factors which affect the hydrolase and transgalactosylase activities of β-galactosidase (E. coli) on lactose. Biochemistry 15(9), 1994–2001 (1976)CrossRef
136.
Zurück zum Zitat C.W. Chen, C.C. Ou-Yang, C.W. Yeh, Synthesis of galactooligosaccharides and transgalactosylation modeling in reverse micelles. Enzym. Microb. Technol. 33(4), 497–507 (2003)CrossRef C.W. Chen, C.C. Ou-Yang, C.W. Yeh, Synthesis of galactooligosaccharides and transgalactosylation modeling in reverse micelles. Enzym. Microb. Technol. 33(4), 497–507 (2003)CrossRef
137.
Zurück zum Zitat S.X. Chen, D.Z. Wei, Z.H. Hu, Synthesis of galacto-oligosaccharides in AOT/isooctane reverse micelles by β-galactosidase. J. Mol. Catal. B Enzym. 16(2), 109–114 (2001)CrossRef S.X. Chen, D.Z. Wei, Z.H. Hu, Synthesis of galacto-oligosaccharides in AOT/isooctane reverse micelles by β-galactosidase. J. Mol. Catal. B Enzym. 16(2), 109–114 (2001)CrossRef
138.
Zurück zum Zitat R. Gaur, H. Pant, R. Jain, S.K. Khare, Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chem. 97(3), 426–430 (2006)CrossRef R. Gaur, H. Pant, R. Jain, S.K. Khare, Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chem. 97(3), 426–430 (2006)CrossRef
139.
Zurück zum Zitat C. Guerrero, C. Aburto, S. Suárez, C. Vera, A. Illanes, Effect of the type of immobilization of β-galactosidase on the yield and selectivity of synthesis of transgalactosylated oligosaccharides. Biocatal. Agric. Biotechnol. 16, 353–363 (2018)CrossRef C. Guerrero, C. Aburto, S. Suárez, C. Vera, A. Illanes, Effect of the type of immobilization of β-galactosidase on the yield and selectivity of synthesis of transgalactosylated oligosaccharides. Biocatal. Agric. Biotechnol. 16, 353–363 (2018)CrossRef
140.
Zurück zum Zitat L.M. Huerta, C. Vera, C. Guerrero, L. Wilson, A. Illanes, Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochem. 46(1), 245–252 (2011)CrossRef L.M. Huerta, C. Vera, C. Guerrero, L. Wilson, A. Illanes, Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochem. 46(1), 245–252 (2011)CrossRef
141.
Zurück zum Zitat M.P. Klein, C.R. Hackenhaar, A.S.G. Lorenzoni, R.C. Rodrigues, T.M.H. Costa, J.L. Ninow, P.F. Hertz, Chitosan crosslinked with genipin as support matrix for application in food process: support characterization and β-d-galactosidase immobilization. Carbohydr. Polym. 137, 184–190 (2016)CrossRef M.P. Klein, C.R. Hackenhaar, A.S.G. Lorenzoni, R.C. Rodrigues, T.M.H. Costa, J.L. Ninow, P.F. Hertz, Chitosan crosslinked with genipin as support matrix for application in food process: support characterization and β-d-galactosidase immobilization. Carbohydr. Polym. 137, 184–190 (2016)CrossRef
142.
Zurück zum Zitat S. Suárez, C. Guerrero, C. Vera, A. Illanes, Effect of particle size and enzyme load on the simultaneous reactions of lactose hydrolysis and transgalactosylation with glyoxyl-agarose immobilized β-galactosidase from Aspergillus oryzae. Process Biochem. 73, 56–64 (2018)CrossRef S. Suárez, C. Guerrero, C. Vera, A. Illanes, Effect of particle size and enzyme load on the simultaneous reactions of lactose hydrolysis and transgalactosylation with glyoxyl-agarose immobilized β-galactosidase from Aspergillus oryzae. Process Biochem. 73, 56–64 (2018)CrossRef
143.
Zurück zum Zitat P. Urrutia, C. Bernal, L. Wilson, A. Illanes, Use of chitosan heterofunctionality for enzyme immobilization: β-galactosidase immobilization for galacto-oligosaccharide synthesis. Int. J. Biol. Macromol. 116, 182–193 (2018)CrossRef P. Urrutia, C. Bernal, L. Wilson, A. Illanes, Use of chitosan heterofunctionality for enzyme immobilization: β-galactosidase immobilization for galacto-oligosaccharide synthesis. Int. J. Biol. Macromol. 116, 182–193 (2018)CrossRef
145.
Zurück zum Zitat P. Urrutia, C. Bernal, S. Escobar, C. Santa, M. Mesa, L. Wilson, A. Illanes, Influence of chitosan derivatization on its physicochemical characteristics and its use as enzyme support. J. Appl. Polym. Sci. 131, 8 (2014)CrossRef P. Urrutia, C. Bernal, S. Escobar, C. Santa, M. Mesa, L. Wilson, A. Illanes, Influence of chitosan derivatization on its physicochemical characteristics and its use as enzyme support. J. Appl. Polym. Sci. 131, 8 (2014)CrossRef
146.
Zurück zum Zitat P. Urrutia, C. Mateo, J.M. Guisan, L. Wilson, A. Illanes, Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochem. Eng. J. 77, 41–48 (2013)CrossRef P. Urrutia, C. Mateo, J.M. Guisan, L. Wilson, A. Illanes, Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochem. Eng. J. 77, 41–48 (2013)CrossRef
147.
Zurück zum Zitat C. Giacomini, A. Villarino, L. Franco-Fraguas, F. Batista-Viera, Immobilization of β-galactosidase from Kluyveromyces lactis on silica and agarose: comparison of different methods. J. Mol. Catal. B Enzym. 4(5–6), 313–327 (1998)CrossRef C. Giacomini, A. Villarino, L. Franco-Fraguas, F. Batista-Viera, Immobilization of β-galactosidase from Kluyveromyces lactis on silica and agarose: comparison of different methods. J. Mol. Catal. B Enzym. 4(5–6), 313–327 (1998)CrossRef
148.
Zurück zum Zitat M.P. Klein, L.P. Fallavena, J.D.N. Schöffer, M.A.Z. Ayub, R.C. Rodrigues, J.L. Ninow, P.F. Hertz, High stability of immobilized β-D-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydr. Polym. 95(1), 465–470 (2013)CrossRef M.P. Klein, L.P. Fallavena, J.D.N. Schöffer, M.A.Z. Ayub, R.C. Rodrigues, J.L. Ninow, P.F. Hertz, High stability of immobilized β-D-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydr. Polym. 95(1), 465–470 (2013)CrossRef
149.
Zurück zum Zitat Z. Mozaffar, K. Nakanishi, R. Matsuno, Continuous production of galacto-oligosaccharides from lactose using immobilized β-galactosidase from Bacillus circulans. Appl. Microbiol. Biotechnol. 25(3), 224–228 (1986) Z. Mozaffar, K. Nakanishi, R. Matsuno, Continuous production of galacto-oligosaccharides from lactose using immobilized β-galactosidase from Bacillus circulans. Appl. Microbiol. Biotechnol. 25(3), 224–228 (1986)
150.
Zurück zum Zitat Z. Mozaffar, K. Nakanishi, R. Matsuno, Mechanism for reversible inactivation of immobilized β-galactosidase from Bacillus circulans during continuous production of galacto-oligosaccharides. Appl. Microbiol. Biotechnol. 25(3), 229–231 (1986) Z. Mozaffar, K. Nakanishi, R. Matsuno, Mechanism for reversible inactivation of immobilized β-galactosidase from Bacillus circulans during continuous production of galacto-oligosaccharides. Appl. Microbiol. Biotechnol. 25(3), 229–231 (1986)
151.
Zurück zum Zitat K. Banjanac, M. Carević, M. Ćorović, A. Milivojević, N. Prlainović, A. Marinković, D. Bezbradica, Novel β-galactosidase nanobiocatalyst systems for application in the synthesis of bioactive galactosides. RSC Adv. 6(99), 97216–97225 (2016)CrossRef K. Banjanac, M. Carević, M. Ćorović, A. Milivojević, N. Prlainović, A. Marinković, D. Bezbradica, Novel β-galactosidase nanobiocatalyst systems for application in the synthesis of bioactive galactosides. RSC Adv. 6(99), 97216–97225 (2016)CrossRef
152.
Zurück zum Zitat I. González-Delgado, Y. Segura, G. Morales, M.J. López-Muñoz, Production of high galacto-oligosaccharides by Pectinex Ultra SP-L: optimization of reaction conditions and immobilization on glyoxyl-functionalized silica. J. Agric. Food Chem. 65(8), 1649–1658 (2017)CrossRef I. González-Delgado, Y. Segura, G. Morales, M.J. López-Muñoz, Production of high galacto-oligosaccharides by Pectinex Ultra SP-L: optimization of reaction conditions and immobilization on glyoxyl-functionalized silica. J. Agric. Food Chem. 65(8), 1649–1658 (2017)CrossRef
153.
Zurück zum Zitat M. Misson, X. Du, B. Jin, H. Zhang, Dendrimer-like nanoparticles based β-galactosidase assembly for enhancing its selectivity toward transgalactosylation. Enzym. Microb. Technol. 84, 68–77 (2016)CrossRef M. Misson, X. Du, B. Jin, H. Zhang, Dendrimer-like nanoparticles based β-galactosidase assembly for enhancing its selectivity toward transgalactosylation. Enzym. Microb. Technol. 84, 68–77 (2016)CrossRef
154.
Zurück zum Zitat C. Guerrero, C. Vera, F. Plou, A. Illanes, Influence of reaction conditions on the selectivity of the synthesis of lactulose with microbial β-galactosidases. J. Mol. Catal. B Enzym. 72(3–4), 206–212 (2011)CrossRef C. Guerrero, C. Vera, F. Plou, A. Illanes, Influence of reaction conditions on the selectivity of the synthesis of lactulose with microbial β-galactosidases. J. Mol. Catal. B Enzym. 72(3–4), 206–212 (2011)CrossRef
155.
Zurück zum Zitat P.S. Panesar, S. Kumari, Lactulose: production, purification and potential applications. Biotechnol. Adv. 29(6), 940–948 (2011)CrossRef P.S. Panesar, S. Kumari, Lactulose: production, purification and potential applications. Biotechnol. Adv. 29(6), 940–948 (2011)CrossRef
156.
Zurück zum Zitat R. Benavente, B.C. Pessela, J.A. Curiel, B. De Las Rivas, R. Muñoz, J.M. Guisán, J.M. Mancheño, A. Cardelle-Cobas, A.I. Ruiz-Matute, N. Corzo, Improving properties of a novel β-galactosidase from Lactobacillus plantarum by covalent immobilization. Molecules 20(5), 7874–7889 (2015)CrossRef R. Benavente, B.C. Pessela, J.A. Curiel, B. De Las Rivas, R. Muñoz, J.M. Guisán, J.M. Mancheño, A. Cardelle-Cobas, A.I. Ruiz-Matute, N. Corzo, Improving properties of a novel β-galactosidase from Lactobacillus plantarum by covalent immobilization. Molecules 20(5), 7874–7889 (2015)CrossRef
157.
Zurück zum Zitat A. Cardelle-Cobas, A. Olano, G. Irazoqui, C. Giacomini, F. Batista-Viera, N. Corzo, M. Corzo-Martínez, Synthesis of oligosaccharides derived from lactulose (OsLu) using soluble and immobilized Aspergillus oryzae β-galactosidase. Front. Bioeng. Biotechnol. 4, 21 (2016)CrossRef A. Cardelle-Cobas, A. Olano, G. Irazoqui, C. Giacomini, F. Batista-Viera, N. Corzo, M. Corzo-Martínez, Synthesis of oligosaccharides derived from lactulose (OsLu) using soluble and immobilized Aspergillus oryzae β-galactosidase. Front. Bioeng. Biotechnol. 4, 21 (2016)CrossRef
158.
Zurück zum Zitat C. Guerrero, F. Valdivia, C. Ubilla, N. Ramírez, M. Gómez, C. Aburto, C. Vera, A. Illanes, Continuous enzymatic synthesis of lactulose in packed-bed reactor with immobilized Aspergillus oryzae β-galactosidase. Bioresour. Technol. 278, 296–302 (2019)CrossRef C. Guerrero, F. Valdivia, C. Ubilla, N. Ramírez, M. Gómez, C. Aburto, C. Vera, A. Illanes, Continuous enzymatic synthesis of lactulose in packed-bed reactor with immobilized Aspergillus oryzae β-galactosidase. Bioresour. Technol. 278, 296–302 (2019)CrossRef
159.
Zurück zum Zitat C. Guerrero, C. Vera, N. Serna, A. Illanes, Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. Bioresour. Technol. 232, 53–63 (2017)CrossRef C. Guerrero, C. Vera, N. Serna, A. Illanes, Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. Bioresour. Technol. 232, 53–63 (2017)CrossRef
160.
Zurück zum Zitat C. Guerrero, C. Vera, A. Illanes, Synthesis of lactulose in batch and repeated-batch operation with immobilized β-galactosidase in different agarose functionalized supports. Bioresour. Technol. 230, 56–66 (2017)CrossRef C. Guerrero, C. Vera, A. Illanes, Synthesis of lactulose in batch and repeated-batch operation with immobilized β-galactosidase in different agarose functionalized supports. Bioresour. Technol. 230, 56–66 (2017)CrossRef
161.
Zurück zum Zitat V.D. Nguyen, G. Styevkó, L.P. Ta, A.T.M. Tran, E. Bujna, P. Orbán, M.S. Dam, Q.D. Nguyen, Immobilization and some properties of commercial enzyme preparation for production of lactulose-based oligosaccharides. Food Bioprod. Process. 107, 97–103 (2018)CrossRef V.D. Nguyen, G. Styevkó, L.P. Ta, A.T.M. Tran, E. Bujna, P. Orbán, M.S. Dam, Q.D. Nguyen, Immobilization and some properties of commercial enzyme preparation for production of lactulose-based oligosaccharides. Food Bioprod. Process. 107, 97–103 (2018)CrossRef
162.
Zurück zum Zitat Y.S. Song, Y.J. Suh, C. Park, S.W. Kim, Improvement of lactulose synthesis through optimization of reaction conditions with immobilized β-galactosidase. Korean J. Chem. Eng. 30(1), 160–165 (2013)CrossRef Y.S. Song, Y.J. Suh, C. Park, S.W. Kim, Improvement of lactulose synthesis through optimization of reaction conditions with immobilized β-galactosidase. Korean J. Chem. Eng. 30(1), 160–165 (2013)CrossRef
163.
Zurück zum Zitat O.J. Concha, M.E. Zúñiga Hansen, Enzymatic depolymerization of sugar beet pulp: production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates. Chem. Eng. J. 192, 29–36 (2012)CrossRef O.J. Concha, M.E. Zúñiga Hansen, Enzymatic depolymerization of sugar beet pulp: production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates. Chem. Eng. J. 192, 29–36 (2012)CrossRef
164.
Zurück zum Zitat S. Baldassarre, N. Babbar, S. Van Roy, W. Dejonghe, M. Maesen, S. Sforza, K. Elst, Continuous production of pectic oligosaccharides from onion skins with an enzyme membrane reactor. Food Chem. 267, 101–110 (2018)CrossRef S. Baldassarre, N. Babbar, S. Van Roy, W. Dejonghe, M. Maesen, S. Sforza, K. Elst, Continuous production of pectic oligosaccharides from onion skins with an enzyme membrane reactor. Food Chem. 267, 101–110 (2018)CrossRef
165.
Zurück zum Zitat Y.A. Ramírez-Tapias, A.S. Lapasset Laumann, C.N. Britos, C.W. Rivero, J.A. Trelles, Saccharification of citrus wastes by immobilized polygalacturonase in an improved alginate matrix. 3 Biotech 7(6), 380 (2017)CrossRef Y.A. Ramírez-Tapias, A.S. Lapasset Laumann, C.N. Britos, C.W. Rivero, J.A. Trelles, Saccharification of citrus wastes by immobilized polygalacturonase in an improved alginate matrix. 3 Biotech 7(6), 380 (2017)CrossRef
166.
Zurück zum Zitat C.S. Raina, S. Singh, A.S. Bawa, D.C. Saxena, Some characteristics of acetylated, cross-linked and dual modified Indian rice starches. Eur. Food Res. Technol. 223(4), 561–570 (2006)CrossRef C.S. Raina, S. Singh, A.S. Bawa, D.C. Saxena, Some characteristics of acetylated, cross-linked and dual modified Indian rice starches. Eur. Food Res. Technol. 223(4), 561–570 (2006)CrossRef
167.
Zurück zum Zitat E. Rudnik, G. Matuschek, N. Milanov, A. Kettrup, Thermal properties of starch succinates. Thermochim. Acta 427(1–2), 163–166 (2005)CrossRef E. Rudnik, G. Matuschek, N. Milanov, A. Kettrup, Thermal properties of starch succinates. Thermochim. Acta 427(1–2), 163–166 (2005)CrossRef
168.
Zurück zum Zitat S. Chakraborty, B. Sahoo, I. Teraoka, L.M. Miller, R.A. Gross, Enzyme-catalyzed regioselective modification of starch nanoparticles. Macromolecules 38(1), 61–68 (2005)CrossRef S. Chakraborty, B. Sahoo, I. Teraoka, L.M. Miller, R.A. Gross, Enzyme-catalyzed regioselective modification of starch nanoparticles. Macromolecules 38(1), 61–68 (2005)CrossRef
169.
Zurück zum Zitat H. Horchani, M. Chaâbouni, Y. Gargouri, A. Sayari, Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: optimization by response surface methodology. Carbohydr. Polym. 79(2), 466–474 (2010)CrossRef H. Horchani, M. Chaâbouni, Y. Gargouri, A. Sayari, Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: optimization by response surface methodology. Carbohydr. Polym. 79(2), 466–474 (2010)CrossRef
170.
Zurück zum Zitat M. Perwez, M.J. Ahmed, M. Sardar, Preparation and characterization of reusable magnetic combi-CLEA of cellulase and hemicellulase. Enzym. Microb. Technol. 131, 109389 (2019)CrossRef M. Perwez, M.J. Ahmed, M. Sardar, Preparation and characterization of reusable magnetic combi-CLEA of cellulase and hemicellulase. Enzym. Microb. Technol. 131, 109389 (2019)CrossRef
171.
Zurück zum Zitat K. Periyasamy, L. Santhalembi, G. Mortha, M. Aurousseau, A. Boyer, S. Subramanian, Bioconversion of lignocellulosic biomass to fermentable sugars by immobilized magnetic cellulolytic enzyme cocktails. Langmuir 34(22), 6546–6555 (2018)CrossRef K. Periyasamy, L. Santhalembi, G. Mortha, M. Aurousseau, A. Boyer, S. Subramanian, Bioconversion of lignocellulosic biomass to fermentable sugars by immobilized magnetic cellulolytic enzyme cocktails. Langmuir 34(22), 6546–6555 (2018)CrossRef
172.
Zurück zum Zitat J. Wang, K. Li, Y. He, Y. Wang, X. Han, Y. Yan, Enhanced performance of lipase immobilized onto Co2+-chelated magnetic nanoparticles and its application in biodiesel production. Fuel 255, 115794 (2019)CrossRef J. Wang, K. Li, Y. He, Y. Wang, X. Han, Y. Yan, Enhanced performance of lipase immobilized onto Co2+-chelated magnetic nanoparticles and its application in biodiesel production. Fuel 255, 115794 (2019)CrossRef
173.
Zurück zum Zitat H. Zhang, Y. Zou, Y. Shen, X. Gao, X. Zheng, X. Zhang, Y. Chen, J. Guo, Dominated effect analysis of the channel size of silica support materials on the catalytic performance of immobilized lipase catalysts in the transformation of unrefined waste cooking oil to biodiesel. Bioenergy Res. 7(4), 1541–1549 (2014)CrossRef H. Zhang, Y. Zou, Y. Shen, X. Gao, X. Zheng, X. Zhang, Y. Chen, J. Guo, Dominated effect analysis of the channel size of silica support materials on the catalytic performance of immobilized lipase catalysts in the transformation of unrefined waste cooking oil to biodiesel. Bioenergy Res. 7(4), 1541–1549 (2014)CrossRef
Metadaten
Titel
Enzyme Biocatalysis and Sustainability
verfasst von
Carminna Ottone
Oscar Romero
Paulina Urrutia
Claudia Bernal
Andrés Illanes
Lorena Wilson
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-58934-9_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.