Skip to main content

2016 | OriginalPaper | Buchkapitel

3. Epidemiological Modeling on Complex Networks

verfasst von : Zhen Jin, Shuping Li, Xiaoguang Zhang, Juping Zhang, Xiao-Long Peng

Erschienen in: Complex Systems and Networks

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present chapter is devoted to review some literatures on the modeling infectious disease on complex networks. From the following several aspects we give a brief summary about solving the problem of the disease spread: Modeling approaches of epidemic dynamics on complex networks, Application of percolation theory in propagation dynamics, Epidemic models in complex network with demographics and Epidemic spreading on multilayer networks. In the first section, the Node-based and Edge-based mean-field modeling approaches on complex networks are reviewed and compared respectively, and the second section reviews the application of bond percolation in the single network (undirected graphs, directed graphs, bipartite graphs and clustered networks) and coupled networks (overlap networks and interconnected networks), then gives a review about the disease epidemics and site or bond percolation or both site and bond percolation in small-world networks. Following, we present an overview on some of recent studies on epidemic dynamics with demographics and epidemic processes on multilayer networks in the last two section, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford University Press, Oxford (1991) Anderson, R.M., May, R.M.: Infectious Diseases of Humans. Oxford University Press, Oxford (1991)
2.
Zurück zum Zitat Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)CrossRef Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)CrossRef
3.
Zurück zum Zitat Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics in finite size scale-free networks. Phys. Rev. E 65(3), 035108 (2002)CrossRef Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics in finite size scale-free networks. Phys. Rev. E 65(3), 035108 (2002)CrossRef
4.
Zurück zum Zitat Boguná, M., Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66(4), 047104 (2002)CrossRef Boguná, M., Pastor-Satorras, R.: Epidemic spreading in correlated complex networks. Phys. Rev. E 66(4), 047104 (2002)CrossRef
5.
Zurück zum Zitat Boguná, M., Pastor-Satorras, R., Vespignani, A.: Absence of epidemic threshold in scale-free networks with degree correlations. Phys. Rev. Lett. 90(2), 028701 (2003)CrossRef Boguná, M., Pastor-Satorras, R., Vespignani, A.: Absence of epidemic threshold in scale-free networks with degree correlations. Phys. Rev. Lett. 90(2), 028701 (2003)CrossRef
6.
Zurück zum Zitat Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)CrossRef Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)CrossRef
9.
Zurück zum Zitat Wang, L., Dai, G.Z.: Global stability of virus spreading in complex heterogeneous networks. SIAM J. Appl. Math. 68(5), 1495–1502 (2008)MathSciNetCrossRefMATH Wang, L., Dai, G.Z.: Global stability of virus spreading in complex heterogeneous networks. SIAM J. Appl. Math. 68(5), 1495–1502 (2008)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 26(4), 521–529 (2002) Moreno, Y., Pastor-Satorras, R., Vespignani, A.: Epidemic outbreaks in complex heterogeneous networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 26(4), 521–529 (2002)
11.
Zurück zum Zitat Wang, J., Liu, Z.: Mean-field level analysis of epidemics in directed networks. J. Phys. A: Math. Theor. 42(35), 355001 (2009)CrossRef Wang, J., Liu, Z.: Mean-field level analysis of epidemics in directed networks. J. Phys. A: Math. Theor. 42(35), 355001 (2009)CrossRef
12.
Zurück zum Zitat Meyers, L.A., Newman, M.E.J., Pourbohloul, B.: Predicting epidemics on directed contact networks. J. Theor. Biol. 240(3), 400–418 (2006)MathSciNetCrossRef Meyers, L.A., Newman, M.E.J., Pourbohloul, B.: Predicting epidemics on directed contact networks. J. Theor. Biol. 240(3), 400–418 (2006)MathSciNetCrossRef
13.
Zurück zum Zitat Zhang, X., Sun, G.Q., Zhu, Y.X., et al.: Epidemic dynamics on semi-directed complex networks. Math. Biosci. 246(2), 242–251 (2013)MathSciNetCrossRefMATH Zhang, X., Sun, G.Q., Zhu, Y.X., et al.: Epidemic dynamics on semi-directed complex networks. Math. Biosci. 246(2), 242–251 (2013)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Wang, L., Li, X.: Spatial epidemiology of networked metapopulation: an overview. Chin. Sci. Bull. 59(28), 3511–3522 (2014)CrossRef Wang, L., Li, X.: Spatial epidemiology of networked metapopulation: an overview. Chin. Sci. Bull. 59(28), 3511–3522 (2014)CrossRef
15.
Zurück zum Zitat Boguñá, M., Castellano, C., Pastor-Satorras, R.: Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks. Phys. Rev. Lett. 111(6), 068701 (2013)CrossRef Boguñá, M., Castellano, C., Pastor-Satorras, R.: Nature of the epidemic threshold for the susceptible-infected-susceptible dynamics in networks. Phys. Rev. Lett. 111(6), 068701 (2013)CrossRef
16.
Zurück zum Zitat Zhang, J., Jin, Z., Chen, Y.: Analysis of sexually transmitted disease spreading in heterosexual and homosexual populations. Math. Biosci. 242(2), 143–152 (2013)MathSciNetCrossRefMATH Zhang, J., Jin, Z., Chen, Y.: Analysis of sexually transmitted disease spreading in heterosexual and homosexual populations. Math. Biosci. 242(2), 143–152 (2013)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Wang, Y., Jin, Z., Yang, Z., et al.: Global analysis of an SIS model with an infective vector on complex networks. Nonlinear Anal.: Real World Appl. 13(2), 543–557 (2012)MathSciNetCrossRefMATH Wang, Y., Jin, Z., Yang, Z., et al.: Global analysis of an SIS model with an infective vector on complex networks. Nonlinear Anal.: Real World Appl. 13(2), 543–557 (2012)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Kiss, I.Z., Green, D.M., Kao, R.R.: The effect of contact heterogeneity and multiple routes of transmission on final epidemic size. Math. Biosci. 203(1), 124–136 (2006)MathSciNetCrossRefMATH Kiss, I.Z., Green, D.M., Kao, R.R.: The effect of contact heterogeneity and multiple routes of transmission on final epidemic size. Math. Biosci. 203(1), 124–136 (2006)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Lindquist, J., Ma, J., Van den Driessche, P., et al.: Effective degree network disease models. J. Math. Biol. 62(2), 143–164 (2011)MathSciNetCrossRefMATH Lindquist, J., Ma, J., Van den Driessche, P., et al.: Effective degree network disease models. J. Math. Biol. 62(2), 143–164 (2011)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Jin, Z., Sun, G., Zhu, H.: Epidemic models for complex networks with demographics. Math. Biosci. Eng. 11(6), 1295–1317 (2014)MathSciNetCrossRef Jin, Z., Sun, G., Zhu, H.: Epidemic models for complex networks with demographics. Math. Biosci. Eng. 11(6), 1295–1317 (2014)MathSciNetCrossRef
21.
Zurück zum Zitat Keeling, M.J.: The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266(1421), 859–867 (1999)CrossRef Keeling, M.J.: The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266(1421), 859–867 (1999)CrossRef
22.
Zurück zum Zitat Miller, J.C., Kiss, I.Z.: Epidemic spread in networks: existing methods and current challenges. Math. Model. Nat. Phenom. 9(2), 4 (2014)MathSciNetCrossRefMATH Miller, J.C., Kiss, I.Z.: Epidemic spread in networks: existing methods and current challenges. Math. Model. Nat. Phenom. 9(2), 4 (2014)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Keeling, M.J., Rand, D.A., Morris, A.J.: Correlation models for childhood epidemics. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 264(1385), 1149–1156 (1997)CrossRefMATH Keeling, M.J., Rand, D.A., Morris, A.J.: Correlation models for childhood epidemics. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 264(1385), 1149–1156 (1997)CrossRefMATH
24.
Zurück zum Zitat Sharkey, K.J., Fernandez, C., Morgan, K.L., et al.: Pair-level approximations to the spatio-temporal dynamics of epidemics on asymmetric contact networks. J. Math. Biol. 53(1), 61–85 (2006)MathSciNetCrossRefMATH Sharkey, K.J., Fernandez, C., Morgan, K.L., et al.: Pair-level approximations to the spatio-temporal dynamics of epidemics on asymmetric contact networks. J. Math. Biol. 53(1), 61–85 (2006)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Eames, K.T.D.: Modelling disease spread through random and regular contacts in clustered populations. Theor. Popul. Biol. 73(1), 104–111 (2008)CrossRefMATH Eames, K.T.D.: Modelling disease spread through random and regular contacts in clustered populations. Theor. Popul. Biol. 73(1), 104–111 (2008)CrossRefMATH
26.
Zurück zum Zitat Taylor, M., Simon, P.L., Green, D.M., et al.: From Markovian to pairwise epidemic models and the performance of moment closure approximations. J. Math. Biol. 64(6), 1021–1042 (2012)MathSciNetCrossRefMATH Taylor, M., Simon, P.L., Green, D.M., et al.: From Markovian to pairwise epidemic models and the performance of moment closure approximations. J. Math. Biol. 64(6), 1021–1042 (2012)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96(20), 208701 (2006)CrossRef Gross, T., D’Lima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96(20), 208701 (2006)CrossRef
28.
Zurück zum Zitat Eames, K.T.D., Keeling, M.J.: Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. 99(20), 13330–13335 (2002)CrossRef Eames, K.T.D., Keeling, M.J.: Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. 99(20), 13330–13335 (2002)CrossRef
29.
Zurück zum Zitat Eames, K.T.D., Keeling, M.J.: Monogamous networks and the spread of sexually transmitted diseases. Math. Biosci. 189(2), 115–130 (2004)MathSciNetCrossRefMATH Eames, K.T.D., Keeling, M.J.: Monogamous networks and the spread of sexually transmitted diseases. Math. Biosci. 189(2), 115–130 (2004)MathSciNetCrossRefMATH
30.
Zurück zum Zitat House, T., Keeling, M.J.: Insights from unifying modern approximations to infections on networks. J. R. Soc. Interface rsif20100179 (2010) House, T., Keeling, M.J.: Insights from unifying modern approximations to infections on networks. J. R. Soc. Interface rsif20100179 (2010)
31.
32.
33.
34.
Zurück zum Zitat Miller, J.C., Slim, A.C., Volz, E.M.: Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface 9(70), rsif20110403 (2012) Miller, J.C., Slim, A.C., Volz, E.M.: Edge-based compartmental modelling for infectious disease spread. J. R. Soc. Interface 9(70), rsif20110403 (2012)
35.
Zurück zum Zitat Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)CrossRef Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001)CrossRef
36.
Zurück zum Zitat Newman, M.E.J.: Properties of highly clustered networks. Phys. Rev. E 68(2), 026121 (2003)CrossRef Newman, M.E.J.: Properties of highly clustered networks. Phys. Rev. E 68(2), 026121 (2003)CrossRef
37.
Zurück zum Zitat Gleeson, J.P., Melnik, S., Hackett, A.: How clustering affects the bond percolation threshold in complex networks. Phys. Rev. E 81(6), 066114 (2010)MathSciNetCrossRef Gleeson, J.P., Melnik, S., Hackett, A.: How clustering affects the bond percolation threshold in complex networks. Phys. Rev. E 81(6), 066114 (2010)MathSciNetCrossRef
38.
Zurück zum Zitat Miller, J.C.: Spread of infectious disease through clustered populations. J. R. Soc. Interface, 2009 rsif.0524 (2008) Miller, J.C.: Spread of infectious disease through clustered populations. J. R. Soc. Interface, 2009 rsif.0524 (2008)
39.
40.
Zurück zum Zitat Coupechoux, E., Lelarge, M.: How clustering affects epidemics in random networks. Adv. Appl. Probab. 46(4), 985–1008 (2014)MathSciNetCrossRefMATH Coupechoux, E., Lelarge, M.: How clustering affects epidemics in random networks. Adv. Appl. Probab. 46(4), 985–1008 (2014)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Newman, M.E.J.: Random graphs with clustering. Phys. Rev. Lett. 103(5), 058701 (2009)CrossRef Newman, M.E.J.: Random graphs with clustering. Phys. Rev. Lett. 103(5), 058701 (2009)CrossRef
42.
Zurück zum Zitat Karrer, B., Newman, M.E.J.: Random graphs containing arbitrary distributions of subgraphs. Phys. Rev. E 82(6), 066118 (2010)MathSciNetCrossRef Karrer, B., Newman, M.E.J.: Random graphs containing arbitrary distributions of subgraphs. Phys. Rev. E 82(6), 066118 (2010)MathSciNetCrossRef
43.
Zurück zum Zitat Wang, B., Cao, L., Suzuki, H., et al.: Impacts of clustering on interacting epidemics. J. Theor. Biol. 304, 121–130 (2012)MathSciNetCrossRef Wang, B., Cao, L., Suzuki, H., et al.: Impacts of clustering on interacting epidemics. J. Theor. Biol. 304, 121–130 (2012)MathSciNetCrossRef
44.
Zurück zum Zitat Boccaletti, S., Bianconi, G., Criado, R., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)MathSciNetCrossRef Boccaletti, S., Bianconi, G., Criado, R., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)MathSciNetCrossRef
45.
Zurück zum Zitat Newman, M.E.J.: Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. 95(10), 108701 (2005)CrossRef Newman, M.E.J.: Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. 95(10), 108701 (2005)CrossRef
46.
Zurück zum Zitat Funk, S., Jansen, V.A.A.: Interacting epidemics on overlay networks. Phys. Rev. E 81(3), 036118 (2010)CrossRef Funk, S., Jansen, V.A.A.: Interacting epidemics on overlay networks. Phys. Rev. E 81(3), 036118 (2010)CrossRef
47.
Zurück zum Zitat Allard, A., Noël, P.A., Dubé, L.J., et al.: Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics. Phys. Rev. E 79(3), 036113 (2009)CrossRef Allard, A., Noël, P.A., Dubé, L.J., et al.: Heterogeneous bond percolation on multitype networks with an application to epidemic dynamics. Phys. Rev. E 79(3), 036113 (2009)CrossRef
48.
Zurück zum Zitat Gandolfi, A.: Percolation Methods for SEIR Epidemics on Graphs. Dynamic Models of Infectious Diseases, pp. 31–58. Springer, New York (2013)CrossRef Gandolfi, A.: Percolation Methods for SEIR Epidemics on Graphs. Dynamic Models of Infectious Diseases, pp. 31–58. Springer, New York (2013)CrossRef
49.
Zurück zum Zitat Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Phys. Rev. E 61(5), 5678 (2000)CrossRef Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Phys. Rev. E 61(5), 5678 (2000)CrossRef
50.
Zurück zum Zitat Liu, J., Tang, Y., Yang, Z.R.: The spread of disease with birth and death on networks. J. Stat. Mech.: Theory Exp. (08), P08008 (2004) Liu, J., Tang, Y., Yang, Z.R.: The spread of disease with birth and death on networks. J. Stat. Mech.: Theory Exp. (08), P08008 (2004)
51.
52.
Zurück zum Zitat Moore, C., Ghoshal, G., Newman, M.E.J.: Exact solutions for models of evolving networks with addition and deletion of nodes. Phys. Rev. E 74(3), 036121 (2006)MathSciNetCrossRef Moore, C., Ghoshal, G., Newman, M.E.J.: Exact solutions for models of evolving networks with addition and deletion of nodes. Phys. Rev. E 74(3), 036121 (2006)MathSciNetCrossRef
53.
Zurück zum Zitat Volz, E., Meyers, L.A.: Susceptible-infected-recovered epidemics in dynamic contact networks. Proc. R. Soc. B: Biol. Sci. 274(1628), 2925–2934 (2007)CrossRef Volz, E., Meyers, L.A.: Susceptible-infected-recovered epidemics in dynamic contact networks. Proc. R. Soc. B: Biol. Sci. 274(1628), 2925–2934 (2007)CrossRef
54.
Zurück zum Zitat Kamp, C.: Untangling the interplay between epidemic spread and transmission network dynamics. PLoS Comput. Biol. 6(11), e1000984 (2010)MathSciNetCrossRef Kamp, C.: Untangling the interplay between epidemic spread and transmission network dynamics. PLoS Comput. Biol. 6(11), e1000984 (2010)MathSciNetCrossRef
55.
Zurück zum Zitat Piccardi, C., Colombo, A., Casagrandi, R.: Connectivity interplays with age in shaping contagion over networks with vital dynamics. Phys. Rev. E 91(2), 022809 (2015)CrossRef Piccardi, C., Colombo, A., Casagrandi, R.: Connectivity interplays with age in shaping contagion over networks with vital dynamics. Phys. Rev. E 91(2), 022809 (2015)CrossRef
56.
Zurück zum Zitat Pastor-Satorras, R., Castellano, C., Van Mieghem, P., et al.: Epidemic processes in complex networks (2014). arXiv:1408.2701 Pastor-Satorras, R., Castellano, C., Van Mieghem, P., et al.: Epidemic processes in complex networks (2014). arXiv:​1408.​2701
57.
58.
Zurück zum Zitat Kurant, M., Thiran, P.: Layered complex networks. Phys. Rev. Lett. 96, 138701 (2006) Kurant, M., Thiran, P.: Layered complex networks. Phys. Rev. Lett. 96, 138701 (2006)
59.
Zurück zum Zitat De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)MATH De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3, 041022 (2013)MATH
60.
Zurück zum Zitat Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y.: Multilayer networks. J. Complex Netw. 2, 203–271 (2014)CrossRef Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y.: Multilayer networks. J. Complex Netw. 2, 203–271 (2014)CrossRef
61.
Zurück zum Zitat Sahneh, F.D., Scoglio, C.: Competitive epidemic spreading over arbitrary multilayer networks. Phys. Rev. E 89, 062817 (2014)CrossRef Sahneh, F.D., Scoglio, C.: Competitive epidemic spreading over arbitrary multilayer networks. Phys. Rev. E 89, 062817 (2014)CrossRef
62.
Zurück zum Zitat Min, Y., Hu, J., Wang, W., Ge, Y., Chang, J., Jin, X.: Diversity of multilayer networks and its impact on collaborating epidemics. Phys. Rev. E 90, 062803 (2014)CrossRef Min, Y., Hu, J., Wang, W., Ge, Y., Chang, J., Jin, X.: Diversity of multilayer networks and its impact on collaborating epidemics. Phys. Rev. E 90, 062803 (2014)CrossRef
63.
Zurück zum Zitat Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network of networks. Phys. Rev. Lett. 107, 195701 (2011)CrossRef Gao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Robustness of a network of networks. Phys. Rev. Lett. 107, 195701 (2011)CrossRef
64.
Zurück zum Zitat Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012)CrossRef Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012)CrossRef
65.
Zurück zum Zitat Gao, J., Buldyrev, S.V., Stanley, H.E., Xu, X., Havlin, S.: Percolation of a general network of networks. Phys. Rev. E 88, 062816 (2013)CrossRef Gao, J., Buldyrev, S.V., Stanley, H.E., Xu, X., Havlin, S.: Percolation of a general network of networks. Phys. Rev. E 88, 062816 (2013)CrossRef
66.
Zurück zum Zitat Bianconi, G., Dorogovtsev, S.N.: Multiple percolation transitions in a configuration model of a network of networks. Phys. Rev. E 89, 062814 (2014) Bianconi, G., Dorogovtsev, S.N.: Multiple percolation transitions in a configuration model of a network of networks. Phys. Rev. E 89, 062814 (2014)
67.
Zurück zum Zitat Buldyrev, S., Parshani, R., Paul, G., Stanley, H., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)CrossRef Buldyrev, S., Parshani, R., Paul, G., Stanley, H., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010)CrossRef
68.
Zurück zum Zitat Dickison, M., Havlin, S., Stanley, H.E.: Epidemics on interconnected networks. Phys. Rev. E 85, 066109 (2012)CrossRef Dickison, M., Havlin, S., Stanley, H.E.: Epidemics on interconnected networks. Phys. Rev. E 85, 066109 (2012)CrossRef
69.
Zurück zum Zitat Zhou, D., Stanley, H.E., D’Agostino, G., Scala, A.: Assortativity decreases the robustness of interdependent networks. Phys. Rev. E 86, 066103 (2012)CrossRef Zhou, D., Stanley, H.E., D’Agostino, G., Scala, A.: Assortativity decreases the robustness of interdependent networks. Phys. Rev. E 86, 066103 (2012)CrossRef
71.
Zurück zum Zitat Donges, J.F., Schultz, H.C.H., Marwan, N., Zou, Y., Kurths, J.: Investigating the topology of interacting networks. Eur. Phys. J. B 84(4), 635–651 (2011) Donges, J.F., Schultz, H.C.H., Marwan, N., Zou, Y., Kurths, J.: Investigating the topology of interacting networks. Eur. Phys. J. B 84(4), 635–651 (2011)
72.
Zurück zum Zitat Radicchi, F.: Driving interconnected networks to supercriticality. Phys. Rev. X 4, 021014 (2014) Radicchi, F.: Driving interconnected networks to supercriticality. Phys. Rev. X 4, 021014 (2014)
73.
Zurück zum Zitat Lee, K.M., Goh, K.I., Kim, I.M.: Sandpiles on multiplex networks. J. Korean Phys. Soc. 60(4), 641–647 (2012)CrossRef Lee, K.M., Goh, K.I., Kim, I.M.: Sandpiles on multiplex networks. J. Korean Phys. Soc. 60(4), 641–647 (2012)CrossRef
74.
Zurück zum Zitat Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014)CrossRef Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89, 032804 (2014)CrossRef
75.
Zurück zum Zitat Lee, K.M., Min, B., Goh, K.: Towards real-world complexity: an introduction to multiplex networks. Eur. Phys. J. B 88, 48 (2015)CrossRef Lee, K.M., Min, B., Goh, K.: Towards real-world complexity: an introduction to multiplex networks. Eur. Phys. J. B 88, 48 (2015)CrossRef
76.
Zurück zum Zitat Saumell-Mendiola, A., Serrano, M., Boguñá, M.: Epidemic spreading on interconnected networks. Phys. Rev. E 86, 026106 (2012)CrossRef Saumell-Mendiola, A., Serrano, M., Boguñá, M.: Epidemic spreading on interconnected networks. Phys. Rev. E 86, 026106 (2012)CrossRef
77.
Zurück zum Zitat Wang, H., Li, Q., D’Agostino, G., Havlin, S., Stanley, H.E., Van Mieghem, P.: Effect of the interconnected network structure on the epidemic threshold. Phys. Rev. E 88, 022801 (2013) Wang, H., Li, Q., D’Agostino, G., Havlin, S., Stanley, H.E., Van Mieghem, P.: Effect of the interconnected network structure on the epidemic threshold. Phys. Rev. E 88, 022801 (2013)
78.
Zurück zum Zitat Granell, C., Gómez, S., Arenas, A.: Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013)CrossRef Granell, C., Gómez, S., Arenas, A.: Dynamical interplay between awareness and epidemic spreading in multiplex networks. Phys. Rev. Lett. 111, 128701 (2013)CrossRef
79.
Zurück zum Zitat Granell, C., Gómez, S., Arenas, A.: Competing spreading processes on multiplex networks: awareness and epidemics. Phys. Rev. E 90, 012808 (2014)CrossRef Granell, C., Gómez, S., Arenas, A.: Competing spreading processes on multiplex networks: awareness and epidemics. Phys. Rev. E 90, 012808 (2014)CrossRef
80.
Zurück zum Zitat Massaro, E., Bagnoli, F.: Epidemic spreading and risk perception in multiplex networks: a self-organized percolation method. Phys. Rev. E 90, 052817 (2014)CrossRef Massaro, E., Bagnoli, F.: Epidemic spreading and risk perception in multiplex networks: a self-organized percolation method. Phys. Rev. E 90, 052817 (2014)CrossRef
81.
Zurück zum Zitat Guo, Q., Jiang, X., Lei, Y., Li, M., Ma, Y., Zheng, Z.: Two-stage effects of awareness cascade on epidemic spreading in multiplex networks. Phys. Rev. E 91, 012822 (2015)CrossRef Guo, Q., Jiang, X., Lei, Y., Li, M., Ma, Y., Zheng, Z.: Two-stage effects of awareness cascade on epidemic spreading in multiplex networks. Phys. Rev. E 91, 012822 (2015)CrossRef
82.
Zurück zum Zitat Shai, S., Dobson, S.: Coupled adaptive complex networks. Phys. Rev. E 87, 042812 (2013)CrossRef Shai, S., Dobson, S.: Coupled adaptive complex networks. Phys. Rev. E 87, 042812 (2013)CrossRef
83.
Zurück zum Zitat Peng, X.L., Small, M., Xu, X.J., Fu, X.: Temporal prediction of epidemic patterns in community networks. New J. Phys. 15, 113033 (2013)CrossRef Peng, X.L., Small, M., Xu, X.J., Fu, X.: Temporal prediction of epidemic patterns in community networks. New J. Phys. 15, 113033 (2013)CrossRef
84.
Zurück zum Zitat Newman, M.E.J.: Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. 95, 108701 (2005)CrossRef Newman, M.E.J.: Threshold effects for two pathogens spreading on a network. Phys. Rev. Lett. 95, 108701 (2005)CrossRef
85.
Zurück zum Zitat Marceau, V., No\(\tilde{{\text{ e }}}\)l, P.-A., Hébert-Dufresne, L., Allard, A., Dubé, L.J.: Modelling the dynamical interaction between epidemics on overlay networks. Phys. Rev. E 84, 026105 (2011) Marceau, V., No\(\tilde{{\text{ e }}}\)l, P.-A., Hébert-Dufresne, L., Allard, A., Dubé, L.J.: Modelling the dynamical interaction between epidemics on overlay networks. Phys. Rev. E 84, 026105 (2011)
86.
Zurück zum Zitat Sahneh, F.D., Scoglio, C.: May the best meme win!: new exploration of competitive epidemic spreading over arbitrary multi-layer networks (2013). arXiv:1308.4880 Sahneh, F.D., Scoglio, C.: May the best meme win!: new exploration of competitive epidemic spreading over arbitrary multi-layer networks (2013). arXiv:​1308.​4880
87.
Zurück zum Zitat Wei, X., Valler, N., Prakash, B.A., Neamtiu, I., Faloutsos, M., Faloutsos, C.: Competing memes propagation on networks: a network science perspective. IEEE J. Sel. Areas Commun. 31(6), 1049–1060 (2013)CrossRef Wei, X., Valler, N., Prakash, B.A., Neamtiu, I., Faloutsos, M., Faloutsos, C.: Competing memes propagation on networks: a network science perspective. IEEE J. Sel. Areas Commun. 31(6), 1049–1060 (2013)CrossRef
88.
Zurück zum Zitat Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Pérez-Vicente, C.J., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013)CrossRef Gómez, S., Díaz-Guilera, A., Gómez-Gardeñes, J., Pérez-Vicente, C.J., Moreno, Y., Arenas, A.: Diffusion dynamics on multiplex networks. Phys. Rev. Lett. 110, 028701 (2013)CrossRef
89.
Zurück zum Zitat Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)CrossRef Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012)CrossRef
Metadaten
Titel
Epidemiological Modeling on Complex Networks
verfasst von
Zhen Jin
Shuping Li
Xiaoguang Zhang
Juping Zhang
Xiao-Long Peng
Copyright-Jahr
2016
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-47824-0_3

Premium Partner